- 无标题文档
查看论文信息

论文中文题名:

 基于相位梯度超表面的透镜天线研究    

姓名:

 张永华    

学号:

 19307205005    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085208    

学科名称:

 工学 - 工程 - 电子与通信工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 电子与通信工程    

研究方向:

 超表面透镜天线    

第一导师姓名:

 李白萍    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-21    

论文答辩日期:

 2022-06-09    

论文外文题名:

 Research on lens antennas based on phase gradient metasurfaces    

论文中文关键词:

 相位梯度超表面 ; 透镜天线 ; 宽带 ; 涡旋波 ; 圆极化 ; 机器学习    

论文外文关键词:

 Phase gradient metasurface ; lensed antenna ; wideband ; OAM ; circular polarization ; machine learning    

论文中文摘要:

随着微波毫米波电路系统和信息通信领域的迅速发展,相位梯度超表面透镜天线由于能够控制电磁波的波前相位和幅值,从而实现电磁波传播方向和形式的调控,成为当前学术界和工程领域研究的热点之一。针对传统透镜天线带宽较窄、难以实现各向异性相关功能等问题,本文着重研究了宽带超表面透镜天线以及一种应用于各向异性超表面透镜天线的机器学习设计方法。

本文重点研究相位梯度超表面理论,通过对比传统补偿相位计算方法调整相位前后的差值,引出宽带补偿相位计算与排布方法,验证该方法在宽带范围内降低了超表面透镜的补偿相位差值,从而提升超表面透镜天线的增益与带宽。

利用该宽带补偿相位计算方法设计出三种高性能宽带天线,并仿真分析天线相关性能。其中超表面透镜天线具有6GHz的1dB增益带宽;宽带圆极化超表面透镜天线实现了12GHz的1dB增益带宽与3dB轴比带宽;宽带涡旋波超表面透镜天线在22~30GHz的宽带范围内产生了一阶的涡旋波,平均能量权重高达64.6%,涡旋波相对带宽高达38%。

针对超表面透镜天线设计过程中相位难匹配、设计耗时较长等问题,提出了一种应用于各向异性超表面透镜天线的机器学习设计方法,由基于线性函数特征的DNN、基于相位分类的DNN以及灰狼优化算法组成,利用该机器学习设计方法可在超大频率范围内实现介质基础单元透射相位的精准预测,从而实现各向异性超表面透镜天线的快速设计。本文所提出的机器学习设计方法在10~25GHz内实现了介质基础单元尺寸参数与TE和TM透射相位之间的快速映射,达到了95%以上的精度。利用所设计的机器学习方法完成了一款涡旋波复用超表面透镜天线的设计,其在24GHz频率下可以实现轨道角动量阶数1和-1的涡旋波复用,证实了所设计机器学习方法的有效性。

论文外文摘要:

With the rapid development of microwave millimeter wave circuit systems and information and communication fields, the phase-gradient metasurface lens antenna has become one of the current hot spots of research in academia and engineering fields due to its ability to control the wavefront phase and amplitude of electromagnetic waves, thus realizing the regulation of electromagnetic wave propagation direction and form. Aiming at the problems of narrow bandwidth of traditional lens antennas and difficulty in realizing anisotropic correlation functions, this paper focuses on broadband metasurface lens antennas and a machine learning design method applied to anisotropic metasurface lens antennas.

This thesis focuses on the phase gradient metasurface theory, by comparing the difference before and after adjusting the phase with the traditional compensation phase calculation method, leading to the broadband compensation phase calculation and scheduling method, and verifying that the method reduces the compensation phase difference of the metasurface lens in the broadband range, thus enhancing the gain and bandwidth of the metasurface lens antenna.

The broadband compensated phase calculation method is used to design three high-performance broadband antennas and simulate and analyze the antenna-related performance. Among them, the metasurface lens antenna has 6GHz 1dB gain bandwidth; the broadband circularly polarized metasurface lens antenna achieves 12GHz 1dB gain bandwidth with 3dB axial ratio bandwidth; the broadband vortex wave metasurface lens antenna generates first-order vortex wave in the broadband range of 22-30GHz with an average energy weight of 64.6% and a vortex wave bandwidth of 38%.

A machine learning design method is proposed for anisotropic metasurface lens antennas, which consists of linear function-based DNN, phase-classification-based DNN and gray wolf optimization algorithm. The machine learning design method can be used to achieve accurate prediction of the transmission phase of the dielectric base unit in a large frequency range, thus realizing the fast design of anisotropic metasurface lens antennas. The proposed machine learning design method achieves a fast mapping between the dielectric base unit size parameters and the TE and TM transmission phases with more than 95% accuracy in the range of 10 to 25 GHz. The design of a vortex wave multiplexing metasurface lens antenna is completed using the designed machine learning method, which can achieve vortex wave multiplexing of orbital angular momentum order 1 and -1 at 24 GHz, confirming the effectiveness of the designed machine learning method.

参考文献:

[1]陈进昌. 基于人工电磁表面的全介质透镜天线研究[D].南京邮电大学,2016.

[2]Lambor J, Lacik J, Raida Z, et al. High-gain wideband SIW offset parabolic antenna[J]. Microwave & Optical Technology Letters, 2016, 58(12):2888-2892.

[3]Li H, Kang L, Wei F, et al. A low-profile dual-polarized microstrip antenna array for dual-mode OAM applications[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 3022-3025.

[4]李紫婷, 刘遨云, 李思源,等. 双角串馈毫米波高增益微带阵列天线的研究[J]. 微波学报, 2019, 35(6):5.

[5]黄新朝, 付全红, 张富利. 超表面研究进展[J]. 航空兵器, 2016(1):7.

[6]Yu N, Genevet P, Kats M A, et al. Light Propagation with Phase Discontinuities Reflection and Refraction[J]. Science, 2011, 334(6054):333-337.

[7]Aieta F, Genevet P, Kats M A, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Lett., 2012,12(9).

[8]Genevet P, Yu N, Aieta F, et al. Ultra-thin plasmonic optical vortex plate based on phase discontinuities[J]. Applied Physics Letters, 2012, 100(1):169.

[9]Li B, Mei C Y, Zhou Y, et al. A 3-D-printed wideband circularly polarized dielectric reflectarray of cross-shaped element[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(10): 1734-1738.

[10]任武, 张娅楠. 基于超表面的反射阵天线设计[J].北京理工大学学报,2021,41(01):70-78.

[11]薛飞,王宏建,董兴超.新型单层双频双极化微带反射阵天线的设计[J].电子与信息学报,2017,39(03):697-702.

[12]Abdelrahman A H, Elsherbeni A Z, Yang F. Transmission Phase Limit of Multilayer Frequency-Selective Surfaces for Transmitarray Designs[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(2):690-697.

[13]Hsu C Y, Hwang L T, Horng T S, et al. Transmitarray Design With Enhanced Aperture Efficiency Using Small Frequency Selective Surface Cells and Discrete Jones Matrix Analysis[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(8):3983-3994.

[14]Liu G, Wang H J, Jiang J S, et al. A High-Efficiency Transmitarray Antenna Using Double Split Ring Slot Elements[J]. IEEE Antennas & Wireless Propagation Letters, 2015, 14:1415-1418.

[15]Rahmati B, Hassani H R. Low-profile slot transmitarray antenna[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(1): 174-181.

[16]Luo Q, Gao S, Sobhy M, et al. Wideband Transmitarray With Reduced Profile[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 17(3):450-453.

[17]Pham K, Nguyen N T, Clemente A, et al. Design of wideband dual linearly polarized transmitarray antennas[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(5): 2022-2026.

[18]Yi X J, Su T, Wu B, et al. A Double-Layer Highly Efficient and Wideband Transmitarray Antenna[J]. IEEE Access, 2019, 7:23285-23290.

[19]An W, Xu S, Yang F, et al. A Double-Layer Transmitarray Antenna Using Malta Crosses With Vias[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(3):1120-1125.

[20]Abdelrahman A H, Elsherbeni A Z, Yang F. Transmission Phase Limit of Multilayer Frequency-Selective Surfaces for Transmitarray Designs[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(2):690-697.

[21]Yi X, Su T, Li X, et al. A double-layer wideband transmitarray antenna using two degrees of freedom elements around 20 GHz[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(4): 2798-2802.

[22]Zainud-Deen S H, Gaber S M, Malhat H A, et al. Perforated transmitarray-enhanced circularly polarized antennas for high-gain multi-beam radiation[C]//2013 Proceedings of the International Symposium on Antennas & Propagation. IEEE, 2013, 1: 484-487.

[23]Mahmoud A E, Hong W, Zhang Y, et al. W-band mutlilayer perforated dielectric substrate lens[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 734-737.

[24]Massaccesi A, Pirinoli P, Bertana V, et al. 3D-printable dielectric transmitarray with enhanced bandwidth at millimeter-waves[J]. IEEE Access, 2018, 6: 46407-46418.

[25]Wang Z, Wu H, Chen J, et al. An ultralow-profile lens antenna based on all-dielectric metasurfaces[C]//2016 IEEE 5th Asia-Pacific Conference on Antennas and Propagation (APCAP). IEEE, 2016: 367-368.

[26]Yi H, Qu S W, Ng K B, et al. 3-D Printed Millimeter-Wave and Terahertz Lenses with Fixed and Frequency Scanned Beam[J]. IEEE Transactions on Antennas & Propagation, 2016, 64(2):442-449.

[27]Fan C, Yang W, Che W, et al. A wideband and low-profile discrete dielectric lens using 3-D printing technology[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(10): 5160-5169.

[28]An S, Zheng B, Tang H, et al. Multifunctional Metasurface Design with a Generative Adversarial Network[J]. Advanced Optical Materials, 2021, 9(5): 2170019.

[29]Shan T, Pan X, Li M, et al. Coding programmable metasurfaces based on deep learning techniques[J]. IEEE journal on emerging and selected topics in circuits and systems, 2020, 10(1): 114-125.

[30]Nadell C C, Huang B, Malof J M, et al. Deep learning for accelerated all-dielectric metasurface design[J]. Optics express, 2019, 27(20): 27523-27535.

[31]Hou J, Lin H, Xu W, et al. Customized Inverse Design of Metamaterial Absorber Based on Target-Driven Deep Learning Method[J]. IEEE Access, 2020, 8:211849-211859.

[32]Shan T, Pan X, Li M, et al. Coding programmable metasurfaces based on deep learning techniques[J]. IEEE journal on emerging and selected topics in circuits and systems, 2020, 10(1): 114-125.

[33]Zhang Q, Liu C, Wan X, et al. Machine‐learning designs of anisotropic digital coding metasurfaces[J]. Advanced theory and simulations, 2019, 2(2): 1800132.

[34]Xu Q Y, Liu Z T, Li Y P, et al. Antireflective characteristics of sub-wavelength periodic structure with square hole[J]. Chinese Physics Letters, 2011, 28(2): 024209.

[35]李振亚,竺小松,张建华.一种新颖的宽带圆极化单极天线[J].电子与信息学报,2018,40(11):2705-2711.

[36]袁家德,陈圳鹏,邱凯翔.宽频带圆极化缝隙螺旋天线的设计[J].微波学报,2022,38(02):24-27.

[37]曹兰英,郭明明,罗美方.雷达与电子战的认知博弈[J].雷达科学与技术,2021,19(05):552-557.

[38]Wang K X, Wong H. A wideband millimeter-wave circularly polarized antenna with 3-D printed polarizer[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(3): 1038-1046.

[39]Wu G B, Zeng Y S, Chan K F, et al. 3-D printed circularly polarized modified Fresnel lens operating at terahertz frequencies[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(7): 4429-4437.

[40]Jeong K H, Ghalichechian N. 3D‐printed 4‐zone Ka‐band Fresnel lens: design, fabrication, and measurement[J]. IET Microwaves, Antennas & Propagation, 2020, 14(1): 28-35.

[41]Liu X, Peng L, Liu Y, et al. Ultrabroadband all-dielectric transmitarray designing based on genetic algorithm optimization and 3-D print technology[J]. IEEE Transactions on Antennas and Propagation, 2020, 69(4): 2003-2012.

[42]Zainud-Deen S, Gaber S M, Awadalla K. Transmitarray using perforated dielectric material for wideband applications[J]. Progress in Electromagnetics Research M, 2012, 24: 1-13.

[43]Chen Y, Chen L, Yu J F, et al. A C-band flat lens antenna with double-ring slot elements[J]. IEEE antennas and wireless propagation letters, 2013, 12: 341-344.

[44]Yu W, Peng L, Liu Y, et al. An Ultrawideband and High-Aperture-Efficiency All-Dielectric Lens Antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(12): 2442-2446.

[45]Morabito A F, Di Donato L, Isernia T. Orbital angular momentum antennas: Understanding actual possibilities through the aperture antennas theory[J]. IEEE Antennas and Propagation Magazine, 2018, 60(2): 59-67.

[46]Chen Y , Zheng S , Jin X , et al. Single-frequency computational imaging using OAM-carrying electromagnetic wave[J]. Journal of Applied Physics, 2017, 121(18):6-43.

[47]Mazzinghi A, Freni A. Simultaneous generation of pseudo-Bessel vortex modes with a RLSA[J]. IEEE antennas and wireless propagation letters, 2017, 16: 1747-1750.

[48]Yeom S , Lee D , Lee H , et al. Vector clustering of passive millimeter wave images with linear polarization for concealed object detection[J]. Progress in Electromagnetics Research Letters, 2013, 39:169-180.

[49]Yang L J, Sun S, Wei E I. Ultrawideband reflection-type metasurface for generating integer and fractional orbital angular momentum[J]. IEEE Transactions on Antennas and Propagation, 2019, 68(3): 2166-2175.

[50]Sm A , Smm B , Al A . Grey Wolf Optimizer[J]. Advances in Engineering Software, 2014:46–61.

[51]Mirjalili S . How effective is the Grey Wolf optimizer in training multi-layer perceptrons[J]. Applied Intelligence, 2015, 43(1):150-161.

[52]张晓凤, 王秀英. 灰狼优化算法研究综述[J]. 计算机科学, 2019, 46(3):9.

[53]徐明, 焦建军, 龙文. 改进灰狼优化算法辨识光伏模型参数[J]. 中国科技论文, 2019, 14(8):6.

[54]Li L, Zhou X. Mechanically reconfigurable single-arm spiral antenna array for generation of broadband circularly polarized orbital angular momentum vortex waves[J]. Scientific reports, 2018, 8(1): 1-9.

[55]Wu G B, Chan K F, Chan C H. 3-D printed terahertz lens to generate higher order Bessel beams carrying OAM[J]. IEEE Transactions on Antennas and Propagation, 2020, 69(6): 3399-3408.

[56]Liu H, Xue H, Liu Y, et al. Generation of multiple pseudo bessel beams with accurately controllable propagation directions and high efficiency using a reflective metasurface[J]. Applied Sciences, 2020, 10(20): 7219.

[57]Chang Z, You B, Wu L S, et al. A reconfigurable graphene reflectarray for generation of vortex THz waves[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1537-1540.

[58]Chen M L N, Jiang L J, Wei E I. Detection of orbital angular momentum with metasurface at microwave band[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 17(1): 110-113.

[59]Maguid E, Yulevich I, Veksler D, et al. Photonic spin-controlled multifunctional shared-aperture antenna array[J]. Science, 2016, 352(6290): 1202-1206.

[60]Chen M L N, Jiang L J, Sha W E I. Orbital angular momentum generation and detection by geometric-phase based metasurfaces[J]. Applied Sciences, 2018, 8(3): 362.

[61]Cui T J, Qi M Q, Wan X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: science & applications, 2014, 3(10): e218-e218.

[62]Liu S, Cui T J, Xu Q, et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves[J]. Light: Science & Applications, 2016, 5(5): e16076-e16076.

[63]Zhu J, Yang Y, McGloin D, et al. 3-D printed planar dielectric linear-to-circular polarization conversion and beam-shaping lenses using coding polarizer[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(6): 4332-4343.

中图分类号:

 TN821.5    

开放日期:

 2022-06-21    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式