论文中文题名: |
掺杂型铌酸银反铁电陶瓷电子结构与电性能研究
|
姓名: |
冉宏培
|
学号: |
18211027008
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
080502
|
学科名称: |
工学 - 材料科学与工程 - 材料学
|
学生类型: |
硕士
|
学位级别: |
工学硕士
|
学位年度: |
2021
|
培养单位: |
西安科技大学
|
院系: |
材料科学与工程学院
|
专业: |
材料学
|
研究方向: |
功能材料
|
第一导师姓名: |
杜慧玲
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2021-06-22
|
论文答辩日期: |
2021-05-31
|
论文外文题名: |
The Study on Electronic Structure and Electrical Properties of Doped AgNbO3 Anti-ferroelectric Ceramics
|
论文中文关键词: |
铌酸银 ; 离子掺杂 ; 电子结构 ; 介电性能 ; 储能性能
|
论文外文关键词: |
AgNbO3 ; Ions doping ; Electronic structure ; Dielectric properties ; Energy storage properties
|
论文中文摘要: |
︿
用于能量储存的介电铁电材料具有高可靠性和高充放电速率等特点,在高新技术领域中具有重要应用。近年来具有双电滞回线特征的反铁电储能材料已成为研究热点。AgNbO3是一种新型无铅反铁电陶瓷材料,具有高饱和极化、低剩余极化,在能源储存系统和大功率电子设备领域显示巨大潜力。但是AgNbO3陶瓷电容器在室温及以上工作温域内介电性能不稳定,储能密度和储能效率较低,限制其进一步应用在储能器件领域。本论文以传统固相反应法制备了离子掺杂型AgNbO3陶瓷,结合物相结构和电子能带结构信息,探索离子掺杂对AgNbO3陶瓷电学性能的影响,并系统研究了AgNbO3陶瓷的介电稳定性及储能特性。
首先,采用固相反应法制备了Ag1-3xBixNbO3 (x=0~0.03)陶瓷材料,随掺杂含量增大,晶胞体积增大,晶粒尺寸减小。基于第一性原理计算Bi3+掺杂AgNbO3的电子能带结构、电子态密度和介电函数,探索电子轨道杂化与AgNbO3铁电性的关系。结果表明Bi3+掺杂使禁带宽度从1.740 eV降低到1.523 eV,费米能级附近电子轨道杂化增强。在x=0.03时,25~278 ℃温度范围内TCC(25 °C)≤±15%,具有良好的宽温域介电稳定性。
其次,制备了Zn2+、Sc3+和Ti4+掺杂AgNbO3陶瓷材料,并通过计算B位掺杂AgNbO3的电子能带结构和介电函数,结合电子轨道杂化分析B位离子掺杂对电性能的影响。结果表明Sc3+掺杂AgNbO3陶瓷,晶粒尺寸明显降低,介电峰向低温方向移动,介电温度稳定性和室温介电常数提高。
基于A、B位单掺杂结果,制备了A、B位离子共掺杂型Ag1-3x BixNb1-3/5xScxO3 (x=0~0.03)陶瓷,结果表明掺杂导致晶胞体积膨胀,晶粒尺寸减小,掺杂产生的点缺陷与容忍因子的降低增强了反铁电性。当电场强度为200 kV/cm时,陶瓷电容的可恢复储能密度在x=0.01处达到3.31 J/cm3,储能效率在x=0.02处达到70.11%。此外,当x=0.03,陶瓷在25 °C到300 °C范围内介电性能具有良好稳定性。
﹀
|
论文外文摘要: |
︿
Dielectric and ferroelectric materials are promising candidate used for energy storage because of the high reliability and high charge and discharge rate. They have important applications in the field of new and high technology. In recent years, anti-ferroelectric energy storage materials with double hysteresis loops have become a research hotspot. AgNbO3 is a new type lead-free anti-ferroelectric ceramic material with high saturation polarization and low remnant polarization, and shows great potential in energy storage systems and high-power electronic devices. However, the dielectric properties in the operating temperature above room temperature of AgNbO3 ceramic capacitors are unstable, which result in low energy storage density and efficiency, and limit their further application in the field of energy storage devices. The traditional solid-state reaction method was used to prepare ion-doped AgNbO3 ceramics in this work. Combining the information of phase structure and electronic band structure, the influence of ion doping on the electrical properties of AgNbO3 ceramics was explored, the stability of dielectric properties and energy storage properties of AgNbO3 ceramics were systematically studied.
Firstly, Ag1-3x BixNbO3 (x=0~0.03) ceramics were fabricated through solid-state reaction method. The average grain size decreased while the cell volume increased with doping content. The effects of Bi3+ doped AgNbO3 ceramics were studied by the first principles calculation. The band structure, the density of states, the dielectric function, and the relation between the ferroelectricity and orbital hybridization were explored. The results demonstrate that the band gap reduced from 1.740 eV to 1.523 eV, and the orbital hybridization of electron orbitals near the Fermi energy level was enhanced. When x=0.03, the ceramic exhibit good dielectric thermal stability between 25 °C and 278 °C with a TCC(25 °C) value of less than ±15%.
Secondly, the Zn2+, Sc3+ and Ti4+ was doped into the B-site of AgNbO3 ceramics. The band structure and dielectric function of B-site doping AgNbO3 ceramics were calculated, and the effects of B-site ion doping on the electrical properties were studied by combining the hybridization of electron orbitals. The results show that the grain size of AgNbO3 ceramics doping with Sc3+ decreased obviously, and the dielectric anomalies moved towards low temperature, which enhance the dielectric thermal stability and improve the dielectric constant at room temperature.
Based on the above results of separate doping of the A-site and B-site, Bi3+ and Sc3+co-doped AgNbO3 ceramics were fabricated according to the formula of Ag1-3x BixNb1-3/5xScxO3 (x = 0~0.03). The results show that doping leads to the expansion of cell volume and reduction of grain size. The anti-ferroelectricity was enhanced due to the production of point defects and reduction of the tolerance factor. When the electric field increase to 200 kV/cm, the ceramic obtained a high energy storage density of 3.31 J/cm3 at x=0.01, and the energy storage efficiency of 70.11% was achieved at x=0.02. Moreover, the ceramic at x=0.03 shows excellent dielectric thermal stability from the temperature range of 25~300 °C.
﹀
|
参考文献: |
︿
[1]Panwar N L, Kaushik S C, Kothari S. Role of renewable energy sources in environmental protection:A review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(3): 1513-1524. [2]Guney M S, Tepe Y. Classification and assessment of energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2017, 75: 1187-1197. [3]Yao L, Yang B, Cui H, et al. Challenges and progresses of energy storage technology and its application in power systems[J]. Journal of Modern Power Systems and Clean Energy, 2016, 4(4): 519-528. [4]Rybjanets A N. Properties of PZT/PZT ceramic piezocomposites[J]. Bulletin of the Russian Academy of Sciences Physics, 2010, 74(8): 1100-1103. [5]刘文凤,周超,高景辉,等.无铅压电陶瓷的研究进展[J]. 中国材料进展,2016, 35(6):423-428. [6]Zhenglei Yu, Y Liu, M Shen, et al. Enhanced energy storage properties of BiAlO3 modified Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3 lead-free antiferroelectric ceramics[J]. Ceramics International, 2017, 43(10): 7653-7659. [7]Yuan C, Meng L, Yong L, et al. Microstructures and energy storage properties of Mn-doped 0.97Bi0.47Na0.47Ba0.06TiO3-0.03K0.5Na0.5NbO3 lead-free antiferroelectric ceramics[J]. Journal of Materials Science Materials in Electronics, 2015, 26(11): 8793-8797. [8]Bhupaijit P, Kornphom C, Vittayakorn N, et al. Structural, microstructure and electrical properties of La2O3-doped Bi0.5(Na0.68K0.22Li0.1)0.5TiO3, lead-free piezoelectric ceramics synthesized by the combustion technique[J]. Ceramics International, 2015, 41(1): S81-S86. [9]Kim H K, Lee S H, Lee S G, et al. Effect of various sintering aids on the piezoelectric and dielectric properties of 0.98(Na0.5K0.5)NbO3-0.02Li0.04(Sb0.06Ta0.1)O3 ceramics[J]. Materials Research Bulletin, 2014, 58: 218-222. [10]Yang L, Kong X, Li F, et al. Perovskite lead-free dielectrics for energy storage applications[J]. Progress in Materials Science, 2019, 102(5): 72-108. [11]Dang Z M, Yuan J K, Yao S H, et al. Flexible nanodielectric materials with high permittivity for power energy storage[J]. Advanced Materials, 2013, 25(44): 6334-6365. [12]Chu B, Xin Z, Ren K, et al. A Dielectric Polymer with High Electric Energy Density and Fast Discharge Speed[J]. Science, 2006, 313(5785): 334-336 [13]Watson J, Castro G. A review of high-temperature electronics technology and applications[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(12): 9226-9235. [14]Zeb A, Milne S J. Dielectric properties of Ba0.8Ca0.2TiO3-Bi(Mg0.5Ti0.5)O3-NaNbO3 ceramics[J]. Journal of the American Ceramic Society, 2013, 96(12): 3701-3703. [15]Hao X. A review on the dielectric materials for high energy-storage application[J]. Journal of Advanced Dielectrics, 2013, 3(01): 1330001. [16]Love G R. Energy storage in ceramic dielectrics[J]. Journal of the American Ceramic Society, 1990, 73(2): 323-328. [17]Wang Y, Cui J, Yuan Q, et al. Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly (vinylidene fluoride) nanocomposites[J]. Advanced Materials, 2015, 27(42): 6658-6663. [18]Li F, Zhai J, Shen B, et al. Recent progress of ecofriendly perovskite type dielectric ceramics for energy storage applications[J]. Journal of Advanced Dielectrics, 2018, 8(6): 1830005. [19]杜洪亮,杨泽田,高峰,等.无铅非线性介电储能陶瓷:现状与挑战[J]. 无机材料学报,2018, 33 (10): 1046-1058. [20]Jeon S C, Lee C S, Kang S J L. The Mechanism of Core/Shell Structure Formation During Sintering of BaTiO3‐Based Ceramics[J]. Journal of the American Ceramic Society, 2012, 95(8): 2435-2438. [21]Tian Z, Wang X, Shu L, et al. Preparation of Nano BaTiO3-Based Ceramics for Multilayer Ceramic Capacitor Application by Chemical Coating Method[J]. Journal of the American Ceramic Society, 2009, 92(4): 830-833. [22]Meng W, Zhang J, Liu J, et al. Effect of multiple times pre-sintering on the dielectric properties of TiO2/glass composite[J]. Journal of Materials Science Materials in Electronics, 2017, 28(1): 1-6. [23] Liu J, Zhang J, Wei M, et al. Dielectric properties of manganese-doped TiO2 with different alkali-free glass contents for energy storage application[J]. Journal of Materials Science: Materials in Electronics, 2016, 27(7): 7680-7684. [24]Patel S, Chauhan A, Vaish R. Enhancing electrical energy storage density in anti-ferroelectric ceramics using ferroelastic domain switching[J]. Materials Research Express, 2014, 1(4): 045502. [25]Desheng, Endo, Makoto, et al. AgNbO3: A lead-free material with large polarization and electromechanical response[J]. Applied Physics Letters, 2007, 90(25): 252907. [26]Verwerft M, Dyck D V, Brabers V, et al. Electron Microscopic Study of the Phase Transformations in AgNbO3[J]. Physica Status Solidi, 2010, 112(2): 451-466. [27]Levin I, Krayzman V, Woicik J C, et al. Structural Changes Underlying the Diffuse Dielectric Response in AgNbO3[J]. Physical Review B, 2009, 79(10): 104113. [28]Glazer A M. The classification of tilted octahedra in perovskites[J]. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1972, 28(11): 3384-3392. [29]Fu D, Endo M, Taniguchi H, et al. Piezoelectric properties of lithium modified silver niobate perovskite single crystals[J]. Applied Physics Letters, 2008, 92(17): 2236. [30]Ratuszna A, Pawluk J, Kania A. Temperature evolution of the crystal structure of AgNbO3[J]. Phase Transitions: A Multinational Journal, 2003, 76(6): 611-620. [31]Kania A, Niewiadomski A, Miga S, et al. Silver deficiency and excess effects on quality, dielectric properties and phase transitions of AgNbO3 ceramics[J]. Journal of the European Ceramic Society, 2014, 34(7): 1761-1770. [32]Levin I, Woicik J C, Llobet A, et al. Displacive Ordering Transitions in Perovskite-Like AgNb0.5Ta0.5O3[J]. Chemistry of Materials, 2010, 22(17): 4987-4995. [33]Babu Js B, Madeswaran G, Chen X L, et al. Effect of Oxygen Vacancies on Ferroelectric Behavior of Na1/2Bi1/2TiO3-BaTiO3 Single Crystals[J]. Materials Science & Engineering B, 2009, 156(1-3): 36-41. [34]Zhao L, Liu Q, Zhang S, et al. Lead-free AgNbO3 anti-ferroelectric ceramics with an enhanced energy storage performance using MnO2 modification[J]. Journal of Materials Chemistry C, 2016, 4(36): 8380-8384. [35]Xu Y, Wang G, Tian Y, et al. Crystal structure and electrical properties of AgNbO3-based lead-free ceramics[J]. Ceramics International, 2016, 42(16): 18791-18797. [36]Zhao L, Liu Q, Gao J, et al. Lead-free antiferroelectric silver niobate tantalate with high energy storage performance[J]. Advanced Materials, 2017, 29(31): 1701824. [37]Y Tian, Jin L, Hu Q, et al. Phase transitions in tantalum-modified silver niobate ceramics for high power energy storage[J]. Journal of Materials Chemistry A, 2019, 7(2): 834-842. [38]Yan Z, Zhang D, Zhou X, et al. Silver niobate based lead-free ceramics with high energy storage density[J]. Journal of Materials Chemistry A, 2019, 7(17): 10702-10711. [39]N Luo, Han K, Cabral M J, et al. Constructing phase boundary in AgNbO3 antiferroelectrics: pathway simultaneously achieving high energy density and efficiency[J]. Nature Communications,2020, 11(1): 4824. [40]Zla B, Wb C, Ge W A, et al. Mechanism of enhanced energy storage density in AgNbO3-based lead-free antiferroelectrics-ScienceDirect[J]. Nano Energy, 2021, 79: 105423. [41]Du H, Ma C, Ma W, et al. Microstructure evolution and dielectric properties of Ce-doped SrBi4Ti4O15 ceramics synthesized via glycine-nitrate process[J]. Processing and Application of Ceramics, 2018, 12(4): 303-312. [42]Lines M E, Glass A M, Burns G. Principles and Applications of Ferroelectrics and Related Materials[J]. Physics Today, 1978, 31(9): 56-58. [43]N, Sareecha, W. A, et al. Fabrication and electrical investigations of Pb-doped BaTiO3 ceramics - ScienceDirect[J]. Materials Chemistry and Physics, 2017, 193: 42-49. [44]史海峰,代雪峰,姬广富,等.高压下单晶LiF的光学及热力学性质的密度泛函理论研究[J]. 原子与分子物理学报,2006,23(2): 262-266. [45]MD Segall, Lindan P, Probert M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. Journal of Physics Condensed Matter, 2002, 14(11): 2717-2744. [46]Perdew J P, Chevary J A, Vosko S H, et al. Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Physical Review B, 1993, 48(7): 4978-4978. [47]Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical review letters, 1996, 77(18): 3865. [48]Gao J, Zhao L, Liu Q, et al. Antiferroelectric-ferroelectric phase transition in lead-free AgNbO3 ceramics for energy storage applications[J]. Journal of the American Ceramic Society, 2018, 101(12): 5443-5450. [49]Wu Y, Pu Y, Zhang P, et al. The relaxor behavior and dielectric temperature stability of 0.85BaTiO3-0.15Na0.5Bi0.5TiO3-xLiBa2Nb5O15 ceramics[J]. Materials Letters, 2015, 155: 134-137. [50]Ren P, Ren D, Sun L, et al. Grain size tailoring and enhanced energy storage properties of two-step sintered Nd3+-doped AgNbO3[J]. Journal of the European Ceramic Society, 2020, 40(13): 4495-4502. [51]Fujii I, Ugorek M, Han Y, et al. Effect of Oxygen Partial Pressure During Firing on the High AC Field Response of BaTiO3 Dielectrics[J]. Journal of the American Ceramic Society, 2010, 93(4): 1081-1088. [52]赵庆勋,王书彪,关丽,等.Pb(Zr0.4Ti0.6)O3电子结构的第一性原理研究[J]. 原子与分子物理学报,2007, 24(05): 951-956. [53]Niranjan M K, Asthana S. First principles study of lead free piezoelectric AgNbO3 and (Ag1-xKx)NbO3 solid solutions[J]. Solid state communications, 2012, 152(17): 1707-1710. [54]Wang X, Ren P, Ren D, et al. B-site acceptor doped AgNbO3 lead-free antiferroelectric ceramics: The role of dopant on microstructure and breakdown strength. Ceramics International, 2021, 47(3): 3699-3705. [55]Tunkasiri T, Rujijanagul G. Dielectric strength of fine grained barium titanate ceramics[J]. Journal of Materials Science Letters, 1996, 15(20): 1767-1769. [56]Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta crystallographica section A: crystal physics, diffraction, theoretical and general crystallography, 1976, 32(5): 751-767. [57]Pastor M, Bajpai P K, Choudhary R N P. Structural and electrical impedance study of Pb (Sr1/3Nb2/3)O3[J]. Journal of Physics and Chemistry of Solids, 2007, 68(10): 1914-1920. [58]Liu L, Huang Y, Su C, et al. Space-charge relaxation and electrical conduction in K0.5Na0.5NbO3 at high temperatures[J]. Applied Physics A, 2011, 104(4): 1047-1051. [59]任少凯,韩飞飞,陈开远,等.阻抗谱研究Yb3+掺杂(Bi0.5Na0.5)TiO3陶瓷的电学性能[J]. 电子元件与材料,2019, 038(004): 16-25. [60]Xi Y, Zhili C, Cross L E. Polarization and depolarization behavior of hot pressed lead lanthanum zirconate titanate ceramics[J]. Ferroelectrics, 1983, 54(6): 163-166. [61]Tian Y, Jin L, Zhang H, et al. High energy density in silver niobate ceramics[J]. Journal of Materials Chemistry A, 2016, 4(44): 17279-17287. [62]Tian Y, Jin L, Zhang H, et al. Phase transitions in bismuth-modified silver niobate ceramics for high power energy storage[J]. Journal of Materials Chemistry A, 2017, 5(33): 17525-17531. [63]Arshad M, Du H, Javed M S, et al. Fabrication, structure, and frequency-dependent electrical and dielectric properties of Sr-doped BaTiO3 ceramics[J]. Ceramics International, 2019, 46(2): 2238-2246. [64]Xu Y, Guo Y, Liu Q, et al. High energy storage properties of lead-free Mn-doped (1-x)AgNbO3-xBi0.5Na0.5TiO3 antiferroelectric ceramics[J]. Journal of the European Ceramic Society, 2020, 40(1): 56-62.
﹀
|
中图分类号: |
TB321
|
开放日期: |
2021-06-24
|