论文中文题名: |
数字经济赋能制造业结构升级的机理及提升路径研究
|
姓名: |
邓娅妮
|
学号: |
20202097025
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
120100
|
学科名称: |
管理学 - 管理科学与工程(可授管理学、工学学位) - 管理科学与工程
|
学生类型: |
硕士
|
学位级别: |
管理学硕士
|
学位年度: |
2023
|
培养单位: |
西安科技大学
|
院系: |
管理学院
|
专业: |
管理科学与工程
|
研究方向: |
优化理论与方法
|
第一导师姓名: |
尚梅
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2023-12-21
|
论文答辩日期: |
2023-12-06
|
论文外文题名: |
Research on Mechanism and Improvement ways of Digital Economy Enabling Manufacturing Structure Upgrading
|
论文中文关键词: |
数字经济 ; 制造业结构升级 ; 中介效应 ; 门槛效应 ; 提升路径
|
论文外文关键词: |
Digital economy ; Structure upgrading of the manufacturing industry ; Mediating effect ; Threshold effect ; Promotion path
|
论文中文摘要: |
︿
凭借劳动力、原材料和土地等生产要素带来的低成本优势,制造业为中国经济增长和综合国力提升做出巨大贡献。随着全球产业格局的深刻变化,我国制造业面临着创新能力不足、低端锁定等问题的考验,亟需寻找发展新动能。与此同时,大数据、物联网等新一代信息技术表现出强大的发展潜力,成为我国制造业升级的关键因素。基于以上背景,本文对数字经济赋能制造业结构升级进行理论分析和实证研究,以期为我国制造业转型升级提供决策参考依据。
本文首先对数字经济赋能制造业结构升级的作用机理进行系统分析;其次,运用熵值法测度我国2012-2021年30个省市的数字经济和制造业结构升级水平;再次,运用固定效应模型、中介效应模型和门槛效应模型进行实证分析;最后,基于理论与实证分析提出数字经济赋能制造业结构升级的提升路径。
研究结果表明:(1)我国数字经济呈现东部地区最佳、中部次之、西部最差的排序情况;制造业结构升级水平也呈现出东高西低的不均衡分布状况。(2)从直接效应模型来看,全国层面,数字经济显著提升制造业结构升级水平;区域层面,数字经济显著提升东部地区制造业结构升级水平,西部地区促进作用次之,而对中部地区无显著影响。(3)从中介效应模型来看,全国层面,数字经济通过技术创新、人力资本、市场化程度和环境规制影响制造业结构升级;区域层面,东部地区人力资本和环境规制起到显著中介作用,中部地区无明显中介效应,西部地区数字经济通过技术创新和市场化程度影响制造业结构升级。(4)从门槛效应模型来看,数字经济对制造业结构升级存在“边际效应递增”规律。进一步研究发现,以技术创新、人力资本和市场化程度为门槛时,数字经济对制造业结构升级存在“边际效应递增”规律;以环境规制为门槛,数字经济对制造业结构升级存在“边际效应递减”规律。(5)本文从加强数字经济发展顶层设计和总体布局、以创新为核心动力、健全人才培养机制、激发要素市场活力和完善环境规制政策五个方面探讨数字经济赋能制造业结构升级的提升路径。
﹀
|
论文外文摘要: |
︿
With the low-cost advantage brought about by production factors such as labor, raw materials, and land, the manufacturing industry has made great contributions to China's economic growth and the enhancement of its comprehensive national strength. With the profound changes in the global industrial pattern, China's manufacturing industry is facing the test of insufficient innovation capacity, low-end lock-in, and other problems, and there is an urgent need to find new momentum for development. At the same time, new-generation information technologies such as big data and the Internet of Things have demonstrated strong development potential and become key factors in the upgrading of China's manufacturing industry. Based on the above background, this paper carries out theoretical analysis and empirical research on digital economy-empowered manufacturing structure upgrading, to provide a decision-making reference basis for the transformation and upgrading of China's manufacturing industry.
This paper firstly analyzes the systematic mechanism of digital economy empowering manufacturing structure upgrading; secondly, uses the entropy method to measure the level of digital economy and manufacturing structure upgrading of 30 provinces and municipalities in China from 2012 to 2021; thirdly, empirically analyzes it by using the fixed effect model, the mediation effect model, and the threshold effect model; and lastly, based on the theoretical and empirical analyses, puts forward the upgrading path of digital economy empowering manufacturing structure upgrading.
The results of the study show that: (1) China's digital economy presents the best ranking situation in the eastern region, the second in the central region, and the worst in the western region; the level of upgrading of the manufacturing structure also presents an unbalanced distribution of high in the east and low in the west. (2) From the direct effect model, at the national level, the digital economy significantly improves the level of manufacturing structure upgrading; at the regional level, the digital economy significantly improves the level of manufacturing structure upgrading in the eastern region, followed by the western region, and has no significant effect on the central region. (3) From the mediation effect model, at the national level, the digital economy affects manufacturing structure upgrading through technological innovation, human capital, marketization degree, and environmental regulation; at the regional level, human capital and environmental regulation play a significant mediating role in the eastern region, there is no significant mediating effect in the central region, and the digital economy affects manufacturing structure upgrading in the western region through technological innovation and marketization degree. (4) From the perspective of the threshold effect model, there is a law of the "increasing marginal effect" of the digital economy on the structural upgrading of the manufacturing industry. Further research found that, with technological innovation, human capital, and the degree of marketization as the threshold, the digital economy on the structural upgrading of the manufacturing industry, there is a "marginal effect increasing" law; with the environmental regulation as the threshold, the digital economy on the structural upgrading of the manufacturing industry, there is a "diminishing marginal effect" law. The law of "diminishing marginal effect" exists in the upgrading of manufacturing structure with environmental regulation as the threshold. (5) This paper discusses the upgrading path of the digital economy empowering the structural upgrading of the manufacturing industry in five aspects: strengthening the top-level design and overall layout of the digital economy development, taking innovation as the core driving force, perfecting the mechanism of talent cultivation, stimulating the vitality of the factor market, and perfecting the environmental regulation policy.
﹀
|
参考文献: |
︿
[1]李廉水,石喜爱,刘军.中国制造业40年:智能化进程与展望[J].中国软科学,2019(01):1-9+30. [2]丁秀飞,毕蕾,仲鑫.中国对外直接投资与制造业全球价值链升级的双向影响关系研究[J].宏观经济研究,2021(12):69-82. [3]王姝楠.数字经济背景下中国制造业转型升级研究[D].中共中央党校,2020. [4]Tapscott D. The Digital Economy: Promise and Peril in the Age of Networked Intelligence[J]. Educom Review,1996. [5]Kim B, Barua A, Whinston A B. Virtual field experiments for a digital economy: a new research methodology for exploring an information economy[J]. Decision Support Systems,2002,32(3):215-231. [6]Bo C. The Digital Economy: what is new and what is not?[J]. Structural Change and Economic Dynamics,2004,15(3):245-264. [7]Rujoiu O I. The Digital Economy[J]. Ovidius University Annals, Economic Sciences Series,2019,19(1):299-302. [8]Commission E. DESI 2015. Digital Economy and Society Index. Methodological note[J]. European Commission,2015. [9]OECD. OECD Digital Economy Outlook 2015[M]. Pairs: OECD Publishing,2015. [10]Corrocher N, Ordanini A. Measuring the digital divide: A framework for the analysis of cross-country differences[J]. Journal of Information Technology,2002,17(1):9-19. [11]Myovella G, Karacuka M, Haucap J. Digitalization and economic growth: A comparative analysis of Sub-Saharan Africa and OECD economies[J]. Telecommunications Policy,2019,44(2):101856. [12]迈克尔·波特.国家竞争优势[M].华夏出版社,2002. [13]Poon S. Beyong the global production networks: a case of further upgrading of Taiwans information technology industry[J]. International Journal of Technology &Globalisation. 2004,(1):130-144. [14]Calvo A G. Industrial Upgrading in Mixed Market Economies: The Spanish Case[J]. Social Science Electronic Publishing,2014. [15]Fernandes A, Paunov C. Foreign direct investment in services and manufacturing productivity: Evidence for Chile[J]. Journal of Development Economics,2011,97(2). [16]Drucker J. Industrial Structure and the Sources of Agglomeration Economies: Evidence from Manufacturing Plant Production[J]. Growth and Change,2013,44(1):54-91. [17]Lee D. Role of R&D in the Productivity Growth of Korean Industries: Technology Gap and Business Cycle[J]. Journal of Asian Economics,2016,45:31-45. [18]Autor D, Dorn D. The growth of low skill service jobs and the polarizationof the US labor market[J]. Nber Working Papers,2013,103(5):1553-1597. [19]Rubashkina Y, Galeotti M, Verdolini E. Environmental regulation and competitiveness: Empirical evidence on the Porter Hypothesis from European manufacturing sectors[J]. Energy Policy,2015,83:288-300. [20]Gong M, You Z, Wang L, et al. Environmental Regulation, Trade Comparative Advantage, and the Manufacturing Industry's Green Transformation and Upgrading[J]. International Journal of Environmental Research and Public Health,2020,17(8):2823. [21]Nahm J, Steinfeld E S. Scale-up Nation: China's Specialization in Innovative Manufacturing[J]. World Development,2014,54:288-300. [22]Woo C, Chung Y, Chun D, et al. Impact of Green Innovation on Labor Productivity and its Determinants: an Analysis of the Korean Manufacturing Industry[J]. Business Strategy and the Environment,2014,23(8). [23]Russu C. Structural Changes Produced in the Romanian Manufacturing Industry in the Last Two Decades[J]. Procedia Economics & Finance,2015,22. [24]MD Giudice. Discovering the Internet of Things (IoT) within the business process management[J]. Business Process Management Journal,2016,22(2):263-270. [25]Caputo A, Marzi G, Pellegrini M M. The internet of things in manufacturing innovation processes: development and application of a conceptual framework[J]. Business process management journal,2016,22(2):383-402. [26]Stephen Ezell. Why Manufacturing Digitalization Matters and How Countries are Supporting It[J]. Information Technology and Innovation Foundation,2018,11(17). [27]Elias Hans Dener Ribeiro da Silva, Angelis J, Lima E. In pursuit of Digital Manufacturing[J]. Procedia Manufacturing,2019. [28]Miyazaki S, Idota H, Miyoshi H. Corporate productivity and the stages of ICT development[J]. Information Technology & Management,2012,13(1):17-26. [29]Karishma B, Dirk Willem te Velde. How to Grow Manufacturing and Create Jobs in a Digital Economy 10 Policy Priorities for Kenya[J]. Supporting Economic Transformation (SET) Programme,2018,11:41-43. [30]何枭吟.数字经济与信息经济、网络经济和知识经济的内涵比较[J].时代金融,2011(29):47. [31]逄健,朱欣民.国外数字经济发展趋势与数字经济国家发展战略[J].科技进步与对策,2013,30 (08):124-128. [32]关会娟,许宪春,张美慧,郁霞.中国数字经济产业统计分类问题研究[J].统计研究,2020,37(12): 3-16. [33]二十国集团数字经济发展与合作倡议[EB/OL]. http://www.g20chn.org/hywj/dncgwj/201609/t20160920_3474.html [34]张雪玲,焦月霞.中国数字经济发展指数及其应用初探[J].浙江社会科学,2017(04):32-40+157. [35]许宪春,张美慧.中国数字经济规模测算研究——基于国际比较的视角[J].中国工业经济,2020(05):23-41. [36]王军,朱杰,罗茜.中国数字经济发展水平及演变测度[J].数量经济技术经济研究,2021,38(07): 26-42. [37]王瑞荣,陈晓华.数字经济助推制造业高质量发展的动力机制与实证检验——来自浙江的考察[J].系统工程,2022,40(01):1-13. [38]纪玉俊,张彦彦.互联网+背景下的制造业升级:机理及测度[J].中国科技论坛,2017(03):50-57. [39]阳立高,龚世豪,王铂,晁自胜.人力资本、技术进步与制造业升级[J].中国软科学,2018(01):138-148. [40]傅元海,叶祥松,王展祥.制造业结构变迁与经济增长效率提高[J].经济研究,2016,51(08):86-100. [41]马洪福,郝寿义.产业转型升级水平测度及其对劳动生产率的影响——以长江中游城市群26个城市为例[J].经济地理,2017,37(10):116-125. [42]黄赜琳,秦淑悦,张雨朦.数字经济如何驱动制造业升级[J].经济管理,2022,44(04):80-97. [43]阳立高,谢锐,贺正楚,韩峰,孙玉磊.劳动力成本上升对制造业结构升级的影响研究——基于中国制造业细分行业数据的实证分析[J].中国软科学,2014(12):136-147. [44]石喜爱,季良玉,程中华.“互联网+”对中国制造业转型升级影响的实证研究——中国2003- 2014年省级面板数据检验[J].科技进步与对策,2017,34(22):64-71. [45]段敏芳,田秉鑫.制造业升级监测指标体系探讨[J].中南民族大学学报(人文社会科学版),2017, 37(03):135-140. [46]潘为华,潘红玉,陈亮,贺正楚.中国制造业转型升级发展的评价指标体系及综合指数[J].科学决策,2019(09):28-48. [47]罗序斌,黄亮.中国制造业高质量转型升级水平测度与省际比较——基于“四化”并进视角[J].经济问题,2020(12):43-52. [48]潘红玉,刘亚茹.房价、金融发展与制造业产业结构升级——基于动态面板的经验分析[J].财经理论与实践,2019,40(01):123-128. [49]高新雨,王叶军.财政性支出与城市制造业集聚——基于新经济地理学视角的解释与证据[J].南开经济研究,2019(01):66-81. [50]韩振国,杨盈颖.财政支出对制造业结构优化的影响效应[J].首都经济贸易大学学报,2018,20 (05):69-77. [51]杨祖义.FDI对制造业产业结构影响的Sys-GMM分析——基于省级行业动态面板数据[J].宏观经济研究,2018(08):85-93+149. [52]韩民春,袁瀚坤.生产性服务业与制造业融合对制造业升级的影响研究——基于跨国面板的分析[J].经济问题探索,2020(12):150-161. [53]韩峰,阳立高.生产性服务业集聚如何影响制造业结构升级?——一个集聚经济与熊彼特内生增长理论的综合框架[J].管理世界,2020,36(02):72-94+219. [54]朱东波.环境规制、技术创新与中国工业结构绿色转型[J].工业技术经济,2020,39(10):57-64. [55]江小国,张婷婷.环境规制对中国制造业结构优化的影响——技术创新的中介效应[J].科技进步与对策,2019,36(07):68-77. [56]刘建国,吴继煜.人口老龄化、技术创新与制造业结构升级——基于动态面板与门槛效应模型[J].河南师范大学学报(哲学社会科学版),2021,48(05):60-66. [57]何冬梅,刘鹏.人口老龄化、制造业转型升级与经济高质量发展——基于中介效应模型[J].经济与管理研究,2020,41(01):3-20. [58]江鹃,杨华峰,阳立高,于金柳,龚世豪,李永奇.劳动力结构变化影响制造业结构升级的实证研究[J].科学决策,2018(08):73-94. [59]阳立高,李永奇,韩峰,龚世豪.人力资本积累影响制造业结构升级的实证研究[J].科学决策,2018(03):1-15. [60]原毅军,陈喆.环境规制、绿色技术创新与中国制造业转型升级[J].科学学研究,2019,37(10):1902-1911. [61]王德辉,吴子昂.数字经济促进我国制造业转型升级的机制与对策研究[J].长白学刊,2020(06):92-99. [62]焦勇.数字经济赋能制造业转型:从价值重塑到价值创造[J].经济学家,2020(06):87-94. [63]李春发,李冬冬,周驰.数字经济驱动制造业转型升级的作用机理——基于产业链视角的分析[J].商业研究,2020(02):73-82. [64]吕明元,苗效东.大数据能促进中国制造业结构优化吗?[J].云南财经大学学报,2020,36(03):31-42. [65]李馥伊.中国制造业及其在数字经济时代的治理与升级[D].对外经济贸易大学,2018. [66]沈运红,黄桁.数字经济水平对制造业产业结构优化升级的影响研究——基于浙江省2008-2017年面板数据[J].科技管理研究,2020,40(03):147-154. [67]陈晓峰.数字经济发展对我国制造业升级的影响——基于省际面板数据的经验考察[J].南通大学学报(社会科学版),2022,38(03):128-140. [68]宋晓玲,李金叶.政府创新偏好、创新要素流动与制造业升级[J].科技进步与对策,2022,39(19):39-48. [69]宋佳,张金昌.数字金融与制造业企业高质量发展的内在联系及作用机制[J].企业经济,2022,41(07):127-138. [70]韩先锋,刘娟,李勃昕.“互联网+”驱动区域创新效率的异质动态效应研究[J].管理学报,2020, 17(05):715-724. [71]Kotarba M. Digital Transformation of Business Models[J]. Foundations of Management, 2018,10(1):123-142. [72]祁怀锦,曹修琴,刘艳霞.数字经济对公司治理的影响——基于信息不对称和管理者非理性行为视角[J].改革,2020(04):50-64. [73]戚聿东,肖旭.数字经济时代的企业管理变革[J].管理世界,2020,36(06):135-152+250. [74]郑琼洁,王高凤.人工智能技术应用与中国制造业企业生产率——兼对“生产率悖论”的再检验[J].学习与实践,2021(11):59-69. [75]陶长琪,周璇.产业融合下的产业结构优化升级效应分析——基于信息产业与制造业耦联的实证研究[J].产业经济研究,2015(03):21-31+110. [76]韩璐,陈松,梁玲玲.数字经济、创新环境与城市创新能力[J].科研管理,2021,42(04):35-45. [77]李颖,贺俊.数字经济赋能制造业产业创新研究[J].经济体制改革,2022(02):101-106. [78]杨毅,于倩.数字经济能否成为中国制造业高质量发展的新动能?——基于技术创新与管理效率效应视角[J].哈尔滨商业大学学报(社会科学版),2023(02):3-18. [79]陈斌开,马燕来.数字经济对发展中国家与发达国家劳动力市场的不同影响——技能替代视角的分析[J].北京交通大学学报(社会科学版),2021,20(02):1-12. [80]惠宁,杨昕.数字经济驱动与中国制造业高质量发展[J].陕西师范大学学报(哲学社会科学版),2022,51(01):133-147. [81]李史恒,屈小娥.数字经济赋能制造业高质量发展:理论机制与实证检验[J].经济问题探索,2022(10):105-117. [82]王娟.数字经济驱动经济高质量发展:要素配置和战略选择[J].宁夏社会科学,2019(05):88-94. [83]宁朝山.数字经济、要素市场化与经济高质量发展[J].长白学刊,2021(01):114-120. [84]柳志娣,张骁.互联网发展、市场化水平与中国产业结构转型升级[J].经济与管理研究,2021,42(12):22-34. [85]吉亚辉,杨膨宇,尹昱霖.智能化对制造业结构优化升级的影响研究[J].价格理论与实践,2021 (08):150-153+187. [86]郭炳南,王宇,张浩.数字经济、绿色技术创新与产业结构升级——来自中国282个城市的经验证据[J].兰州学刊,2022(02):58-73. [87]刘鑫鑫,惠宁.互联网、技术创新与制造业高质量发展——基于创新模式的异质效应分析[J].经济问题探索,2021(09):143-155. [88]梁琦,肖素萍,李梦欣.数字经济发展、空间外溢与区域创新质量提升——兼论市场化的门槛效应[J].上海经济研究,2021(09):44-56. [89]吴磊,贾晓燕,吴超,彭甲超.异质型环境规制对中国绿色全要素生产率的影响[J].中国人口·资源与环境,2020,30(10):82-92. [90]刘鑫鑫,惠宁.数字经济对中国制造业高质量发展的影响研究[J].经济体制改革,2021(05):92-98. [91]韦庄禹,李毅婷,武可栋.数字经济能否促进制造业高质量发展?——基于省际面板数据的实证分析[J].武汉金融,2021(03):37-45. [92]许冰,聂云霞.制造业高质量发展指标体系构建与评价研究[J].技术经济与管理研究,2021(09):119-123. [93]温忠麟,叶宝娟.中介效应分析:方法和模型发展[J].心理科学进展,2014,22(05):731-745. [94]窦大鹏,匡增杰.制造业服务化与全球价值链位置提升——基于制造业企业的分析[J].国际商务研究,2022,13(01):46-58. [95]余世勇,朱咸永,张琦雯.区域市场分割对中国制造业全要素生产率的影响[J].西南大学学报(社会科学版),2022,48(04):109-120. [96]王小鲁,樊纲,余静文.中国分省份市场化指数报告(2016)[M].北京,社会科学文献出版社,2017. [97]胡艳,王艺源,唐睿.数字经济对产业结构升级的影响[J].统计与决策,2021,37(17):15-19. [98]妥燕方,孔令池.中国产业转移的技术升级效应[J].山西财经大学学报,2023,45(02):73-86. [99]蔡延泽,龚新蜀,靳媚.数字经济、创新环境与制造业转型升级[J].统计与决策,2021,37(17):20-24. [100]左鹏飞,姜奇平,陈静.互联网发展、城镇化与我国产业结构转型升级[J].数量经济技术经济研究,2020,37(07):71-91. [101]杜传忠,孙兴隆.基础研究对我国高技术制造业竞争力提升的影响机制和效应分析[J].经济纵横,2022(09):64-76. [102]王鹏,郭彦晗,李彦.互联网发展对区域产业结构转型升级的影响——基于中介效应的研究[J].工业技术经济,2020,39(10):135-144. [103]徐翔燕,马国勇.数字经济、环境规制与产业转型[J].统计与决策,2023,39(05):119-124. [104]赵涛,张智,梁上坤.数字经济、创业活跃度与高质量发展——来自中国城市的经验证据[J].管理世界,2020,36(10):65-76. [105]肖远飞,姜瑶.数字经济对工业绿色生产效率的影响研究[J].现代管理科学,2021(08):100-109.
﹀
|
中图分类号: |
F424
|
开放日期: |
2023-12-22
|