- 无标题文档
查看论文信息

论文中文题名:

 多制式矿用微带天线研究与设计    

姓名:

 张志文    

学号:

 20207035001    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0809    

学科名称:

 工学 - 电子科学与技术(可授工学、理学学位)    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 电子科学与技术    

研究方向:

 天线设计    

第一导师姓名:

 徐艳红    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-15    

论文答辩日期:

 2023-06-04    

论文外文题名:

 Design method of multi-systenm microstrip antenna for mine    

论文中文关键词:

 多频段 ; 煤矿通信 ; GSM ; 4G ; 5G NR    

论文外文关键词:

 multi-band ; coal mine communication ; GSM ; 4G ; 5G NR    

论文中文摘要:

随着信息化、数字化、智能化技术的快速发展,传统的矿山行业借助着相关技术逐步地转型和变革。但煤矿通信系统中的天线大多只能在单个频段内通信,在完成多个频段通信时,则需要多个天线,而多制式矿用天线实现一个天线可以在多个不相连的频段工作,大大减少天线的使用数量和在通信系统中占用的体积。在此背景下,本文在微带单极子天线的基础上,设计研究了可多频段工作、结构简单且辐射性能良好的多制式矿用微带天线,具体的工作内容如下:

(1)设计并加工测试了两款矿用WiFi/WiMAX/5G NR三频的微带天线,两款天线均采用厚度为0.8mm,材质为价格低廉的FR4的介质基板,第一款天线是以微带单极子天线为基础,通过加载一个矩形枝节和两个L型枝节,使得天线分别在2.5GHz、3.5GHz和4.8GHz产生谐振频率,从而满足设计目的。其中,第二款天线采用了S型、C型和倒L型枝节,充分利用了天线的表面空间,减小了枝节的纵向长度,使得天线变得更加紧凑同时,使得天线满足在WiFi/WiMAX/5G NR频段内通信的需求,且两款天线在工作频段内仿真和实测增益以及整体辐射性能表现良好。

(2)设计并加工测试了三款矿用WiFi/WiMAX/4G/5G NR三频的微带天线,三款天线均采用厚度为0.8mm,材质为FR4的介质基板。三款天线都是在矿用WiFi/WiMAX/5G NR三频段的微带天线基础上,分别采用了在天线表面增加两个新的L型枝节、一个无源耦合枝节以及地板加载一个L型枝节,从而展宽天线在低频处的带宽,实现了在矿用4G全频段的通信,满足天线在矿用WiFi/WiMAX/4G/5G NR设计需求。其中,考虑到第一款天线的枝节在低频处长度较长,采用无源耦合枝节可以很好利用天线的表面空间,减小枝节的纵向长度,使得天线变得紧凑,而采取地板加载枝节的方式则可以更好的利用天线的底层空间,相对于前两款天线来说,进一步使天线的变得更加紧凑。

(3)设计并加工测试了一款矿用WiFi/WiMAX/GSM/4G/5G NR四频的微带天线,天线是在矿用WiFi/WiMAX/5G NR三频段的微带天线的基础上,采用加载了倒L形枝节和倒J型枝节的目的是为了充分利用天线的空间分布使天线的变得更加紧凑。仿真结果表明:该天线的中间、右侧和左侧枝节分别产生了2.4GHz、3.5GHz和4.8GHz的谐振点,而在地板加载的倒J型枝节和L形枝节则提供了0.9GHz和2.0GHz的谐振点,天线可工作在四个频段,分别为0.88-0.94GHz、1.86-2.71GHz、3.35-3.70GHz和4.67-5.91GHz,能够有效覆盖WiFi/WiMAX/GSM/4G/5G NR煤矿井下全部的工作频段;且天线在所需的工作频段内增益性能和整体辐射性能良好。

所设计天线具有结构简单,加工成本低,辐射性能良好等优点,为多制式矿用微带天线的研究提供了一种可行的设计方法。

论文外文摘要:

With the rapid development of information technology, digitization, and intelligence, the traditional mining industry is gradually transforming and transforming with the help of relevant technologies. However, most of the antennas used in coal mine communication systems can only communicate within a single frequency band. When completing communication across multiple frequency bands, multiple antennas are required. However, multi standard mining antennas enable one antenna to work in multiple disconnected frequency bands, greatly reducing the number of antennas used and the volume occupied in the communication system. In this context, based on microstrip monopole antennas, this thesis designs and studies a multi-standard mining microstrip antenna that can operate in multiple frequency bands, has a simple structure, and good radiation performance. The specific work content is as follows:

(1) Two mining WiFi/WiMAX/5G NR triple band microstrip antennas were designed, processed, and tested. Both antennas use a 0.8mm thick FR4 dielectric substrate, which is inexpensive. The first antenna is based on a microstrip monopole antenna. By loading a rectangular branch and two L-shaped branches, the antenna generates resonant frequencies at 2.5GHz, 3.5GHz, and 4.8GHz, respectively, to meet the design purpose. Among them, the second antenna adopts S-shaped, C-shaped, and inverted L-shaped branches, fully utilizing the surface space of the antenna, reducing the longitudinal length of the branches, making the antenna more compact. At the same time, the antenna meets the communication requirements in the WiFi/WiMAX/5G NR frequency band, and the two antennas perform well in simulation and measured gain and overall radiation performance in the operating frequency band.

(2) Three mining WiFi/WiMAX/4G/5G NR triple band microstrip antennas were designed, processed, and tested. All three antennas used a dielectric substrate with a thickness of 0.8mm and a material of FR4. The three antennas are all based on the mining WiFi/WiMAX/5G NR three band microstrip antennas. They use two new L-shaped branches added to the antenna surface, a passive coupling branch, and an L-shaped branch loaded on the floor to broaden the antenna bandwidth at low frequencies, achieving communication in the mining 4G full frequency band, and meeting the design requirements of the antenna in mining WiFi/WiMAX/4G/5G NR. Among them, considering that the branches of the first antenna have a longer length at low frequencies, using passive coupling branches can effectively utilize the surface space of the antenna, reduce the longitudinal length of the branches, and make the antenna compact. However, using floor loading branches can better utilize the bottom space of the skyline, further making the antenna more compact compared to the first two antennas.

(3) A mining WiFi/WiMAX/GSM/4G/5G NR four band microstrip antenna was designed and tested. The antenna is based on the mining WiFi/WiMAX/5G NR three band microstrip antenna, and is loaded with inverted L-shaped and inverted J-shaped branches to fully utilize the spatial distribution of the antenna and make it more compact. The simulation results show that the middle, right, and left branches of the antenna generate resonance points of 2.4GHz, 3.5GHz, and 4.8GHz, respectively, while the inverted J-shaped and L-shaped branches loaded on the floor provide resonance points of 0.9GHz and 2.0GHz. The antenna can operate in four frequency bands, namely 0.88-0.94GHz, 1.86-2.71GHz, 3.35-3.70GHz, and 4.67-5.91GHz, effectively covering all operating frequency bands of the WiFi/WiMAX/GSM/4G/5G NR coal mine underground; And the antenna has good gain performance and overall radiation performance within the required operating frequency band.

The designed antenna has the advantages of simple structure, low processing cost, and good radiation performance, providing a feasible design method for the research of multi standard mining microstrip antennas.

参考文献:

[1] 杨康,成曦,董金鑫.5G网络与WiFi6融合组网技术在智慧矿井中的应用[J].无线互联科技,2022,19(23):10-13.

[2] 霍振龙.矿井无线通信系统现状与发展趋势[J].工矿自动化,2022,48(6):1-5.1671-251x.17492.

[3] 阎东慧.矿用双极化天线的设计与应用[J].同煤科技,2019(5):17-19.14-1117.2019.05.006.

[4] 杨耀辉.无线通信终端天线多频及小型化技术研究[D].电子科技大学,2019.

[5] 刘成武,景东旭.4G+5G+Wi-Fi6融合通信系统在煤矿井下的应用[J].现代矿业,2023,39 (02):164-167.

[6] 孙继平.煤矿智能化与矿用5G[J].工矿自动化,2020,46(8):1-7.1671-251x.17648.

[7] 孙继平,张高敏.矿用5G频段选择及天线优化设置研究[J].工矿自动化,2020,46(5):1-7.1671-251x.17592.

[8] 肖清华.国内5G频谱指配分析及建议[J].移动通信,2018,42(2):1-5.

[9] 方箭,伉沛川,刘恩亚.中低频段5G系统矿用共存浅析及建议[J].信息通信技术,2019,13(4):38-43+81.

[10] 张志文,徐艳红,周梦丽.矿用多频段微带天线设计[J].工矿自动化,2022,48(7): 125-129. 1671-251x.2022040078.

[11] 阎东慧.矿用双极化天线的设计与应用[J].同煤科技,2019,No.169(5):17-19. 14-1117.2019.05.006.

[12] 郭继坤,靳宇航.煤矿井下超宽带八木微带天线的设计与测试[J].黑龙江科技大学学报,2020,30(2):172-176.

[13] 田子建,雷婧,王文清.矿用小型化单极子超宽带天线设计和性能分析[J].煤炭科学技术,2015,43(01):81-85.2015.01.020.

[14] 王婷婷,徐钊.一种矿用定向天线设计[J].工矿自动化,2016,42(2):55-57. 1671-251x.2016.02.014.

[15] Gangwar K, Chen G C Y, Chan K K M, et al. Antenna System for Communication in Underground Mining Environment to Ensure Miners Safety[J]. IEEE Access, 2021, 9: 150162-150171.

[16] Roestorff M, Odendaal J W, Joubert J. Antenna with a reactive impedance substrate for mine rescue applications[J]. Microwave and Optical Technology Letters, 2019, 61(1): 44-50.

[17] 于涵,于臻,田午子.一种用于煤矿井下无线通信的多频段微带天线的设计[J].华北科技学院学报,2019,16(4):71-76.

[18] Mandal T, Mandal P, Mondal P, et al. Design of UWB Antenna with DUAL Notch Band Using Single EBG Structure[J]. Telecommunications and Radio Engineering, 2021.

[19] Zheng X, Xu X. Design of planar ultra-wideband notch antenna[C]//2021 19th International Conference on Optical Communications and Networks (ICOCN). IEEE, 2021: 1-3.

[20] Boukarkar A, Lin X Q, Jiang Y, et al. Miniaturized single-feed multiband patch antennas[J]. IEEE Transactions on Antennas and Propagation, 2016, 65(2): 850-854.

[21] Prasanth Kumar J, Karunakar G. Compact UWB-MIMO triple notched antenna for isolation reduction[J]. Wireless Personal Communications, 2020, 115: 2113-2125.

[22] Singh M, Kumar N, Kala P, et al. A compact short ended dual band metamaterial antenna loaded with hexagonal ring resonators[J]. AEU-International Journal of Electronics and Communications, 2021, 135: 153731.

[23] Shome P P, Khan T, Laskar R H. CSRR‐loaded UWB monopole antenna with electronically tunable triple band‐notch characteristics for cognitive radio applications[J]. Microwave and Optical Technology Letters, 2020, 62(9): 2919-2929.

[24] Rajapriya S, Sulthana A K T. A design of tri-band monopole antenna with CSRR for wireless applications[C]//2020 International Conference on Inventive Computation Technologies (ICICT). IEEE, 2020: 894-897.

[25] Keerthi R S, Dhabliya D, Elangovan P, et al. Tunable high-gain and multiband microstrip antenna based on liquid/copper split-ring resonator superstrates for C/X band communication[J]. Physica B: Condensed Matter, 2021, 618: 413203.

[26] Islam M R, Islam M T, Moniruzzaman M, et al. Square enclosed circle split ring resonator enabled epsilon negative (ENG) near zero index (NZI) metamaterial for gain enhancement of multiband satellite and radar antenna applications[J]. Results in Physics, 2020, 19: 103556.

[27] Rengasamy R, Dhanasekaran D, Chakraborty C, et al. Modified minkowski fractal multiband antenna with circular-shaped split-ring resonator for wireless applications[J]. Measurement, 2021, 182: 109766.

[28] Khade A, Trimukhe M, Jagtap S, et al. A Circular Sector with an Inverted L Shaped Monopole Antenna for Tri-Band Applications[J]. Progress In Electromagnetics Research C, 2022, 118: 177-186.

[29] Sumanji L, Priyanka K, Keerthana G, et al. Dual Wide Band ACS Fed Uniplanar Compact Antenna Loaded with Circular Arc & L-shaped Branches for Wireless Communication[C]//2021 Photonics & Electromagnetics Research Symposium (PIERS). IEEE, 2021: 1347-1353.

[30] Chatterjee D, Majumder M, Kundu A K. Design Of Symmetrical Trident Monopole Antenna For 2.4/2.5/5.2 GHz WLAN/WiMAX Applications [C]// 2021 IEEE Region 10 Symposium (TENSYMP). IEEE, 2021: 1-6.

[31] Bohari S, Faudzi N M, Razali A R, et al. Compact Meandered Monopole Antenna for Dual-Bands WLAN Application[C]//Journal of Physics: Conference Series. IOP Publishing, 2021, 1962(1): 012039.

[32] 李晨枫. Q波段圆极化平面天线阵列研究[D].东南大学,2019.

[33] 郭婧. K波段微带阵列天线技术研究[D].电子科技大学,2015.

[34] Pandhare R A, Zade P L, Abegaonkar M P. Miniaturized microstrip antenna array using defected ground structure with enhanced performance[J]. Engineering Science and Technology, an International Journal, 2016, 19(3): 1360-1367.

[35] Nasimuddin N, Qing X, Chen Z N. A compact dual-band circularly polarized antenna for satellite systems[C]// Proc. of the 2017 IEEE Region 10 Conference (TENCON). IEEE, 2017, 2374-2377.

[36] Yang H C, Fan Y, Liu X Y. A compact dual-band stacked patch antenna with dual circular polarizations for BeiDou navigation satellite systems[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(9): 1472-1476.

[37] 吕文俊.简明天线理论与设计应用[M]. 北京: 人民邮电出版社, 2014.

[38] Tran H H, Nguyen-Trong N, Park H C. A compact dual circularly polarized antenna with wideband operation and high isolation[J]. IEEE Access, 2020, 8: 182959-182965.

[39] Belen M A. Design and realization of dual band stacked antenna via three‐dimensional printing technology[J]. Microwave and Optical Technology Letters, 2020, 62(4): 1608-1614.

[40] Pachaiyappan G, Ramanujam P. Design of low profile co-axial fed high gain stacked patch antenna for Wi-Fi/WLAN/Wi-Max applications[J]. Frequenz, 2021, 75(1-2): 27-34.

[41] Verma M K, Kanaujia B K, Saini J P. Design of fan-shaped stacked triple-band antenna for WLAN/WiMAX applications[J]. Electromagnetics, 2018, 38(7): 469-477.

[42] Qian J F, Chen F C, Chu Q X. A novel tri-band patch antenna with broadside radiation and its application to filtering antenna[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(10): 5580-5585.

[43] Naseri H, PourMohammadi P, Melouki N, et al. Generation of Mixed-OAM-Carrying Waves Using Huygens’ Metasurface for Mm-Wave Applications[J]. Sensors, 2023, 23(5): 2590.

[44] Gao M, Zhao X. Design of Tri-Band Patch Antenna with Enhanced Bandwidth and Diversity Pattern for Indoor Wireless Communication[J]. Applied Sciences, 2022, 12(15): 7445.

[45] Wei Y, Li Y, Liang Z, et al. A tri-band patch antenna with dual rampart line structure[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(4): 793-797.

[46] Cao X, Xia Y, Wu L, et al. Tri-band MIMO antenna design based on characteristic modes manipulation[J]. AEU-International Journal of Electronics and Communications, 2022, 155: 154318.

[47] Luo Y, Xiao Y, Weng Z B, et al. Design of a MIMO antenna for high throughput WLAN applications[J]. International Journal of RF and Microwave Computer‐Aided Engineering, 2021, 31(7): e22685.

[48] Djafri K, Mouhouche F, Dehmas M, et al. A compact double-inverted Ω-shaped dual-band patch antenna for WLAN/WiMAX applications[J]. Frequenz, 2022, 76(9-10): 547-554.

[49] Ullah S, Faisal F, Ahmad A, et al. Design and analysis of a novel tri-band flower-shaped planar antenna for GPS and WiMAX applications[J]. Journal of Electromagnetic waves and applications, 2017, 31(9): 927-940.

[50] Hussain N, Abbas A, Park S M, et al. A compact tri-band Antenna based on inverted-L stubs for smart devices[J]. Computers, Materials & Continua, 2022, 70(2): 3321-3331.

中图分类号:

 TN821.3    

开放日期:

 2023-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式