- 无标题文档
查看论文信息

题名:

 大倾角煤层伪俯斜采场复合底板破坏机理    

作者:

 张波    

学号:

 22203077039    

保密级别:

 保密(3年后开放)    

语种:

 chi    

学科代码:

 0819    

学科:

 工学 - 矿业工程    

学生类型:

 硕士    

学位:

 工学硕士    

学位年度:

 2025    

学校:

 西安科技大学    

院系:

 能源与矿业工程学院    

专业:

 矿业工程    

研究方向:

 矿山压力与岩层控制    

导师姓名:

 解盘石    

导师单位:

 西安科技大学    

提交日期:

 2025-06-15    

答辩日期:

 2025-06-03    

外文题名:

 Failure mechanism of composite floor in long-wall pseudo-inclined stope of large dip angle coal seam    

关键词:

 大倾角煤层 ; 伪俯斜采场 ; 复合底板 ; 屈曲破坏 ; 注浆加固    

外文关键词:

 steeply dipping coal seam ; pitching oblique mining area ; composite soft bottom ; buckling collapse ; grouting reinforcement    

摘要:

开采大倾角煤层时对底板的稳定性控制是确保“支架-围岩”稳定的基础,特别是大倾角工作面复合底板,开采过程极易发生滑移破坏、支架倾倒下滑等问题。因此,深入研究大倾角煤层长壁伪俯斜采场复合底板破坏机理对促进类似矿井安全开采具有一定的理论及工程意义。

本文以四川太平煤矿3121-22工作面为工程背景,采用物理相似模拟实验、数值模拟、理论分析及工程实践相结合的研究方法,对大倾角伪俯斜采场复合底板变形破坏机理进行了系统研究,结果表明:

(1)3121-22工作面开采过程中,在开采卸荷及倾斜上部岩体推力作用下,倾斜下部软岩底板膨胀底臌产生离层,软煤底板变得破碎,加剧软岩底板底臌,达到极限时软岩底板破断且无法形成支撑结构而滑移,滑移范围向上蔓延,最大破坏滑移长度为59.4 m。裂隙逐渐向硬岩底板扩展,倾斜中下部底板位移量及破坏深度大于倾斜上部,采空区底板应力由倾斜下部向倾斜上部逐渐递减。

(2)随工作面伪斜角增大,底板应力、位移极值与塑性区范围逐渐减小,峰值与最大塑性破坏位置逐渐向“平行四边形”采空区“钝角”处偏移。初采阶段软岩和软煤底板卸荷量、位移量和塑性破坏范围均大于硬岩底板,随推进距离增加差异越明显。软煤底板先产生塑性破坏,增加了软岩底板破坏程度,造成工作面倾斜中下部软岩底板位移量最大,形成沿走向呈对称型、沿倾向呈下大上小的非对称型破坏范围。

(3)通过构建大倾角长壁复合底板沿走向和沿倾向的力学模型,基于底板破坏判据得出破坏主要发生在采空区内,破坏程度为软岩与软煤底板大于硬岩底板,最大破坏位置位于软岩底板倾斜中下部区域。揭示了底板屈曲破坏机理,得出底板稳定-失稳状态与煤层倾角、工作面长度、底板层厚、冒落矸石充填效应和底板岩层物理力学属性等因素相关关系,计算出底板极限破坏滑移长度为58.8 m。

(4)现场实践表明,未采取措施时各区域支架均出现阻力降低现象,频率为倾斜中部最多、下部次之、上部最少。结合实验所得底板最大破坏滑移长度,提出对倾斜中下部距运输巷斜距60 m范围内复合底板采用浅孔与深孔联合注浆加固,倾斜上部增加支架初撑力的分区控制措施。各区域支架阻力增幅明显,支架让压次数显著减小且趋势变得平稳,底板稳定性得到有效控制。

外文摘要:

The stability control of the floor is the basis to ensure the stability of the ' support-surrounding rock ' when mining the steeply inclined coal seam, especially the composite floor of the steeply inclined working face. During the mining process, problems such as slip failure and support toppling and sliding are prone to occur. Therefore, it is of theoretical and engineering significance to study the failure mechanism of composite floor in longwall pseudo-inclined stope of large dip angle coal seam to promote the safe mining of similar mines.

In this paper, the 3121-22 working face of Taiping Coal Mine in Sichuan Province is taken as the engineering background. The deformation and failure mechanism of composite floor in large dip angle pseudo-inclined stope is systematically studied by means of physical similarity simulation experiment, numerical simulation, theoretical analysis and engineering practice. The results show that the deformation and failure mechanism of composite floor in large dip angle pseudo-inclined stope is studied:

(1) During the mining process of the 3121-22 working face, under the action of mining unloading and the thrust of the inclined upper rock mass, the expansion floor heave of the inclined lower soft rock floor produces separation, the soft coal floor becomes broken, and the floor heave of the soft rock floor is aggravated. When the limit is reached, the soft rock floor is broken and the support structure cannot be formed and slipped. The slip range spreads upward, and the maximum failure slip length is 59.4 m. The fracture gradually extends to the hard rock floor. The displacement and failure depth of the floor in the middle and lower part of the inclination are greater than those in the upper part of the inclination. The stress of the floor in the goaf gradually decreases from the lower part of the inclination to the upper part of the inclination.

(2) With the increase of the pseudo-oblique angle of the working face, the extreme value of the floor stress and displacement and the range of the plastic zone gradually decrease, and the peak value and the maximum plastic failure position gradually shift to the ' obtuse angle ' of the ' parallelogram ' goaf. In the initial mining stage, the unloading amount, displacement and plastic failure range of soft rock and soft coal floor are larger than those of hard rock floor, and the difference is more obvious with the increase of advancing distance. The plastic failure of the soft coal floor first occurs, which increases the damage degree of the soft rock floor, resulting in the maximum displacement of the soft rock floor in the middle and lower part of the inclined working face, forming an asymmetric failure range with symmetrical along the strike and large in the lower and small in the upper along the tendency.

(3) By constructing the mechanical model of the large inclined long-wall composite floor along the strike and along the tendency, based on the floor failure criterion, it is concluded that the damage mainly occurs in the goaf, the damage degree is that the soft rock and soft coal floor is greater than the hard rock floor, and the maximum damage position is located in the middle and lower part of the soft rock floor. The mechanism of floor buckling failure is revealed, and the relationship between the stability-instability state of floor and the dip angle of coal seam, the length of working face, the thickness of floor, the filling effect of caving gangue and the physical and mechanical properties of floor strata is obtained. The ultimate failure slip length of floor is calculated to be 58.8 m.

(4) The field practice shows that when no measures are taken, the resistance of the supports in each area is reduced, and the frequency is the most in the middle of the inclination, the second in the lower part and the least in the upper part. Combined with the maximum failure slip length of the floor obtained from the experiment, it is proposed that the composite floor in the range of 60 m from the inclined middle and lower parts of the transportation roadway should be strengthened by shallow hole and deep hole combined grouting, and the upper part of the inclined part should be strengthened by the support setting force. The support resistance in each area increased significantly, the number of support yielding times decreased significantly and the trend became stable, and the stability of the bottom plate was effectively controlled.

参考文献:

[1] 伍永平, 郎丁, 贠东风, 等. 我国大倾角煤层开采技术变革与展望[J]. 煤炭科学技术, 2024, 52 (01): 25-51.

[2] 伍永平,贠东风,解盘石, 等. 大倾角煤层长壁综采: 进展、实践、科学问题[J]. 煤炭学报, 2020, 45 (01): 24-34.

[3] 伍永平,刘孔智,贠东风, 等. 大倾角煤层安全高效开采技术研究进展[J]. 煤炭学报, 2014, 39 (08): 1611-1618.

[4] Bondarenko, Yu. V, Makeev, A. Yu, Zhurek, P. Klega, L. Technology of coal extraction from steep seam in the Ostrava-Karvina basin[J]. UgolUkrainy. 1993, (3): 45-48.

[5] Aksenov, V. V, Lukashev, G. E. Design of universal equipment set for working steep seams[J]. Ugol. 1993, (4): 5-9.

[6] Kulakov, V. N. Geomechanical conditions of mining steep coal beds[J]. Journal of Mining Science, 1995, (7): 136-143.

[7] Proyavkin, E. T. New nontraditional technology of working thin and steep coal seams. Ugol Ukrainy. 1993, (3): 2-4.

[8] PROYAVKIN E T. New nontraditional technology of working thin and steep coal seams[J]. Ugol Ukrainy, 1993, 3; 2−4.

[9] Aksenov, V.V, Lukashev,G.E. Design of universal equipment set for working steepseams.Ugol[J]. 1993,(4):5-9.

[10] Mrig, G. C; Sinha, A. N. Proposing a new method for thick, steep and gassy XV seam of Sudamdih. International symposium on thick seam mining: problem and issues(ISTS'92),1992.445-456.

[11] Mathur, R.B. Jain, D.K. Prasa, B. Extraction of thick and steep coal seams-a global overview.[A]. 4th Asian mining, Exploration, exploitation, environment. 1993:475-488.

[12] 杜计平, 孟宪瑞. 采矿学[M]. 徐州: 中国矿业大学出版社, 2014.

[13] 楼建国, 李维光. 四川矿区大倾角薄及中厚煤层高效采煤方法[J].煤炭科学技术,2003(09):1-4.

[14] 华亭矿物局东峡煤矿大倾角特厚易燃煤层群“双大”开采方法研究[R]. 兰州: 华亭矿务局东峡煤矿, 西安:西安科技学院,2001.10.

[15] 窑街三矿大倾角坚硬厚煤层顶煤弱化及合理回采参数研究[R]. 兰州: 窑街煤电有限公司,西安:西安科技学院,2000.09.

[16] 鲁庆明,孙立亚.大倾角大采高高档普采工艺技术[J].矿山压力与顶板管理,2000:(3 ):24-25.

[17] 伍永平,贠东风,周邦远等. 绿水洞煤矿大倾角煤层综采技术研究与应用[J]. 煤炭科学技术, 2001.

[18] 王家山煤矿大倾角特厚煤层综采放顶煤技术研究[R]. 兰州:靖远煤业集团公司王家山煤矿,西安:西安科技学院能源学院,2003.

[19] 东峡煤矿大倾角特厚易燃煤层群综采“小放高”放顶煤技术研究[R]. 兰州:华亭煤业集团公司东峡煤矿,西安;西安科技大学,2004.

[20] 急倾斜薄及中厚煤层长壁综采“支架-围岩”系统稳定性控制[R]. 重庆:能投集团逢春煤矿,西安:西安科技大学,2020.

[21] 伍永平,武会杰,王红伟,等. 大倾角煤层伪仰斜综放工作面变角度布置方法研究[J]. 煤炭技术, 2017, 36 (11): 1-4.

[22] 池小楼. 大倾角软煤层分层综采再生顶板力学特性与围岩稳定控制[D]. 安徽理工大学, 2021.

[23] 高喜才,伍永平,曹沛沛,等. 大倾角煤层变角度综放工作面开采覆岩运移规律[J]. 采矿与安全工程学报, 2016, 33 (03): 381-386.

[24] 朱现磊,杨仁树,蔡志炯,等. 大倾角松软煤层综放开采矿压显现规律研究[J]. 煤炭科学技术, 2014, 42 (05): 25-28.

[25] 杨科,陆伟,潘桂如,等. 复杂条件大倾角大采高旋转综采矿压显现规律及其控制[J]. 采矿与安全工程学报, 2015, 32 (02): 199-205.

[26] 伍永平,杨玉冰,王同等. 大倾角走向长壁伪俯斜采场支架稳定性分析[J]. 煤炭科学技术, 2022, 50 (01): 60-69.

[27] 贠东风,任奉天,伍永平等. 大倾角软煤大采高综采工作面伪斜布置[J]. 煤矿安全, 2018, 49 (11): 145-149.

[28] 解盘石,田双奇,段建杰. 大倾角伪俯斜采场顶板运移规律实验研究[J].煤炭学报, 2019, 44(10): 2974-2982.

[29] Xie, Panshi. Zhang, Yingyi. et al. Experimental study on the roof behaviors in pitching oblique longwall mining area of steeply dipping seam. Proceedings of the 39th International Conference on Ground Control in Mining, ICGCM 2020, p 327-336.

[30] 解盘石,张颖异,伍永平等. 大倾角中厚煤层伪俯斜采场顶板破断及其充填实验研究[J]. 采矿与安全工程学报, 2023, 40 (03): 534-542.

[31] 王红伟,蒋宝林,闫壮壮等. 大倾角伪俯斜工作面下端头支护阻力研究[J]. 西安科技大学学报, 2023, 43 (01): 28-36.

[32] 吴占有. 大倾角伪俯斜分层长壁采煤法矿压显现[J]. 河北煤炭, 1993, (04): 219-222.

[33] 李维光, 楼建国. 采高对大倾角俯伪斜走向长壁采面矿压显现的影响[J]. 矿山压力与顶板管理, 2003, (01): 78-80.

[34] 李维光. 采面形状对大倾角煤层采面矿压显现的影响[J]. 矿山压力与顶板管理, 2002, (04): 99-101.

[35] 张益东, 程敬义, 王晓溪, 等. 大倾角仰(俯)采采场顶板破断的薄板模型分析[J]. 采矿与安全工程学报, 2010, 27 (04): 487-493.

[36] 施峰, 王宏图, 范晓刚, 等. 俯伪斜采煤法基本顶破断的力学分析[J]. 煤炭学报, 2013, 38 (06): 1001-1005.

[37] 潘瑞凯, 曹树刚,沈大富, 等. 俯伪斜开采采场顶板破断模型与工程实测研究[J]. 采矿与安全工程学报, 2017, 34 (04): 637-643.

[38] 李浩, 胡国忠, 王宏图, 等. 俯伪斜走向分段采煤法在急倾极薄煤层中应用[J]. 煤炭科学技术, 2010, 38 (04): 6-8+34.

[39] 董宝良. 急倾斜煤层俯伪斜走向分段密集采煤法应用[J]. 现代矿业, 2011, 27 (08): 78-79.

[40] 钟方洪. 急倾斜煤层俯伪斜走向分段密集采煤法应用[J]. 冶金与材料, 2019, 39 (03): 23-24.

[41] 赵麒麟, 王灿华, 符明华, 等. 大倾角煤层俯伪斜综采技术研究[J]. 煤炭科学技术, 2016, 44 (S1): 19-20+23.

[42] 王晓楼. 大倾角煤层俯伪斜综采技术研究 [J]. 矿业装备, 2018, (02): 32-33.

[43] 杨胜利, 赵斌, 李良晖.急倾斜煤层伪俯斜走向长壁工作面煤壁破坏机理[J].煤炭学报,2019,44(2) : 367-376.

[44] 屠洪盛, 屠世浩, 陈芳, 等. 基于薄板理论的急倾斜工作面顶板初次变形破断特征研究[J]. 采矿与安全工程学报, 2014,31(01):49-54+59.

[45] 房局. 急倾斜俯伪斜采场顶板破断特征及矿压规律研究[D]. 重庆大学,2018.

[46] (美)ZT·比尼斯基教授著;孙恒虎等译.矿业工程岩层控制[M].徐州市:中国矿业大学出版社,1990.

[47] Peng S S. Coal Mine Ground Control, third edition [M]. Peng SS publisher, West Virginia University, 2008.

[48] Maleki, Stewart, Stone, et al. Analysis of sudden floor heave in deep western[J].U.S.mines SME Annual Meeting and Exhibit and CMA's 1llth National Western Mining Conference 2009.2009,01: 54-62.

[49] Mo Sungsoon, Sheffield Patrycja, Corbett Peter, et al. A numerical investigation into floor buckling mechanisms in underground coal mine roadways[J]. Tunnelling and Underground Space Technology.2020,103,103497.

[50] J. A. Nemcik, B. Indraratna, W, Gale. Floor failure analysis at a longwall mining face based on the multiple sliding block model[J]. Geotechnical and Geological Engineering,2000,18(3).

[51] Sajjad Aghababaei, Gholamreza Saeedi, Hossein Jalalifar. Risk Analysis and Prediction of Floor Failure Mechanisms at Longwall Face in Parvadeh-I Coal Mine using Rock Engineering System(RES) [J]|. Rock Mechanics and Rock Engineering,2016,49(5).

[52] 石平五,刘晋安,周宏伟. 大倾角煤层底板破坏滑移机理[J]. 矿山压力与顶板管理, 1993, (Z1): 115-119.

[53] 伍永平,郭峰. 大倾角大采高工作面底板破坏滑移特征分析[J]. 煤炭技术, 2014, 33 (09): 160-162.

[54] 罗生虎,伍永平,王红伟等. 大倾角煤层长壁开采底板非对称破坏形态与滑移特征[J]. 煤炭学报, 2018, 43 (08): 2155-2161.

[55] 柴敬,兰浩,马晨阳,等. 保护层开采下伏煤岩应力释放与卸压程度识别 [J/OL]. 煤炭学报, 1-13[2025-03-16].

[56] 柴敬,刘永亮,王梓旭,等. 保护层开采下伏煤岩卸压效应及其光纤监测 [J]. 煤炭学报, 2022, 47 (08): 2896-2906.

[57] 胡文,李维光,黄建功等. 大倾角煤层底板岩层运动规律与采面底板分类[J]. 矿山压力与顶板管理, 2002, (01): 93-95.

[58] 张勇,张保,刘金凯等. 急倾斜厚煤层走向长壁开采底板破坏滑移机理[J]. 煤炭科学技术, 2013, 41 (10): 9-12.

[59] 闫少宏,张勇. 大倾角软岩底板破坏滑移机理[J]. 矿山压力与顶板管理, 1995, (01): 19-25.

[60] 张平松,凡净,吴荣新等. 大倾角煤层工作面底板岩层富水异常区探查方法研究[J]. 采矿与安全工程学报, 2015, 32 (04): 639-643.

[61] 屠洪盛,刘送永,黄昌文等. 急倾斜煤层走向长壁工作面底板破坏机理及稳定控制[J]. 采矿与安全工程学报, 2022, 39 (02): 248-254.

[62] 刘伟韬,穆殿瑞,谢祥祥等. 倾斜煤层底板采动应力分布规律及破坏特征[J]. 采矿与安全工程学报, 2018, 35 (04): 756-764.

[63] 刘伟韬,穆殿瑞,杨利等. 倾斜煤层底板破坏深度计算方法及主控因素敏感性分析[J]. 煤炭学报, 2017, 42 (04): 849-859.

[64] Wang Pengpeng, Zhao Yixin, Ren Qingshan, et al. Floor Failure Characteristics in Deep Island Longwall Panel: Theoretical Analysis and Field Verification[J]. Geofluids, 2022, 202.

[65] Yuejin Peng, Qingfeng Li. Floor failure and roadway deformation induced by contiguous coal seams mining at Huopu Mine[J]. Arabian Journal of Geosciences,2020,13(14).

[66] Dongjing Xu, Suping Peng, Shiyao Xiang, et al. The Effects of Caving of a Coal Mine's Immediate Roof on Floor Strata Failure and Water Inrush[J]. Mine Water and the Environment,2016.35(3).

[67] 孔祥勇, 杨科, 陆伟. 大倾角煤层群下行开采底板破坏机理及工程应用[J]. 地下空间与工程学报, 2015, 11 (S2): 394-400.

[68] 赵洪宝, 刘一洪, 李金雨, 等. 采动卸荷与岩层倾角对底板损伤的协同影响效应[J]. 中国矿业大学学报, 2022, 51 (06): 1056-1068.

[69] Yunhai C, Jinchao B, Yankun M, et al. Control Mechanism of Rock Burst in the Floor of Roadway Driven along Next Goaf in Thick Coal Seam with Large Obliquity Angle in Deep Well [J]. Shock and Vibration, 2015, 2015 1-10.

[70] Cui Z, Chanda E, Zhao J, et al. Stress distribution characteristics in the vicinity of coal seam floor [J]. IOP Conference Series: Earth and Environmental Science, 2018, 108 (3): 032056-032056.

[71] Liu W, Du Y, Liu Y , et al. Failure Characteristics of Floor Mining-Induced Damage Under Deep Different Dip Angles of Coal Seam [J]. Geotechnical and Geological Engineering, 2019, 37 (2): 985-994.

[72] Jianlin L, Mengjiao Z, Xinyi W , et al. Prediction of destroyed coal floor depth based on improved vulnerability index method [J]. Arabian Journal of Geosciences, 2022, 15 (2):

[73] Jiazhen L, Zhengyi T, Feng Z, et al. Research on failure characteristics of goaf floor in the inclined coal seam based on the fracture mechanics [J]. SN Applied Sciences, 2020, 2 (12):

[74] 孙建, 王连国, 唐芙蓉, 等. 倾斜煤层底板破坏特征的微震监测[J]. 岩土力学, 2011, 32 (05): 1589-1595.

[75] 孙建. 倾斜煤层底板破坏特征及突水机理研究[D]. 中国矿业大学, 2011.

[76] 孙建. 沿煤层倾斜方向底板“三区”破坏特征分析[J]. 采矿与安全工程学报, 2014, 31 (01): 115-121.

[77] Wenxiang C, Honglin L, Yinjian H, et al. Similarity Simulation on the Movement Characteristics of Surrounding Rock and Floor Stress Distribution for Large-Dip Coal Seam [J]. Sensors, 2022, 22 (7): 2761-2761.

[78] 蒋力帅, 武泉森, 李小裕, 等. 采动应力与采空区压实承载耦合分析方法研究[J]. 煤炭学报, 2017, 42 (08): 1951-1959.

[79] 张广超, 陶广哲, 曹志国, 等. 考虑垮落岩体应变硬化特性的采场覆岩破坏特征研究 [J]. 煤炭科学技术, 2022, 50 (03): 46-52.

[80] 陈定超, 王襄禹, 吴帅, 等. 柔模混凝土墙沿空留巷围岩稳定机理及控制技术研究(英文)[J]. Journal of Central South University, 2023, 30 (09): 2966-2982.

[81] 罗生虎, 王同, 伍永平, 等. 大倾角煤层群长壁开采承载拱与间隔岩层采动应力演化特征[J]. 煤炭学报, 2023, 48 (02): 551-562.

[82] 朱晔, 杨科, 李永亮, 等. 不同煤柱尺寸条件下采动巷道层状底板稳定性分析与控制对策[J]. 采矿与安全工程学报, 2023, 40 (03): 467-479.

[83] 宋文成, 梁正召, 赵春波. 承压水上开采沿工作面倾向底板力学破坏特征[J]. 岩石力学与工程学报, 2018, 37 (09): 2131-2143.

[84] 肖远. 用岩层梁代替岩层板分析顺层岩体边坡结构变形破坏的条件[C]. 第二届全国工程地质力学青年学术讨论会论文集. 北京: 地震出版社, 1992.

[85] 杨治林. 顺层边坡岩体结构的模态幅值研究[J]. 岩土力学, 2003, 24 (5): 764-770.

[86] 杨治林. 顺层边坡岩体结构的不稳定性态研究[J]. 岩土工程学报, 2010, 32(2): 1888-1891.

中图分类号:

 TD327.3    

开放日期:

 2028-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式