- 无标题文档
查看论文信息

题名:

 抗氧化型温敏微胶囊阻化煤自燃特性及机理研究    

作者:

 舒盼    

学号:

 21120089023    

保密级别:

 保密(2年后开放)    

语种:

 chi    

学科代码:

 083700    

学科:

 工学 - 安全科学与工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2024    

学校:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 煤火灾害防治    

导师姓名:

 张嬿妮    

导师单位:

 西安科技大学    

提交日期:

 2024-06-17    

答辩日期:

 2024-05-26    

外文题名:

 Study on characteristics and mechanism of antioxidant temperature-sensitive microcapsules for coal spontaneous combustion inhibiting    

关键词:

 煤自燃 ; 阻化剂 ; 抗氧化型微胶囊 ; 温敏性 ; 活性自由基 ; 阻化机理    

外文关键词:

 Coal spontaneous combustion ; Inhibitor ; Antioxidized microcapsule ; Temperature-sensitivity ; Active free radical ; Inhibition mechanism    

摘要:

煤火灾害防治是矿井火灾治理的关键举措,对煤矿安全生产具有重要的现实意义。煤自燃是煤分子官能团逐渐活化参与自由基连锁链式反应并持续放热的过程。在煤自燃过程中,煤中各自由基持续参与并引发煤氧化链式反应,其中羟基自由基(•OH)是煤低温氧化过程中活性最高、生成路径最多的自由基之一,同时也是诱发循环链式反应的重要活性自由基。抗氧化剂作为一种专门高效清除自由基的化学阻化剂,其阻化煤自燃特性及机理近年来逐渐引起了学者们的关注。然而,当前尚存在消减煤•OH机理不清、井下环境适应性较差、寿命短等问题。因此,本文以抗氧化型微胶囊为研究对象,围绕抗氧化剂消减煤羟基自由基反应机理、微胶囊壁材释控温度以及微胶囊阻化煤自燃机制等关键问题开展了研究。研究抗氧化剂抽氢反应机制,分析其靶向消减•OH的反应活性位点数量,筛选出目标型抗氧化剂;构建了抗氧化剂与羟基自由基的分子结构模型,揭示了抗氧化剂消减煤羟基自由基反应机理;研究了抗氧化剂阻化煤样热动力学特征和微观结构演变规律,优选出最佳抗氧化型阻化剂作为芯材;采用微胶囊技术对其进行改性处理,研究了微胶囊的理化特性及阻化煤自燃特性。研究结果对揭示煤自燃阻化机理及开发高效阻化材料具有重要的理论和实践意义。

利用量子化学理论,研究了抗氧化剂消减羟基自由基反应活性的机理。首先基于抗氧化剂相关性质以及靶向消减煤羟基自由基的阻化特点,筛选出7种(乙二胺四乙酸EDTA、茶多酚GTP、柠檬酸CA、褪黑素MT、维生素VC、原花青素PC和β-胡萝卜素)目标型抗氧化剂。然后通过Gaussian软件模拟计算抗氧化剂结构模型的前线轨道、静电势、分子内相互作用力等量子化学信息,分析抗氧化剂的反应活性位点;最后根据活性位点搜索抗氧化剂消减羟基自由基的反应过渡态,分析反应路径、热力学和动力学特性。结果表明:抗氧化剂分子中的羧基、羟基等基团为消减•OH的主要活性位点,并对体系间弱相互作用的形成起主要作用。在消减羟基自由基的反应过程中,主要发生的是•OH对抗氧化剂活性位点上的夺氢反应,该过程需要在一定温度下进行,并且是放热反应。不同抗氧化剂分子中反应活性位点数量的差别是导致抑制煤自燃效果存在差异的本质原因,由于GTP分子中具有较多与•OH发生消减反应的活性位点,因此抑制煤自燃效果应最为显著。

通过同步热分析、热物性、傅里叶变化红外光谱和电子顺磁共振实验,研究了抗氧化剂阻化煤样在氧化过程中的宏观上热动力学特征和热物性参数变化规律,以及微观上官能团演变规律和自由基变化特性,根据抑制效果优选出最佳抗氧化型阻化剂作为微胶囊的芯材。实验证明7种抗氧化剂能够有效抑制煤的早期氧化,其中GTP的抑制效果最为显著,宏观表现为煤样临界温度、干裂温度、初始放热温度以及比热容上升最高,而放热量、热扩散系数和导热系数下降最低;微观表现为煤表面-CH3、-CH2、Ar-CH和C=C官能团的消耗量降低,-OH、-COOH和-C=O官能团的增长幅度及生成量减少;此外,煤中自由基的浓度、种类以及复杂度显著降低。GTP阻化煤样氧化过程需要的能量最高,从本质上表明其抑制煤氧化反应的效果最佳。

采用微流体法以聚乙二醇-碳酸氢钠(PEG6000-NaHCO3)为壁材,GTP为芯材,成功制备出抗氧化型温敏微胶囊阻化剂。基于单因素实验与响应曲面分析法(RSM)分析各关键影响因素之间的交互作用,优化并得到制备抗氧化型微胶囊包覆率和动作温度的关键参数。采用SEM、EDS、XPS、FTIR、LPS、TG等实验测试,系统表征了抗氧化型微胶囊的微观形貌、分散性、动作温度、粒径分布及热稳定性等理化特性。结果表明:抗氧化型微胶囊制备的最佳参数为:选取PEG用量为70%、芯壁比为1:3、注射速度为3min/ml、搅拌速度为800r/min,茶多酚包覆率达85%。制备的抗氧化型微胶囊呈现出明显的囊状,微粒间分散均匀、无凝结现象且粒径分布集中、大小适中。阻化微胶囊具有良好的“温控”效果,囊壳打开的动作温度范围为68-79.4℃,其释放前平均包覆率可达81.2%,由壁材PEG-NaHCO3初步起到阻化作用;释放后包覆率由75%快速下降到9%,主要由芯材GTP起到阻化作用。

利用程序升温实验系统,研究了阻化煤样在氧化升温过程中的耗氧速率、CO和CO2等特征气体的产生特性,分析了阻化煤样氧化过程中的表观活化能、阻化率等关键参数变化规律,考察了抗氧化型微胶囊材料的时效性以及对煤自燃的阻化效果。实验证明抗氧化型微胶囊对煤自燃具有较好的阻化效果,表现为阻化煤样耗氧速率、CO及CO2产生率下降,反应需要的活化能增加。对茶多酚微胶囊化改性处理后成功赋予了阻化材料的温敏性,阻化效果显著增强,且具有较好的稳定性和环境适应性。煤样中添加量10%的抗氧化型微胶囊能达到最佳阻化效果,表现为平均阻化率为62.6%,90℃最高阻化率高达87.5%。

外文摘要:

The prevention and control of mine fire disaster is a key measure for mine fire control, which has important practical significance for coal mine safety production. Coal spontaneous combustion is a process in which the functional groups of coal molecules are gradually activated and participate in the chain reaction of free radicals and continue to release heat. In the process of coal spontaneous combustion, the free radicals in coal continuously participate in and trigger the chain reaction of coal oxidation, among which hydroxyl radical (•OH) is one of the free radicals with the highest activity and the most generation paths in the process of coal low-temperature oxidation, and it is also an important active radical to induce the chain reaction. Antioxidant is a kind of chemical inhibitor which can effectively remove free radicals, and its characteristics and mechanism of inhibiting coal spontaneous combustion have gradually attracted scholars’ attention in recent years. However, there are still some problems such as unclear mechanism of reducing •OH in coal, poor adaptability to underground environment and short life. Therefore, this paper takes antioxidant microcapsules as the research object, and studies the key issues such as the reaction mechanism of antioxidant reducing hydroxyl radicals in coal, the release temperature of microcapsule wall materials and the mechanism of microcapsule inhibiting coal spontaneous combustion. The reaction mechanism of extracting hydrogen atoms from antioxidants is studied, and the number of reactive sites for targeted reducing •OH is analyzed, and the objective antioxidants are screened out. The molecular structure model of antioxidant and hydroxyl radical is constructed, and the reaction mechanism of antioxidant reducing hydroxyl radical in coal is revealed. The thermodynamic kinetic characteristics and microstructure evolution of antioxidants in inhibiting coal samples process are studied, and the best antioxidant inhibitor is selected as the core material. Microcapsule technology is used to modify it, and the physical and chemical characteristics of microcapsules and the characteristics of preventing coal spontaneous combustion are studied. The research results have important theoretical and practical significance for revealing the mechanism of coal spontaneous combustion inhibition and developing high-efficiency inhibition materials.

Based on the theory of quantum chemistry, the mechanism of reducing the reactivity of hydroxyl radical by antioxidants is studied. Firstly, based on the related properties of antioxidants and the inhibition characteristics of targeted reduction of hydroxyl radicals in coal, seven target antioxidants (EDTA, GTP, CA citrate, melatonin MT, vitamin VC, proanthocyanidins PC and β-carotene) are screened out. Then the quantum chemical information such as frontier orbit, electrostatic potential and intramolecular interaction force of antioxidant structure model are simulated and calculated by Gaussian software, and the reactive sites of antioxidants are analyzed. Finally, according to the active site, the reaction transition state of antioxidant to reduce hydroxyl radical is searched, and the reaction path, thermodynamic and kinetic characteristics are analyzed. The results show that carboxyl and hydroxyl groups in antioxidant molecules are the main active sites to reduce •OH, and play a major role in the formation of weak interaction between systems. In the process of reducing hydroxyl radicals, the main reaction is the hydrogen abstraction reaction of •OH on the active site of antioxidant, which needs to be carried out at a certain temperature and is an exothermic reaction. The difference in the number of reactive sites in different antioxidant molecules is the essential reason for the difference in the inhibition effect of coal spontaneous combustion. As there are many active sites in GTP molecules that can reduce the reaction with •OH, the inhibition effect of coal spontaneous combustion should be the most significant.

Through synchronous thermal analysis, thermophysical properties, Fourier transform infrared spectroscopy and electron paramagnetic resonance experiments, the macro thermodynamic and kinetic characteristics, the variation law of thermophysical parameters, the evolution law of micro functional groups and the change characteristics of free radicals of antioxidants inhibiting coal during oxidation are studied, and the optimal antioxidant inhibitor is selected as the core material of microcapsules according to the inhibition effect. Experiments show that 7 kinds of antioxidants can effectively inhibit the early oxidation of coal, among which GTP has the most obvious inhibition effect. The macroscopic performance shows that the critical temperature, cracking temperature, initial exothermic temperature and specific heat capacity of coal samples increased the highest, while the exothermic quantity, thermal diffusion coefficient and thermal conductivity decrease the lowest. Microscopically, the consumption of -CH3, -CH2, Ar-CH and C=C functional groups on the coal surface decrease, and the growth range and production of -OH, -COOH and -C=O functional groups decrease. In addition, the concentration, species and complexity of free radicals in coal are significantly reduced. GTP needs the highest energy in the process of inhibiting coal oxidation, which essentially indicates that it has the best effect of inhibiting coal oxidation.

Using PEG6000-NaHCO3 as the wall material and GTP as the core material, the antioxidant temperature-sensitive microcapsule inhibitor is successfully prepared by microfluidic method. Interaction among key influencing factors is analyzed based on single factor experiment and response surface analysis (RSM), and the key parameters of coating rate and operating temperature for preparing antioxidant microcapsules are optimized and obtained. SEM, EDS, XPS, FTIR, LPS, TG and other experimental tests are used to systematically characterize the micro-morphology, dispersibility, operating temperature, particle size distribution and thermal stability of antioxidant microcapsules. Results show that the optimum preparation parameters of antioxidant microcapsules are as follows: PEG dosage is 70%, core wall ratio is 1:3, injection speed is 3min/ml, and stirring speed is 800r/min, coating rate of tea polyphenols reachs 85%. The prepared anti-microcapsules are obviously saccular, with uniform dispersion among particles, no condensation, concentrated particle size distribution and moderate size. Inhibition microcapsules have a good “temperature control” effect, the operating temperature range of the capsule shell is 68-79.4℃, the average coating rate before release can reach 81.2%, the wall material PEG-NaHCO3 plays a preliminary role in the inhibition. After release, the coating rate decrease rapidly from 75% to 9%, which was mainly inhibited by GTP.

By using the temperature programmed experimental system, the oxygen consumption rate and the generation characteristics of characteristic gases such as CO and CO2 in the oxidation process of inhibited coal samples are studied, and the variation laws of key parameters such as apparent activation energy and inhibition rate in the oxidation process of inhibited coal samples are analyzed, and the efficiency of antioxidant microcapsule materials and its inhibition effect of coal spontaneous combustion are investigated. Experiments show that the antioxidant microcapsules had a good inhibition effect on coal spontaneous combustion, which show that the oxygen consumption rate, CO and CO2 production rate decreased while activation energy needed for the reaction increased. After the modification of tea polyphenols microcapsules, the temperature sensitivity of the inhibitor material is successfully given, and the inhibition effect is significantly enhanced, and it had good stability and environmental adaptability. The best inhibition effect achieved by adding 10% antioxidant microcapsules to coal, with an average inhibition rate of 62.6%, and the highest inhibition rate is as high as 87.5% at 90℃.

参考文献:

[1]中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2023.

[2]谢和平, 吴立新, 郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报, 2019, 44(7): 1949-1960.

[3]赵亚军, 张志男, 贾廷贵. 2010-2021年我国煤矿安全事故分析及安全对策研究[J]. 煤炭技术, 2023, 42(08): 128-131.

[4]王德明, 张伟, 王和堂, 等. 煤矿热动力重大灾害的不确定性风险特性研究[J]. 采矿与安全工程学报, 2023, 40(04): 826-837.

[5]Zhang Jinjia, Xu Kaili, Reniers Genserik, et al. Statistical analysis the characteristics of extraordinarily severe coal mine accidents (ESCMAs) in China from 1950 to 2018[J]. Process Safety and Environmental Protection, 2020, 133: 332-340.

[6]胡相明, 王凯, 薛迪, 等. 防治煤自燃的高堆积固化泡沫的制备及应用研究[J/OL]. 煤炭科学技术, 1-12[2024-04-07].

[7]Wen Hu, Wang Hu, Liu Wenyong, et al. Comparative study of experimental testing methods for characterization parameters of coal spontaneous combustion[J]. Fuel, 2020, 275: 117880.

[8]邓军, 杨囡囡, 王彩萍, 等. 采空区煤自燃“防-抑-灭”协同防灭火关键技术[J]. 煤矿安全, 2022, 53(09): 1-8.

[9]李增华. 煤炭自燃的自由基反应机理[J]. 中国矿业大学学报, 1996, 25(3): 111-114.

[10]Zhou Buzhuang, Yang Shengqiang, Wang Chaojie, et al. The characterization of free radical reaction in coal low-temperature oxidation with different oxygen concentration[J]. Fuel, 2020, 262.

[11]李雪. 煤低温氧化羟基自由基反应路径及抑制机理研究[D]. 天津: 天津理工大学, 2022.

[12]张迎新, 杨康, 李日军, 等. 矿井防灭火材料的研究进展及发展趋势[J]. 煤矿安全, 2023, 54(10): 82-91.

[13]王恩元, 孔彪, 梁俊义, 等. 煤受热升温电磁辐射效应实验研究[J]. 中国矿业大学学报, 2016, 45(02): 205-210.

[14]秦波涛, 仲晓星, 王德明, 等. 煤自燃过程特性及防治技术研究进展[J]. 煤炭科学技术, 2021, 49(01): 66-99.

[15]邓军, 李贝, 王凯, 等. 我国煤火灾害防治技术研究现状及展望[J]. 煤炭科学技术, 2016, 44(10): 1-7+101.

[16]邓军, 艾绍武, 马砺, 等. 阻化剂对采空区遗煤初次和二次氧化特性的影响[J]. 煤炭科学技术, 2015, 43(01): 59-61+65.

[17]Li QingWei, Xiao Yang, Zhong Kaiqi, et al. Overview of commonly used materials for coal spontaneous combustion prevention[J]. Fuel, 2020, 275.

[18]宋长磊, 刘向荣, 赵顺省, 等. 咪唑类离子液体中阴离子对新疆褐煤阻燃性能[J]. 煤炭学报, 2020, 45(S1): 470-480.

[19]Jing Jingyu, Hao Chaoyu, Shen Wenmai, et al. Study on the microcosmic mechanism of inhibition of coal spontaneous combustion by antioxidant diphenylamine[J]. Journal of Molecular Structure, 2023, 1294(P1).

[20]王子寒. 防治煤自燃的无机盐增强型阻化泡沫制备及其特性研究[D]. 淮南: 安徽理工大学, 2023.

[21]肖旸, 吕慧菲, 邓军, 等. 煤自燃阻化机理及其应用技术的研究进展[J]. 安全与环境工程, 2017, 24(01): 176-182.

[22]李武强, 李有堂, 辛军博, 等. 微胶囊型智能自愈复合材料的研究进展[J]. 高分子材料科学与工程, 2023, 39(12): 157-165.

[23]Zhang Liyu, Zhang Xuelai, Hua Weisan, et al. Optimization of a silicon-based microencapsulation technology of phase change material without organic solvents[J]. Journal of Energy Storage, 2023, 64.

[24]Xiao Dingtian, Chen Yuanhua, Bhutta Muhammadshoaib, et al. Mechanism research on the application of liquid film microencapsulation technology based on natural lotion in strengthening recycled bio‐composite wallpaper material[J]. Journal of Applied Polymer Science, 2023, 140(43).

[25]袁迎春. 不同变质程度煤样自燃过程中微观结构变化特征及宏观表现研究[D]. 包头:内蒙古科技大学, 2022.

[26]徐精彩. 煤层自燃胶体防灭火理论与技术[M]. 煤炭工业出版社, 2003.

[27]王德明. 煤氧化动力学理论及应用[M]. 北京: 科学出版社, 2012.

[28]贾廷贵, 强倩, 娄和壮, 等. 不同变质程度煤样氧化自燃热特性试验研究[J]. 中国安全科学学报, 2021, 31(10): 62-67.

[29]邓军, 张敏, 雷昌奎, 等. 不同变质程度煤自燃特性及低温氧化动力学分析[J]. 安全与环境学报, 2021, 21(01): 94-100.

[30]Yan Jingchong, Liu Muxin, Feng Zhihao, et al. Study on the pyrolysis kinetics of low-medium rank coals with distributed activation energy model[J]. Fuel, 2020, 261(1): 116359.

[31]翟小伟, 成倬, 徐启飞, 等. 粒径对煤低温氧化阶段表观活化能影响试验研究[J]. 煤炭工程, 2020, 52(10): 143-148.

[32]Song Huijuan, Liu Guangrui, Zhang Jinzhi, et al. Pyrolysis characteristics and kinetics of low rank coals by TG-FTIR method[J]. Energy Conversion and Management, 2017, 156: 454-460.

[33]Li Qingwei, Xiao Yang, Wang Caiping, et al. Thermokinetic characteristics of coal spontaneous combustion based on thermogravimetric analysis[J]. Fuel, 2019, 250: 235-244.

[34]王凯. 陕北株罗纪煤低温氧化反应性及动力学研究[D]. 西安: 西安科技大学, 2015.

[35]阳富强, 刘晓霞. 不同热分析法解算煤自燃活化能的比较研究[J]. 矿业安全与环保, 2016, 43(5): 9-13.

[36]张嬿妮, 王安鹏, 侯云超, 等. 不同升温速率下烟煤的低温氧化放热特性研究[J]. 煤炭科学技术, 2022, 50(09): 104-113.

[37]Shu Pan, Zhang Yanni, Deng Jun, et al. Study on the effect of mixed particle size on coal heat release characteristics[J]. International Journal of Coal Preparation and Utilization, 2023, 43: 831-846.

[38]Zhang Yanni, Wang Anpeng, Chen Long, et al. Study of thermal characteristics and functional group changes of Yanghuopan coal during spontaneous combustion[J]. Journal of Thermal Analysis and Calorimetry, 2022, 147: 3753-3761.

[39]Zhang Yanni, Hou Yunchao, Zhao Jingyu, et al. Heat Release Characteristic of key functional groups during low-temperature oxidation of coal[J]. Combustion Science and Technology, 2021, 193: 2692-2703.

[40]尚钰姣, 牛奕, 陈先锋, 等. 不同升温速率下黄铁矿氧化动力学及补偿效应[J]. 安全与环境学报, 2016, 16(01): 77-81

[41]李青蔚. 煤贫氧氧化热动力过程基础研究[D]. 西安: 西安科技大学, 2018.

[42]Yan Hongwei, Nie Baisheng, Kong Fanbei, et al. Experimental investigation of coal particle size on the kinetic properties of coal oxidation and spontaneous combustion limit parameters[J]. Energy, 2023, 270.

[43]蒋孝元, 杨胜强, 周全超, 等. 低温氧化过程中氧浓度对煤体自由基反应特性的影响[J]. 煤矿安全, 2020, 51(08): 37-42.

[44]郝婉舒. 煤低温热解及氧化过程自由基演化规律研究[D]. 淮南: 安徽理工大学, 2023.

[45]仲晓星, 王德明, 徐永亮, 等. 煤氧化过程中的自由基变化特性[J]. 煤炭学报, 2010, 35(06): 960-963.

[46]Xu Qin, Yang Shengqiang, Cai Jiawen, et al. Risk forecasting for spontaneous combustion of coals at different ranks due to free radicals and functional groups reaction[J]. Process Safety and Environmental Protection, 2018, 118: 195-202.

[47]王福生, 刘颖健, 高东, 等. 煤自燃过程中自由基与指标气体释放规律[J]. 煤炭科学技术, 2016, 44(S1): 72-74.

[48]Qiu Nansheng, Li Huili, Jin Zhijun, et al. Temperature and time effect on the concentrations of free radicals in coal: Evidence from laboratory pyrolysis experiments[J]. International Journal of Coal Geology, 2007, 69(3): 220-228.

[49]刘守军, 王钊, 演康, 等. 神府长焰煤加氢增黏反应中催化剂及氢传递机理[J].化工进展,2021,40(07):3711-3718.

[50]朱令起, 刘聪, 王福生. 煤自燃过程中自由基变化规律特性研究[J]. 煤炭科学技术, 2016, 44(10): 44-47.

[51]Yan Guochao, Zhang Zhiqiang, Yan Kefeng. Reactive molecular dynamics simulations of the initial stage of brown coal oxidation at high temperatures[J]. Molecular Physics, 2013, 111(1): 147-156.

[52]Zhang Zhiqiang, Kang Qiannan, Yun Tao, et al. Density functional theory investigation of possible structures of radicals in coal undergoing O2 chemisorption at ambient temperature [J]. Energy & Fuels, 2017, 31: 953-958.

[53]王德明, 辛海会, 戚绪尧, 等. 煤自燃中的各种基元反应及相互关系:煤氧化动力学理论及应用[J]. 煤炭学报, 2014, 39(08): 1667-1674.

[54]黄庠永, 姜秀民, 张超群, 等. 颗粒粒径对煤表面羟基官能团的影响[J]. 燃烧科学与技术, 2009, 15(05): 457-460.

[55]Wang Deming, Xinhaihui, Qi Xuyao, et al. Reaction pathway of coal oxidation at low temperatures: a model of cyclic chain reactions and kinetic characteristics[J]. Combustion and Flame, 2016, 163(05): 447-460.

[56]姬玉成, 张英华, 黄志安, 等. 褐煤低温氧化分子结构单元变化特性[J]. 中南大学学报(自然科学版), 2020, 51(09): 2614-2623.

[57]辛海会. 煤火贫氧燃烧阶段特性演变的分子反应动力学机理[D]. 徐州: 中国矿业大学, 2016.

[58]王烽. 绿色环保型复合阻化剂抑制煤自燃实验研究[D]. 徐州: 中国矿业大学, 2018.

[59]刘晓源. 同位素示踪法研究水分作用于煤自燃反应过程[D]. 太原: 太原理工大学, 2021.

[60]李明, 宋欣筑, 潘伟, 等. 硫化矿固态阻化剂的阻化机理与性能评价[J]. 自然灾害学报, 2023, 32(02): 91-98.

[61]郑兰芳. 阻化剂抑制煤炭氧化自燃性能的实验研究[D]. 西安: 西安科技大学, 2009.

[62]Slovák V, Taraba B. Urea and CaCl2 as inhibitors of coal low-temperature oxidation[J]. Journal of Thermal Analysis and Calorimetry, 2012, 110: 363-367.

[63]Lu Wei, Guo Baolong, Qi Guansheng, et al. Experimental study on the effect of preinhibition temperature on the spontaneous combustion of coal based on an MgCl2 solution[J]. Fuel, 2020, 265: 117032.

[64]Hao Chaoyu, Chen Yanling, Li Yanyan, et al. Study on oxygen consumption rule and inhibitory effect of new organic deoxidizing inhibitors for coal spontaneous combustion prevention[J]. Combustion Science and Technology, 2020, 192(8): 1603-1616.

[65]Tang Yibo, Hu Shihua, Wang Huae. Using P-Cl inorganic ultrafine aerosol particles to prevent spontaneous combustion of low-rank coal in an underground coal mine[J]. Fire Safety Journal, 2020, 115: 103-140.

[66]唐一博, 胡世花, 王晓峰, 等. 含P/Cl无机气溶胶超细颗粒防治烟煤自燃研究[J]. 中国矿业大学学报, 2020, 49(05): 856-862.

[67]Qin Botao, Dou Guolan, Wang Yang, et al. A superabsorbent hydrogel-ascorbic acid composite inhibitor for suppression of coal oxidation[J]. Fuel, 2017, 190: 129-135.

[68]杨样. 不同地温条件下煤自燃特性及其高效阻化技术的研究[D]. 徐州: 中国矿业大学, 2022.

[69]李金亮, 陆伟, 徐俊. 化学阻化剂防治煤自燃及其阻化机理分析[J]. 煤炭科学技术, 2012, 40(01): 50-53.

[70]Tang Yibo. Inhibition of low-temperature oxidation of bituminous coal using a novel phase-transition aerosol[J]. Energy & Fuels, 2016, 30: 9303-9309.

[71]Li Zenghua, Kong Biao, Wei Aizhu, et al. Free radical reaction characteristics of coal low-temperature oxidation and its inhibition method[J]. Environmental Science and Pollution Research, 2016, 23: 23593-23605.

[72]肖旸, 尹岚, 吕慧菲, 等. 咪唑类离子液体处理煤热失重以及传热特性[J]. 煤炭学报, 2019, 44(02): 520-527.

[73]Deng Jun, Bai Zujin, Xiao Yang, et al. Effects of imidazole ionic liquid on macro parameters and microstructure of bituminous coal during low-temperature oxidation[J]. Fuel, 2019, 246: 160-168.

[74]Xi Xian, Shi Quanlin, Jiang Shuguang, et al. Study on the effect of ionic liquids on coal spontaneous combustion characteristic by microstructure and thermodynamic[J]. Process Safety and Environmental Protection, 2020, 140: 190-198.

[75]Wang Deming, Dou Guolan, Zhong Xiaoxing, et al. An experimental approach to selecting chemical inhibitors to retard the spontaneous combustion of coal[J]. Fuel, 2014, 117: 218-223.

[76]Dou Guolan, Wang Deming, Zhong Xiaoxing, et al. Effectiveness of catechin and poly (ethylene glycol) at inhibiting the spontaneous combustion of coal[J]. Fuel Processing Technology, 2014, 120: 123-127.

[77]张玉涛, 史学强, 李亚清, 等. 锌镁铝层状双氢氧化物对煤自燃的阻化特性[J]. 煤炭学报, 2017, 42(11): 2892-2899.

[78]张辛亥, 丁峰, 张玉涛, 等. LDHs复合阻化剂对煤阻化性能的试验研究[J]. 煤炭科学技术, 2017, 45(01): 84-88.

[79]Yang Yi, Tsai YunTing, Zhang Yanni, et al. Inhibition of spontaneous combustion for different metamorphic degrees of coal using Zn/Mg/Al-CO3 layered double hydroxides[J]. Process Safety and Environmental Protection, 2018, 113: 401-412.

[80]Li Jinhu, Li Zenghua, Yang Yongliang, et al. Inhibitive effects of antioxidants on coal spontaneous combustion[J]. Energy & Fuels, 2017, 31: 14180-14190.

[81]Li Jinhu, Li Zenghua, Yang Yongliang, et al. Laboratory study on the inhibitory effect of free radical scavenger on coal spontaneous combustion[J]. Fuel Processing Technology, 2018, 171: 350-360.

[82]顾亮. 含钠磷酸盐对煤自燃抑制性能研究[J]. 矿业安全与环保, 2021, 48(04): 43-47+54.

[83]Liu Wenyong, Wen Hu, Xiao Yang, et al. Inhibiting effects of layered double hydroxides containing the rare-earth element lanthanum on coal spontaneous combustion[J]. Thermochimica Acta, 2020, 687: 178573.

[84]肖旸, 李达江, 吕慧菲, 等. 咪唑类离子液体抑制煤氧化热动力学参数的研究[J]. 煤炭学报, 2019, 44(S1): 187-194.

[85]Raymond, Farmer, Dockery. Thermogravimetric analysis of target inhibitors for the spontaneous self-Heating of coal[J]. Combustion Science and Technology, 2016, 68(8): 379-410.

[86]郭爽. 四种抗氧化剂的活性研究及测定总抗氧化能新法初探[D]. 郑州: 河南农业大学, 2005.

[87]何志伟, 胡欣, 陈国芳, 等. 抗氧化剂:治疗甲状腺相关性眼病的新选择[J]. 眼科新进展, 2022, 42(05): 417-420.

[88]张彤, 杨忠仁, 张凤兰. 食品天然防腐剂及其应用研究进展[J]. 中国调味品, 2024, 49(04): 206-211+220.

[89]马晓原, 赵永红, 刘慧民. 天然植物油在防晒化妆品中的功效研究进展[J]. 中国油脂, 2021, 46(01): 71-75.

[90]殷春燕, 李静, 杨明建, 等. 抗氧化剂对油脂煎炸稳定性的影响研究进展[J]. 食品科技, 2022, 47(12): 156-162.

[91]励建荣, 王忠强, 仪淑敏, 等. 天然抗氧化剂对鱼糜及鱼糜制品抗氧化能力及品质影响的研究进展[J]. 食品科学, 2021, 42(21): 1-7.

[92]王婕, 李琨, 张玉龙, 等. 氯化镁和碳/氧自由基捕获剂协同阻化煤自燃的实验研究[J]. 矿业安全与环保, 2021, 48(03): 6-11+16.

[93]Luo Liping, Wu Houqin, Xu Longhua, et al. An in situ ATR-FTIR study of mixed collectors BHA/DDA adsorption in ilmenite-titanaugite flotation system[J]. International Journal of Mining Science and Technology, 2021, 31(04): 689-697.

[94]Ramos T.C.P.M., Santos E.P.S., Ventura M., et al. Eugenol and TBHQ antioxidant actions in commercial biodiesel obtained by soybean oil and animal fat[J]. Fuel, 2021, 286: 119374.

[95]仲晓星, 王烽, 夏晨, 等. 一种防治低阶煤自燃的物理-化学复合阻化剂及其制备和使用方法. 2017.

[96]高江涛, 冉小波. 氯盐及其复配阻化剂对煤氧化抑制作用的实验研究. 煤炭转化, 2023, 46(01): 46-52.

[97]Dou Guolan, Wang Deming, Zhong Xiaoxing, et al. Effectiveness of catechin and poly(ethylene glycol) at inhibiting the spontaneous combustion of coal[J]. Fuel Process Technology, 2014, 120: 123-127.

[98]Ma Liyang, Wang Deming, Wang Yang, et al. Experimental investigation on a sustained release type of inhibitor for retarding the spontaneous combustion of coal[J]. Energy & Fuels, 2016, 30: 8904-8914.

[99]Farhoosh Reza, Nystrom Laura. Antioxidant potency of gallic acid, methyl gallate and their combinations in sunflower oil triacylglycerols at high temperature[J]. Food Chemistry, 2018, 244: 29-35.

[100]Reşat Apak, Mustafa Ozyurek, Kubilay Guclu, et al. Antioxidant activity/capacity measurement. 1. classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays[J]. Journal of Agricultural and Food Chemistry, 2016, 64(5): 997-1027.

[101]Urooj Samanrafia, Muhammad Shahbaz, Faisal Maqsoodmuhammad, et al. Foliar application of ethylenediamine tetraacetic acid (EDTA) improves the growth and yield of brown mustard (brassica juncea) by modulating photosynthetic pigments, Antioxidant Defense, and Osmolyte Production under Lead (Pb) Stress[J]. Plants, 2023, 12(1): 115.

[102]S. Elkholynourhan, S. Mohammedhaitham, W. Shafaamedhat. Assessment of the therapeutic potential of lutein and beta-carotene nanodispersions in a rat model of fibromyalgia[J]. Scientific Reports, 2023, 13(1): 19712.

[103]崔丹丹, 刘科梅, 刘源, 等. 量子化学计算在天然抗氧化物研究中的应用[J]. 食品安全质量检测学报, 2019, 10(02): 320-327.

[104]M. Ahmedyousef, A. Eldinmahmoud, Ahmed Galal, et al. Electrochemical sensor for simultaneous determination of antiviral favipiravir drug, paracetamol and vitamin C based on host-guest inclusion complex of β-CD/CNTs nanocomposite[J]. Scientific Reports, 2023, 13(1): 19910.

[105]张涛, 邓思, 陈艳红, 等. 虾青素和β-胡萝卜素的抗氧化活性及其协同作用研究[J].食品与发酵工业, 2020, 45(21): 1-11.

[106]Al-Nu’ airat Jomana, Altarawneh Mohammednoor, Oluwoye Ibukun, et al. Role of singlet oxygen in combustion initiation of aromatic fuels[J]. Energy & Fuels, 2018, 32: 12851-12860.

[107]Al-Nu’ airat Jomana, Dlugogorski Bogdan Z, Oluwoye I, et al. Effect of Fe2O3 nanoparticles on combustion of coal surrogate (Anisole): enhanced ignition and formation of persistent free radicals[J]. Proceedings of the Combustion Institute, 2019, 37: 3091-3099.

[108]王婕, 张玉龙, 王俊峰, 等. 无机盐类阻化剂和自由基捕获剂对煤自燃的协同抑制作用[J]. 煤炭学报, 2020, 45(12): 4132-4143.

[109]Ma Liyang, Wang Deming, Wang Yang, et al. Synchronous thermal analyses and kinetic studies on a caged-wrapping and sustained-release type of composite inhibitor retarding the spontaneous combustion of low-rank coal[J]. Fuel Processing Technology, 2017, 157: 65-75.

[110]余明高, 孟牒, 路长, 等. 基于锥形量热仪实验研究阻化剂对煤自燃的影响[J]. 热科学与技术, 2010, 9(04): 343-347.

[111]杨运良, 于水军, 张如意, 等. 防止煤炭自燃的新型阻化剂研究[J]. 煤炭学报, 1999(02): 3-5.

[112]Dou Guolan, Xin Haihui, Wang Deming, et al. The effects of poly (ethylene glycol) on the low-temperature oxidation reaction of coal as monitored using in situ series diffuse reflectance FTIR[J]. Korean Journal of Chemical Engineering, 2014, 31(5): 801-806.

[113]Xi Zhilin, Wang Xiaodong, Wang Xiaoli, et al. Polymorphic foam clay for inhibiting the spontaneous combustion of coal[J]. Process Safety and Environmental Protection, 2019, 122, 263-270.

[114]董宪伟, 温志超, 王福生, 等. 基于电子顺磁共振的煤自燃阻化剂实验研究[J]. 中国科技论文, 2017, 12(21): 2469-2473.

[115]Qin Botao, Dou Guolan, Wang Deming. Thermal analysis of vitamin C affecting low-temperature oxidation of coal[J]. Journal of Wuhan University of Technology(Materials Science), 2016, 31(03): 519-522.

[116]许红英, 苗梦露, 陈鹏. 复合阻化剂抑制煤自燃的红外光谱实验研究[J]. 矿业安全与保, 2019, 46(04): 40-44.

[117]郜孟南. 基于自由基消减的煤自燃阻化剂及其阻化特性[D]. 徐州: 中国矿业大学, 2020.

[118]郭迎宾. 含有氢氧化镁的微胶囊阻燃剂的合成及在EVA中的应用[D]. 洛阳: 河南科技大学, 2018.

[119]徐华, 林粤顺, 周红军, 等. 毒死蜱/乙基纤维素微胶囊的制备及其缓释性能[J]. 化工进展, 2017, 36(12): 4622-4627.

[120]Paula Ortega, Elena Sánchez, M. Montornesjosep, et al. Design and evaluation of microencapsulation technology to reduce the environmental impact of copper fungicides in vineyards[J]. Crop Protection, 2024, 176: 106502.

[121]Abu-Thabit N. Nano-and microencapsulation-techniques and applications[M]. 2021.

[122]Augustin M A, Sanguansri L. Microencapsulation technologies[M]. Engineering Foods for Bioactives Stability and Delivery, Springer New York, 2017.

[123]马铁铮, 邓秀琴, 王静. 制备食品微胶囊壁材用改性多糖的应用进展[J]. 中国食品学报, 2018, 18(06): 212-220.

[124]Din Wanishahidud, Mohammad Ali, Seema Mehdi, et al. A review on chitosan and alginate-based microcapsules: Mechanism and applications in drug delivery systems[J]. International journal of biological macromolecules, 2023, 248: 125875.

[125]赵庚, 祝宝东, 邹楠楠, 等. 石蜡基微胶囊相变材料研究进展[J]. 高分子通报, 2023, 36(09): 1136-1146.

[126]Li Jia, Ji Xiaoping, Tang Zhennong, et al. Preparation and evaluation of self-healing microcapsules for asphalt based on response surface optimization[J]. Journal of Applied Polymer Science, 2022, 139(1): 51430.

[127]Li Ting, Teng Da, Mao Ruoyu, et al. Recent progress in preparation and agricultural application of microcapsules[J]. Journal of Biomedical Materials Research Part A, 2019, 107(10): 2371-2385.

[128]Yan Xiaoxing, Li Wenbo, Han Yan, et al. Preparation of melamine/rice husk powder coated shellac microcapsules and effect of different rice husk powder content in wall material on properties of wood waterborne primer[J]. Polymers, 2021, 14(1): 72.

[129]王婷玉. 碳酸钙包覆石蜡基相变微胶囊的调温及强化传热研究[D]. 广州: 华南理工大学, 2017.

[130]耿晓叶. 可逆热致变色相变储能材料微胶囊的制备、表征及性能研究[D]. 天津: 天津工业大学, 2021.

[131]Heng Yingqi, Feng Nianrong, Liang Yexin, et al. Lignin-retaining porous bamboo-based reversible thermochromic phase change energy storage composite material[J]. International Journal of Energy Research, 2020, 44(12): 5441-5454.

[132]Cao Liangliang, Fang Liang, Li Xue, et al. Chameleon inspired layer-by-layer assembly of thermochromic microcapsules to achieve controllable multiple-color change[J]. Smart Materials and Structures, 2020, 29(4): 04LT02.

[133]Kandirmaz Eminearman, Ozcan Arif, Ulusoy Duyguer. Production of thermochromic microcapsulated inks for smart packaging and examination of printability properties[J]. Pigment and Resin Technology, 2020, 49: 273-281.

[134]Wu Zhilei, Ma Xiaoguang, Zheng Xiling, et al. Synthesis and characterization of thermochromic energy-storage microcapsule and application to fabric[J]. Journal of the Textile Institute, 2014, 105(4): 398-405.

[135]Leng Guanghui, Qiao Geng, Jiang Zhu, et al. Micro encapsulated & form-stable phase change materials for high temperature thermal energy storage[J]. Applied Energy, 2018, 217: 212-220.

[136]Cui Xuejun, Guan Xinyu, Zhong Shuangling, et al. Multi-stimuli responsive smart chitosan-based microcapsules for targeted drug delivery and triggered drug release[J]. Ultrasonics Sonochemistry. 2017, 38: 145-153.

[137]张琦, 刘重阳, 宋俊, 等. 微胶囊相变储能材料的合成及其应用研究进展[J]. 储能科学与技术, 2023, 12(04): 1110-1130.

[138]Yan Xiaoxing, Zhao Wenting, Wang Lin. Mechanism of thermochromic and self-repairing of waterborne wood coatings by synergistic action of waterborne acrylic microcapsules and fluorane microcapsules[J]. Polymers, 2021, 14(1): 56.

[139]徐文华, 张佳, 王梓涵, 等. 双重乳液的制备及应用研究进展[J]. 食品与机械, 2020, 36(9): 1-11.

[140]张嬿妮, 舒盼, 刘春辉, 等. 乙二胺四乙酸微胶囊阻化煤自燃性能研究[J]. 煤炭科学技术, 2022, 50(08): 108-117.

[141]陈少康. 防治煤自燃的阻化微胶囊制备及性能研究[D]. 西安: 西安科技大学, 2020.

[142]Zhang Yanni, Shu Pan, Chen Shaokang, et al. Preparation and properties of hydrotalcite microcapsules for coal spontaneous combustion prevention[J]. Process Safety and Environmental Protection, 2021, 152: 536-548.

[143]Zhai Xiaowei, Yang Chong, Shi Bobo, et al. Inhibition performance of microcapsule material on coal oxidation[J]. Journal of Thermal Analysis and Calorimetry, 2022, 147 (3): 2665-2677.

[144]Zhang Yanni, Shu Pan, Deng Jun, et al. Preparation and properties of ammonium polyphosphate microcapsules for coal spontaneous combustion prevention. International Journal of Coal Preparation and Utilization, 2022, 42: 3090-3102

[145]胡相明, 薛迪, 赵艳云, 等. 防治煤炭自燃的微胶囊阻化剂泡沫凝胶材料及其制备方法[P]. 山东省: CN111111571B, 2022-02-08.

[146]焦庚新. 防治煤自燃抗氧化型微胶囊化阻化剂研究[D]. 徐州: 中国矿业大学, 2020.

[147]李孜军, 郭兆东, 吴靓. 氯化镁微胶囊泡沫作用机理及阻化效果研究[J]. 中国安全生产科学技术, 2016, 12(06): 54-58.

[148]马超. 高倍微胶囊阻化剂泡沫防灭火技术在煤矿的应用[J]. 煤矿安全, 2010, 41(09): 48-50.

[149]蒋曙光, 崔传波, 高翔宇, 等. 一种防治煤炭自燃的复合微胶囊阻化剂的制备方法[P]. 江苏省:CN108167016B, 2019-06-07.

[150]白子明. 防治煤自燃的微胶囊化复合阻化剂研究[D]. 徐州: 中国矿业大学, 2019.

[151]王福生, 孙玮, 张渝, 等. 过渡金属离子促进煤自燃机理的量子化学计算[J/OL]. 煤炭学报, 1-14[2024-04-08].

[152]刘春辉. 侏罗纪煤热反应模型构建及氧化历程研究[D]. 西安: 西安科技大学, 2021.

[153]汤其建, 戴广龙, 秦汝祥. 氮气气氛受热煤低温氧化与自反应试验研究[J]. 中国矿业大学学报, 2021, 50(05): 992-1001.

[154]Jiang Xiaoyuan, Yang Shengqiang, Zhou Buzhuang. Change characteristics of radicals in different stages of coal spontaneous combustion[J]. Natural Resources Research, 2022, 32(1): 283-294.

[155]Qin Xu, Yang Shengqiang, Yang Weimin, et al. Secondary oxidation of crushed coal based on free radicals and active groups[J]. Fuel, 2021, 290(22): 120051.

[156]张嬿妮. 煤氧化自燃微观特征及其宏观表征研究[D]. 西安: 西安科技大学, 2012.

[157]周甜甜, 张淳华, 陈丹妮, 等. 落叶松树皮原花青素与蓝莓原花青素的协同抗氧化研究[J]. 精细与专用化学品, 2016, 24(4): 18-22.

[158]张欢. 原花青素微胶囊的制备及其性能研究[D]. 郑州: 河南工业大学, 2023.

[159]Li Na, Feng Baijian, Bi Yongguang, et al. Sulfobutyl ether cyclodextrin inclusion complexes containing tea polyphenols: Preparation, characterization, antioxidant activity, α-glucosidase inhibition, and in vitro release property[J]. Journal of Molecular Structure, 2024, 1295(P2): 136686.

[160]姚奉奇. 茶叶多酚类衍生物热解和氧化特性及其反应机理研究[D]. 合肥: 中国科学技术大学, 2018.

[161]Li Jinhu, Li Zenghua, Wang Chaojie, et al. Experimental study on the inhibitory effect of ethylenediaminetetraacetic acid (EDTA) on coal spontaneous combustion[J]. Fuel Processing Technology, 2018, 178: 312-321.

[162]王福生, 张朝阳, 刘向群, 等. 金属离子螯合剂抑制煤自燃试验研究[J]. 煤炭科学技术, 2023, 51(S1): 132-140.

[163]李金虎. 基于活性位点产生和氧化的热侵煤体煤自燃特性及抑制途径研究[D]. 徐州: 中国矿业大学, 2020.

[164]Qiao Ling, Deng Cunbao, Dai Fengwei, et al. Experimental study on a metal-Chelating agent inhibiting spontaneous combustion of coal[J]. Energy & Fuels, 2019, 33(9): 9232-9240.

[165]王洋. 物理-化学笼式复合阻化剂对煤自燃的影响研究[D]. 徐州: 中国矿业大学, 2016.

[166]李晓曦, 谭波. 煤自燃阻化剂的阻化效果动力学分析及优选[J]. 中国安全科学学报, 2017, 27(6): 79-84.

[167]薛海波. 抑制煤自燃过程关键活性基团的抗氧化型复合阻化剂研究[D]. 徐州: 中国矿业大学, 2018.

[168]张承越, 邓泽元, 李红艳. 类胡萝卜素清除超氧阴离子和氢过氧自由基活性[J]. 南昌大学学报(理科版), 2018, 42(2): 129-133.

[169]侯亚男. 抗氧化剂阻化煤自燃及动力学机理研究[D]. 西安: 西安科技大学, 2021.

[170]Abdelkader asraryank. Synthesis, SC-XRD structure, spectroscopy, intermolecular interactions, DFT/TD-DFT investigation, and (static, dynamic) NLO properties of (2E,5Z)-3-(4-fluorophenyl)-2-(4-fluorophenylimino)-5-((E)-3-(2-nitrophenyl) allyliden) thiazolidin-4-one[J]. Journal of Molecular Structure, 2024, 1298(P1).

[171]梁松, 李海波, 张义民. 基于C和gnuplot的渐开线齿轮辅助几何设计程序开发[J]. 工程设计学报, 2014, 21(01): 80-86.

[172]陈洁洁, 范勇杰, 杨婧, 等. 基于Guassian、Multiwfn及ECOSAR的氮磷系阻燃剂在UV/PDS体系中的降解路径及产物毒性预测研究[J]. 环境科学学报, 2022, 42(12): 39-48.

[173]Zhang Yanni, Shu Pan, Deng Jun, et al. Analysis of oxidation pathways for characteristic groups in coal spontaneous combustion[J]. Energy, 2022, 254: 124211.

[174]Wang Deming, Xin Haihui, Qi Xuyao, et al. Reaction pathway of coal oxidation at low temperatures: a model of cyclic chain reactions and kinetic characteristics[J]. Combustion and Flame, 2016, 163(05): 447-460.

[175]Zhou Chenyang, Liu Xibo, Zhao Yuemin, et al. Recent progress and potential challenges in coal upgrading via gravity dry separation technologies[J]. Fuel, 2021, 305: 121430.

[176]Deng Jun, Li Qingwei, Xiao Yang, et al. Thermal diffusivity of coal and its predictive model in nitrogen and air atmospheres[J]. Applied Thermal Engineering, 2018, 130: 1233-1245.

[177]Maloney DJ, Sampath R, Zondlo JW. Heat capacity and thermal conductivity considerations for coal 5 particles during the early stages of rapid heating[J]. Combustion and Flame, 1999, 116: 94-104.

[178]肖旸, 叶星星, 刘昆华, 等. 二次氧化煤自燃过程关键官能团的转变规律[J]. 煤炭学报, 2021, 46(S2): 989-1000.

[179]Gao Yukun, Lei Haoran, Yin Xiaoyi, et al. Study of the change laws of free radicals and functional groups during coal oxidation[J]. ACS omega, 2023, 8(7): 7102-7110.

[180]Niu Huiyong, Liu Yikang, Wang Haiyan, et al. Effect of functional groups on spontaneous combustion characteristics of high water-rich coal after long-term soaking and drying[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2023, 45(3): 9325-9340.

[181]张嬿妮, 刘春辉, 舒盼, 等. 弱粘煤低温氧化活性基团与热效应的研究[J]. 中国安全生产科学技术, 2021, 17(11): 98-104.

[182]Zhang Yuanbo, Zhang Yutao, Li Yaqing, et al. Determination and dynamic variations on correlation mechanism between key groups and thermal effect of coal spontaneous combustion. Fuel, 2022, 310(C), 122454.

[183]Ma Li, Yu Wencong, Ren Lifeng, et al. Micro-characteristics of low-temperature coal oxidation in CO2/O2 and N2/O2 atmospheres. Fuel, 2019, 246: 259-267.

[184]余明高, 王亮, 李海涛, 等. 我国煤矿防灭火材料的研究现状及发展趋势[J]. 矿业安全与环保, 2022, 49(04): 22-36.

[185]Fang Guodong, Gao Juan, Liu Cun, et al. Key role of persistent free radicals in hydrogen peroxide activation by Biochar: Implications to organic contaminant degradation[J]. Environmental Science & Technology, 2014, 48: 1902-1910.

[186]Duan Zhengxiao, Zhang Yanni, Jun Deng, et al. Effect of molecular structure change on the properties of persistent free radicals during coal oxidation. Fuel, 2023, 350: 128861.

[187]Shi Yafang, Dai Yunchao, Liu Ziwen, et al. Light-induced variation of environmentally persistent free radicals in humic substances and generation of reactive radical species. Frontiers of Environmental Science & Engineering, 2020, 14: 6.

[188]Hu Xincheng, Yu Zhaoyang, Cai Jiawen, et al. The influence of methane on the development of free radical during low-temperature oxidation of coal in gob. Fuel, 2022, 330: 125369.

[189]蔡佳文. 基于煤理化特性演变规律的协效阻化机制研究[D]. 徐州: 中国矿业大学, 2021.

[190]Zhou Bin, Liu Qingya, Shi Lei, et al. Electron spin resonance studies of coals and coal conversion processes: A review. Fuel Processing Technology, 2019, 188: 212-227.

[191]张琦, 刘重阳, 宋俊, 等. 微胶囊相变储能材料的合成及其应用研究进展[J]. 储能科学与技术, 2023, 12(04): 1110-1130.

[192]刘津. 以聚乙二醇为基的温控胞衣研究[D]. 徐州: 中国矿业大学, 2022.

[193]姜峰, 孙雯倩, 李珍宝, 等. 复合阻化剂抑制煤自燃过程的阶段阻化特性[J]. 煤炭科学技术, 2022, 50(10): 68-75.

[194]郝旭波, 牛宝联, 郭昊天, 等. 相变微胶囊改性及其在光热转换中的应用[J]. 化工进展, 2023, 42(02): 854-871.

[195]刘晓英, 阮文琳, 张育新, 等. 无机-有机杂化微胶囊:制备技术及在抗磨耐腐蚀涂层中的应用[J]. 材料导报, 2023, 37(09): 261-269.

[196]朱佐银, 彭湉, 周新丽. 高通量微流控阵列芯片设计及制备植物乳杆菌微胶囊的研究[J]. 食品与发酵工业, 2023, 49(03): 125-130.

[197]邰茉, 胡盼, 王靖涛. 微通道内流体流动对聚酰胺微胶囊壁面褶皱的影响分析及应用[J]. 化工进展, 2018, 37(08): 3067-3075.

[198]Thorsen T, Roberts R W, Arnold F H, et al. Dynamic pattern formation in a vesicle generating microfluidic device[J]. Physical Review Letters, 2001, 86(18): 4163-4166.

[199]王彦. 聚酰胺微胶囊的制备研究[D]. 天津: 天津大学, 2017.

[200]许智鹏, 吉静茹, 刘育红, 等. UV固化脂环族环氧树脂体系的设计及其响应面优化[J]. 材料导报, 2021, 35(14): 14190-14197.

[201]Zhang Genghao, Fan Yongbo, Yang Renshu, et al. Application of the Rosin-Rammler function to describe quartz sandstone particle size distribution produced by high-pressure gas rapid unloading at different infiltration pressure[J]. Powder Technology, 2022, 412: 117982.

[202]赵文彬, 刘方顺, 石新岩, 等. 放顶煤工作面立体自燃带动态变化特性研究[J]. 中国安全科学学报, 2022, 32(03): 65-74.

[203]Christelle Crampon, Thibaud Detoisien, Lama Itani, et al. Novel crystal morphology for sodium bicarbonate obtained by using the supercritical anti-solvent process[J]. Powder Technology, 2023, 418: 118313.

[204]马砺, 马武阳, 魏泽, 等. 钠盐微胶囊制备及其阻化性能研究[J]. 煤矿安全, 2022, 53(09): 94-99.

[205]Fan Shixing, Wen Hu, Zhang Duo, et al. Effects of crude oil on the microstructure and spontaneous combustion characteristics of coal: a case study of weakly caking coal in the Huangling No. 2 mine, China[J]. Journal of Thermal Analysis and Calorimetry, 2021, 144(02): 539-551.

[206]张悦. 抑制煤自燃温敏相变凝胶材料的研究[D]. 徐州: 中国矿业大学, 2022.

中图分类号:

 TD752.2    

开放日期:

 2026-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式