- 无标题文档
查看论文信息

论文中文题名:

 基于“双惯导+里程计”组合导航的采煤机定位方法研究    

姓名:

 吴重阳    

学号:

 22210226117    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘工程    

研究方向:

 惯导定位    

第一导师姓名:

 龚云    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-18    

论文答辩日期:

 2025-06-08    

论文外文题名:

 Research on Shearer’s Positioning Method Based on “Dual Inertial Navigation System + Odometer” Combination Navigation    

论文中文关键词:

 采煤机定位 ; 双惯导定位 ; 降噪 ; 初始对准 ; 卡尔曼滤波    

论文外文关键词:

 Shearer positioning ; Dual inertial navigation positioning ; Noise reduction ; Initial alignment ; Kalman filter    

论文中文摘要:

智能化开采是煤矿工业发展的必然趋势。对采煤机的精确定位是实现智能化开采的重要环节,基于惯导的采煤机定位技术以定位信息的自主性使其被广泛应用于煤炭领域。然而惯导存在定位误差累积的固有缺陷,同时采煤机截割时易受振动干扰,加大了惯导对位姿检测准确性的影响,导致纯惯性导航的位置漂移较大。本文从降低惯性传感器噪声、初始对准惯导系统、提高采煤机组合导航算法精度等方面开展研究,具体研究内容如下:

(1)针对采煤机工作环境下存在振动和电磁等噪声干扰,导致采煤机惯导定位精度下降的问题,本文采用了一种改进经验模态分解的惯导信号降噪方法。实验结果表明,相较于经验模态分解降噪和小波降噪,改进经验模态分解降噪方法对矿井环境下的振动与电磁噪声的去噪效果更佳,提高了惯导信号的质量,为惯导定位提供良好的数据基础。

(2)针对初始对准误差易导致采煤机惯导在长时间运行中定位结果发散的问题,本文引入了一种基于优化无迹卡尔曼滤波的初始对准方法。实验结果表明,优化无迹卡尔曼滤波算法对初始对准过程中的姿态误差角估计性能更高,将得到的惯导初始对准姿态角误差补偿至惯导数据解算中,降低了初始对准偏差对采煤机惯导定位精度的影响。

(3)针对纯惯导的测量误差随运行时间的增加而累积的问题,本文采用双惯导与里程计融合的定位方式,构建了采煤机的组合定位模型,考虑到模型状态突变对采煤机定位精度的影响,提出了一种基于自适应扩展卡尔曼滤波的双惯导定位方法,对自适应双惯导定位算法的影响参量分别进行了仿真和地面实验。实验结果表明,自适应双惯导定位算法能够有效解决模型状态突变的问题,且在不同工况下自适应双惯导定位算法处理后的定位误差趋于收敛,误差累积现象得到改善。最后针对采煤机运动场景下进行模拟综合定位实验,模拟小车在运行距离约300m时,经综合定位算法处理后的定位相对误差低于1%,具有较高的定位精度。

论文外文摘要:

Intelligent mining is an inevitable trend in the development of the coal mining industry. The precise positioning of the coal shearer is an important link in realizing intelligent mining, and the inertial navigation system based on the positioning technology of the coal shearer has been widely used in the field of coal because of the autonomy of the positioning information. However, the inertial navigation system has the inherent defect of accumulating positioning errors, and at the same time, the shearer is susceptible to vibration interference when cutting, which increases the influence of inertial navigation on the accuracy of position detection, resulting in a larger position drift of pure inertial navigation. In this paper, research is carried out from the aspects of reducing inertial sensor noise, initially aligning the inertial navigation system, and improving the accuracy of the combined navigation algorithm of shearer, and the specific research contents are as follows:

(1)Aiming at the problem that vibration and electromagnetic noise interference exist in the working environment of shearer, which leads to the degradation of inertial navigation positioning accuracy of shearer, this paper adopts an improved empirical modal decomposition noise reduction method for inertial navigation signals. The experimental results show that compared with the empirical modal decomposition noise reduction and wavelet noise reduction, the improved empirical modal decomposition noise reduction method has a better denoising effect on the vibration and electromagnetic interference noise in the mining environment, improves the quality of the inertial signals, and provides a good data basis for inertial navigation system positioning.

(2)Aiming at the problem that the initial alignment error is easy to lead to the dispersion of the positioning results of the inertial navigation system of the shearer in a long time operation, this paper introduces an initial alignment method based on the optimized unscented Kalman filter. The experimental results show that the optimized unscented Kalman filter algorithm has higher performance in estimating the attitude error angle during the initial alignment process, and compensates the obtained attitude angle error of the initial alignment of shearer to the inertial navigation system, which reduces the impact of the initial alignment deviation on the positioning accuracy of shearer inertial navigation system.

(3)Aiming at the problem that the measurement error of pure inertial navigation accumulates with the increase of operation time, this paper adopts the positioning method of fusion of dual inertial navigation and odometer, constructs a combined positioning model of shearer, and proposes a dual inertial navigation localization method based on adaptive extended Kalman filtering considering the influence of the sudden change of the model state on the positioning accuracy of coal mining machine, and carries out the influence parameter of the adaptive dual inertial navigation algorithm respectively. Simulation and ground experiment are carried out respectively on the influential parameters of the adaptive dual inertial guidance localization algorithm. The experimental results show that the adaptive dual inertial navigation system can effectively solve the problem of sudden change of the model state, and the positioning error of the adaptive dual inertial navigation system tends to converge and the error accumulation phenomenon is improved under different working conditions. Finally, the simulated integrated positioning experiment is carried out for the movement scenario of shearer. When the simulated trolley is running at a distance of about 300m, the relative error of positioning processed by the integrated positioning algorithm is less than 1%, which has a high positioning accuracy.

参考文献:

[1]谢和平, 吴立新, 郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报, 2019, 44(7): 1949-1960.

[2]钱鸣高, 许家林, 王家臣. 再论煤炭的科学开采[J]. 煤炭学报, 2018, 43(1): 1-13.

[3]方新秋, 梁敏富, 李爽, 等. 智能工作面多参量精准感知与安全决策关键技术[J]. 煤炭学报, 2020, 45(1): 493-508.

[4]王金华, 黄乐亭, 李首滨, 等. 综采工作面智能化技术与装备的发展[J]. 煤炭学报, 2014, 39(8): 1418-1423.

[5]Ralston J C, Reid D C, Dunn M T, et al. Longwall automation: Delivering enabling technology to achieve safer and more productive underground mining[J]. International Journal of Mining Science and Technology, 2015, 25(6): 865-876.

[6]刘文科. 采煤机自动化及智能化控制技术[J]. 电子技术与软件工程, 2019, (24): 102-103.

[7]吴立新, 汪云甲, 丁恩杰, 等. 三论数字矿山——借力物联网保障矿山安全与智能采矿[J]. 煤炭学报, 2012, 37(3): 357-365.

[8]尹金元. 采煤机智能控制关键技术的研究[J]. 机械管理开发, 2019, 34(11): 208-209+244.

[9]王焕文, 陶福贵, 康俊霞. 基于单向示范刀的采煤机记忆截割模型构建及模拟分析[J]. 煤矿机械, 2014, 35(10): 105-107.

[10]王国法. 工作面支护与液压支架技术理论体系[J]. 煤炭学报, 2014, 39(8): 1593-1601.

[11]王国法, 刘峰, 孟祥军, 等. 煤矿智能化(初级阶段)研究与实践[J]. 煤炭科学技术, 2019, 47(8): 1-36.

[12]许春雨, 宋渊, 宋建成, 等. 基于单片机的采煤机红外线位置检测装置开发[J]. 煤炭学报, 2011, 36(S1): 167-171.

[13]张连昆, 谢耀社, 周德华, 等. 基于超声波技术的采煤机位置监测系统[J]. 煤炭科学技术, 2010, 38(5): 104-106+110.

[14]郝尚清, 王世博, 谢贵君, 等. 长壁综采工作面采煤机定位定姿技术研究[J]. 工矿自动化, 2014, 40(6): 21-25.

[15]Zhou L J, Chen G Z. Location strategy of shearer based on wireless sensor network[C]//The 2010 International Conference on Apperceiving Computing and Intelligence Analysis Proceeding, Chengdu, China, 2010: 169-173.

[16]张金尧, 李威, 杨海, 等. 采煤机捷联惯导定位方法研究[J]. 工矿自动化, 2016, 42(3): 52-55.

[17]Yang H, Li W, Luo C, et al. Research on Error Compensation Property of Strapdown Inertial Navigation System Using Dynamic Model of Shearer[J]. IEEE Access, 2017, 4(4): 2045-2055.

[18]宋丽君, 秦永元, 杨鹏翔. 小波阈值去噪法在MEMS陀螺仪信号降噪中的应用[J]. 测试技术学报, 2009, 23(1): 33-36.

[19]李世银, 张楠, 武中文, 等. 基于小波分析的MEMS加速度计去噪优化算法[J]. 传感技术学报, 2018, 31(5): 705-709.

[20]于玉丹, 林伟, 俞朝阳. 改进Sage-Husa算法结合小波模糊阈值算法的MEMS陀螺去噪[J]. 电子测量技术, 2022, 45(19): 64-69.

[21]刘晓光, 胡静涛, 高雷, 等. 基于改进小波阈值的微机械陀螺去噪方法[J]. 中国惯性技术学报, 2014, 22(2): 233-236.

[22]崔冰波, 陈熙源, 宋锐. EMD阈值滤波在光纤陀螺漂移信号去噪中的应用[J]. 光学学报, 2015, 35(2): 61-66.

[23]Liu C, Yang Z, Shi Z, et al. A gyroscope signal denoising method based on empirical mode decomposition and signal reconstruction[J]. Sensors, 2019, 19(23): 5064.

[24]南守琎. 光纤陀螺滤波算法及惯性/视觉组合导航研究[D]. 西安: 西安科技大学, 2021.

[25]毛清华, 安炎基, 马宏伟, 等. 煤矿掘进装备光纤惯导多源异构噪声降噪方法研究[J]. 煤炭科学技术, 2023, 51(2): 390-399.

[26]Wang M H, Liu W. GPS/SINS speed integral matching alignment based on improved adaptive UKF[C]//2019 2nd World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM), Shanghai, China, 2019: 352-357.

[27]陈令刚, 刘建业, 孙永荣, 等. 微小型捷联惯导系统解析式对准方法研究[J]. 航天控制, 2005, (4): 9-12+23.

[28]魏春岭, 张洪钺. 捷联惯导系统粗对准方法比较[J]. 航天控制, 2000, (3): 16-21.

[29]严恭敏. 捷联惯导系统动基座初始对准及其它相关问题研究[R]. 西安: 西北工业大学, 2008.

[30]赵健. 动态干扰条件下捷联惯导的纬度未知自对准方法研究[D]. 北京: 北京工业大学, 2016.

[31]Julier S, Uhlmann J, Durrant-Whyte H F. A new method for the nonlinear transformation of means and covariances in filters and estimators[J]. IEEE Transactions on automatic control, 2000, 45(3): 477-482.

[32]Zhou Z X, Gao Y A, Chen L B. Unscented Kalman filter for SINS alignment[J]. Journal of Systems Engineering and Electronics, 2007, 18(2): 327-333.

[33]Du G L, Zhang P. Online serial manipulator calibration based on multisensory process via extended Kalman and particle filters[J]. IEEE Transactions on Industrial Electronics, 2014, 61(12): 6852-6859.

[34]Wang B, Ye W, Liu Y H. An improved real-time transfer alignment algorithm based on adaptive noise estimation for distributed POS[J]. IEEE Access, 2020, 8: 102119-102127.

[35]杨萌. 非线性滤波及在惯导系统传递对准中应用研究[D]. 哈尔滨: 哈尔滨工程大学, 2010.

[36]刘旭, 张其善, 杨东凯. 一种用于GPS/DR组合定位的非线性滤波算法[J]. 北京航空航天大学学报, 2007, (2): 184-187.

[37]高亢. 里程计辅助的车载捷联惯导系统动基座初始对准方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

[38]秦永元, 严恭敏, 顾冬晴, 等. 摇摆基座上基于信息的捷联惯导粗对准研究[J]. 西北工业大学学报, 2005, (5): 140-143.

[39]练军想, 汤勇刚, 吴美平, 等. 捷联惯导惯性系动基座对准算法研究[J]. 国防科技大学学报, 2007, (5): 95-99.

[40]周琪, 秦永元, 张金红, 等. 基于四元数卡尔曼滤波的捷联惯导初始对准算法[J]. 中国惯性技术学报, 2012, 20(2): 162-167.

[41]崔潇, 秦永元, 严恭敏, 等. 基于矩阵卡尔曼滤波的捷联惯导初始对准算法[J]. 中国惯性技术学报, 2018, 26(5): 585-590.

[42]侯志勇. 捷联惯导初始对准与导航校准技术研究[D]. 西安: 西安电子科技大学, 2021.

[43]邓正隆. 惯性导航原理[M]. 哈尔滨: 哈尔滨工业大学出版社, 1994.

[44]高钟毓. 惯性导航系统技术[M]. 北京: 清华大学出版社, 2012.

[45]Kelly M, Hainsworth D, Reid D, et al. Longwall Automation–A new approach [C]//Proceedings of the 3th International Symposium “High Performance Mine Production”, Aachen, Germany, 2003: 11-12.

[46]Reid D C, Dunn M T, Reid P B, et al. A practical inertial navigation solution for continuous miner automation[C]//12th Coal Operators' Conference, Wollongong, Australia, 2012, 12: 114-119.

[47]Dunn M T, Thompson J P, Reid P B, et al. High accuracy inertial navigation for underground mining machinery[C]//2012 IEEE International Conference on Automation Science and Engineering (CASE), Seoul, Korea (South), 2012: 1179-1183.

[48]Dunn M, Reid D, Ralston J. Control of automated mining machinery using aided inertial navigation[M]//Machine Vision and Mechatronics in Practice. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015: 1-9.

[49]Reid D, Ralston J, Dunn M, et al. Longwall shearer automation: from research to reality[M]//Machine vision and mechatronics in practice. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015: 49-57.

[50]Einicke G A, Ralston J C, Hargrave C O, et al. Longwall mining automation an application of minimum-variance smoothing [Applications of Control][J]. IEEE Control Systems Magazine, 2008, 28(6): 28-37.

[51]方新秋, 何杰, 张斌, 等. 无人工作面采煤机自主定位系统[J]. 西安科技大学学报, 2008, (2): 349-353.

[52]樊启高, 李威, 王禹桥, 等. 一种采用捷联惯导的采煤机动态定位方法[J]. 煤炭学报, 2011, 36(10): 1758-1761.

[53]杨海, 李威, 罗成名, 等. 基于捷联惯导的采煤机定位定姿技术实验研究[J]. 煤炭学报, 2014, 39(12): 2550-2556.

[54]郝尚清, 李昂, 王世博, 等. 采煤机惯性导航安装偏差对定位误差的影响[J]. 煤炭学报, 2015, 40(8): 1963-1968.

[55]张博渊, 王世博, 葛世荣. 惯性导航初始对准偏差与安装偏差校准方法对采煤机定位精度影响[J]. 煤炭学报, 2017, 42(3): 789-795.

[56]张斌, 方新秋, 邹永洺, 等. 基于陀螺仪和里程计的无人工作面采煤机自主定位系统[J]. 矿山机械, 2010, 38(9): 10-13.

[57]李昂, 郝尚清, 王世博, 等. 基于SINS/轴编码器组合的采煤机定位方法与试验研究[J]. 煤炭科学技术, 2016, 44(4): 95-100.

[58]王世佳, 王世博, 张博渊, 等. 采煤机惯性导航定位动态零速修正技术[J]. 煤炭学报, 2018, 43(2): 578-583.

[59]王浩然, 王宏伟, 李正龙, 等. 基于捷联惯导与差速里程计的掘进机组合定位方法[J]. 工矿自动化, 2022, 48(9): 148-156.

[60]葛世荣, 王世佳, 曹波, 等. 智能采运机组自主定位原理与技术[J]. 煤炭学报, 2022, 47(1): 75-86.

[61]毛清华, 周庆, 安炎基, 等. 惯导与视觉信息融合的掘进机精确定位方法[J]. 煤炭科学技术, 2024, 52(5): 236-248.

[62]刘为任, 王宁, 刘国彬, 等. 一种双惯导组合导航方法[J]. 中国惯性技术学报, 2014, 22(1): 1-4+13.

[63]李佳璇, 周广涛, 刘晓旭, 等. 基于等式约束卡尔曼的双MIMU行人导航方案[J]. 压电与声光, 2015, 37(2): 237-241.

[64]Si F, Zhao Y, Zhang X. The estimation of wing flexure deformation in transfer alignment based on inertial sensors network[C]//2017 IEEE Aerospace Conference, Montana, USA, 2017: 1-11.

[65]杨金衡, 宋单阳, 田慕琴, 等. 基于自适应卡尔曼滤波的双惯导采煤机定位方法[J]. 工矿自动化, 2021, 47(7): 14-20+28.

[66]鲁程, 王世博, 葛世荣, 等. 多惯导冗余的采煤机定位原理及其合理性分析[J]. 煤炭学报, 2019, 44(S2): 746-753.

[67]高钟毓. 惯性导航系统技术[M]. 北京: 清华大学出版社, 2012:23-29.

[68]杨海, 李威, 罗成名, 等. 基于捷联惯导的采煤机定位定姿技术实验研究[J]. 煤炭学报, 2014, 39(12): 2550-2556.

[69]杨海. SINS/WSN组合定位下采煤机精确位姿感知理论及技术研究[D]. 徐州: 中国矿业大学, 2016.

[70]张金尧, 李威, 杨海, 等. 采煤机捷联惯导定位方法研究[J]. 工矿自动化, 2016, 42(3): 52-55.

[71]苏中. 惯性技术[M]. 北京: 国防工业出版社, 2010.

[72]Zhang R, Hoflinger F, Reind L M. Calibration of an IMU Using 3-D Rotation Platform[J]. IEEE Sensors Journal, 2014, 14(6): 1778-1787.

[73]Babich O A. Studying kinematics of noncommutativity rotation in attitude algorithms for strapdown inertial navigation systems using axoids[J]. Gyroscopy & Navigation, 2014, 5(2): 121-127.

[74]Gao W X, Miao L J, Ni M L. Multiple fading factors Kalman filter for SINS static alignment application[J]. Chinese Journal of Aeronautics, 2011, 08, 24(4): 476-483.

[75]陈宇, 付书堂, 刘建团. 基于机载捷联惯导计算导弹初始姿态的算法[J]. 航空兵器, 2016, (2): 29-31.

[76]秦永元. 惯性导航[M]. 北京: 科学出版社, 2006.

[77]WANG E, HE X, LIU X, et al. Comprehensive monitoring technique based on electromagnetic radiation and its applications to mine pressure[J]. Safety Science, 2012, 50(4): 885-893.

[78]邹哲强, 庄捷, 屈世甲. 煤矿井下中低频段电磁干扰测量与分析[J]. 工矿自动化, 2013, 39(5): 1-5.

[79]辛中华, 张晓冬, 刘涛, 等. 井下电磁干扰特性及智能设备电磁兼容标准研究[J]. 煤炭科学技术, 2020, 48(7): 255-261.

[80]田震, 荆双喜, 赵丽娟, 等. 采煤机噪声与振动特性研究[J]. 工矿自动化, 2019, 45(3): 23-28.

[81]陈伟, 王友仁, 孙灿飞, 等. 行星齿轮箱耦合调制振动信号分离与故障诊断[J]. 航空动力学报, 2018, 33(5): 1112-1120.

[82]颜伟, 赵阳, 王恩荣, 等. 复杂电子系统辐射EMI噪声机理分析与抑制[J]. 中国电机工程学报, 2013, 33(15): 173-180+1.

[83]刘惠敏. 光纤陀螺捷联惯导系统力学环境分析及试验技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.

[84]王汀, 于沛, 李品. 振动条件下平台惯导系统误差抑制技术研究[J]. 振动与冲击, 2019, 38(15): 258-263.

[85]王平, 张广鹏, 尉飞, 等. 无人机惯导减振系统设计及其支架拓扑优化[J]. 机械科学与技术, 2018, 37(11): 1744-1749.

[86]赵靖. 基于卡尔曼滤波算法的采煤机惯导定位方法[J]. 工矿自动化, 2014, 40(10): 29-32.

[87]何飞, 双丰, 许玉云, 等. 双渐消Kalman滤波补偿六维力传感器矩形板噪声模型误差[J]. 机械科学与技术, 2019, 38(4): 594-600.

中图分类号:

 TD421    

开放日期:

 2025-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式