- 无标题文档
查看论文信息

论文中文题名:

 基于粒度分形理论的承压破碎煤岩体非Darcy渗流规律研究    

姓名:

 郭毅    

学号:

 18220214049    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 矿山灾害力学    

第一导师姓名:

 张天军    

第一导师单位:

  西安科技大学    

论文提交日期:

 2021-06-16    

论文答辩日期:

 2021-05-30    

论文外文题名:

 Research on Non-Darcy Seepage Law of Pressured Fractured Coal and Rock Mass Based on Granularity Fractal Theory    

论文中文关键词:

 破碎煤岩体 ; 非Darcy渗流 ; 流固耦合 ; 分形维数 ; 颗粒流失    

论文外文关键词:

 Broken coal rock mass ; Non-Darcy seepage ; Fluid-structure coupling ; Fractal dimension ; Particle loss    

论文中文摘要:

随着煤矿开采深度的增加,井下开挖所面临的水文地质构造条件也愈发复杂和恶劣,开采受水害的威胁也越来越严重,煤矿水害的发生往往与水在承压破碎煤岩体中的渗流息息相关。此外,采空区破碎煤岩体在采动应力和上覆岩层作用下会再次压实和破碎,导致其粒度分布与孔隙结构也随之改变,继而影响其渗流特性。因此,研究承压破碎煤岩体再破碎过程中的渗流规律是矿井水害防治的基础。

本文采用室内试验和理论分析相结合的方法,基于粒度分形理论研究了承压破碎煤岩体再破碎过程中的非线性渗流规律。采用分级加载方式开展了不同湿度破碎煤岩体的压实及蠕变试验,得到了蠕变速率、相对破碎率和粒度分形维数等试验参数,分析了不同轴向荷载下蠕变速率随时间的变化规律以及蠕变时间、轴向应力和相对湿度对粒度分形维数的影响,在粒度分形维数的增大过程中相对破碎率呈线性增加。由此可得,粒度分形维数不仅可以表示破碎煤岩体再破碎过程中的自相似特征和粒度分布特征,还可以定量表示煤岩体的破碎程度。

利用由压力机、破碎岩石渗透装置、高压水泵和计算机等组成的破碎岩石渗流试验系统,采用稳态渗透法对四种不同初始级配的破碎试样开展分级加载及渗流试验,测定了破碎试样在五级轴向荷载下的孔隙率、分形维数、渗透率和欧拉数,得到了破碎煤岩体受载再破碎过程中渗流参数的变化规律和非Darcy渗流过程中的能量耗散规律。

考虑承压破碎煤岩体渗流过程中的流固耦合作用,从质量流失角度来搭建破碎岩石变质量渗流试验平台,开展了破碎煤岩体变质量渗流试验,分析了各级配破碎煤岩体在不同轴向位移下质量流失率、孔隙率以及渗透率的时变规律,得到了伴随质量流失的破碎煤岩体渗流参数的变化规律。随着充填颗粒的流失,破碎煤岩体的孔隙率和孔隙之间的连通性大大提升,渗透性明显增强并促使渗流速度发生突变,由此可见充填颗粒从边界处的流失是造成破碎煤岩体渗流失稳的重要原因。

基于毛细管渗流假设、球形颗粒假设和连续性假设,着眼于流体和固体两个研究对象,引入分形理论来研究破碎煤岩体再破碎过程中的粒度变化规律,应用非Darcy等效渗透率的概念来表征破碎煤岩体的非Darcy渗流特性,最终以Kozeny-Carman(KC)方程为桥梁,建立了承压破碎煤岩体的粒度分形-渗流模型,并应用实验室试验所测得的数据论证了模型的准确性和合理性。

论文外文摘要:

With the increase of coal mining depth, the hydrogeological structural conditions faced by underground excavation have become more complex and severe, and the threat of water damage from mining has become more and more serious. The occurrence of water damage in coal mines is often related to the pressure of water in crushing coal and rock masses. In addition, the broken coal and rock mass in the mined-out area will be compacted and broken again under the action of mining stress and the overlying rock, resulting in changes in its particle size distribution and pore structure, which will affect its seepage characteristics. Therefore, studying the seepage law in the process of crushed coal and rock mass under pressure is the basis of mine water hazard prevention.

In this paper, the method of combining laboratory test and theoretical analysis is used to study the nonlinear seepage law in the process of crushed coal and rock mass under pressure based on the particle size fractal theory. The compaction and creep tests of broken coal and rock masses with different humidity were carried out using the stepped loading method, and the test parameters such as creep rate, relative broken rate and particle size fractal dimension were obtained, and the creep rate with time under different axial loads was analyzed The change law of the particle size and the influence of creep time, axial stress and relative humidity on the particle size fractal dimension, the relative crushing rate increases linearly during the increase of the particle size fractal dimension. It can be obtained that the particle size fractal dimension can not only express the self-similar characteristics and particle size distribution characteristics of the crushed coal and rock mass during the re-crushing process, but also quantitatively indicate the degree of crushing of the coal and rock mass.

Using a broken rock seepage test system composed of a press, broken rock infiltration device, high-pressure water pump and computer, the steady-state infiltration method was used to carry out graded loading and seepage tests on four broken samples with different initial gradations, and the breaking test was determined. Sample the porosity, fractal dimension, permeability and Euler number under the five-level axial load, and obtain the change law of seepage parameters in the process of crushed coal and rock mass under load and re-crushing and the energy dissipation in the process of non-Darcy seepage. law.

Considering the fluid-solid coupling effect in the seepage process of crushed coal and rock mass under pressure, a test platform for variable mass seepage in broken rock was built from the perspective of mass loss, and a variable mass seepage test in broken coal and rock mass was carried out, and various levels of broken coal and rock masses were analyzed. The time-varying law of mass loss rate, porosity and permeability under different axial displacements, the change law of seepage parameters of broken coal and rock mass with mass loss is obtained. With the loss of the filling particles, the porosity of the broken coal and rock mass and the connectivity between the pores are greatly improved, the permeability is obviously enhanced, and the seepage velocity is suddenly changed. It can be seen that the loss of the filling particles from the boundary is caused by the broken coal and rock. An important reason for the stability of body leakage.

Based on the capillary seepage hypothesis, spherical particle hypothesis and continuity hypothesis, focusing on the two research objects of fluid and solid, introducing fractal theory to study the particle size change law during the re-crushing process of crushed coal and rock mass, and applying the concept of non-Darcy equivalent permeability To characterize the non-Darcy seepage characteristics of broken coal and rock mass, and finally use Kozeny-Carman (KC) equation as a bridge to establish a particle size fractal-seepage model of crushed coal and rock mass under pressure, and use the data obtained from laboratory tests to demonstrate The accuracy and rationality of the model.

参考文献:

[1]谢和平, 王金华, 王国法, 等. 煤炭革命新理念与煤炭科技·发展构想[J]. 煤炭学报, 2018, 43(5): 1187-1197.

[2]谢和平, 吴立新, 郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报, 2019, 44(7): 1949-1960.

[3]姜大霖, 程浩. 中长期中国煤炭消费预测和展望[J]. 煤炭经济研究, 2020, 40(7): 16-21.

[4]TIAN J, GAO S. deformation and failure study of surrounding rocks of dynamic pressure roadways in deep mines [J]. Mining Science and Technology (China), 2010, 20(6): 850-854.

[5]徐保财. 我国煤矿深部开采现状及灾害防治分析[J]. 中国石油和化工标准与质量, 2020, 40(16): 192-193.

[6]董书宁, 王皓, 周振方. 我国煤矿水害防治工作现状及发展趋势[J]. 劳动保护, 2020(8): 58-60.

[7]原富珍, 马克, 庄端阳, 等. 基于微震监测的董家河煤矿底板突水通道孕育机制[J]. 煤炭学报, 2019, 44(6): 1846-1856.

[8]袁帅. 矿井通道涌水原因分析与处理措施[J]. 能源与节能, 2020(8): 8-15.

[9]尹尚先, 连会青, 刘德民, 等.华北型煤田岩溶陷落柱研究70年:成因·机理·防治[J].煤炭科学技术, 2019, 47(11): 1-29.

[10]PENG S S. Coal mine ground control[M]. Xuzhou: China University of Mining & technology Press, 2006.

[11]杨天鸿, 师文豪, 李顺才, 等.破碎岩体非线性渗流突水机理研究现状及发展趋势[J]. 煤炭学报, 2016, 41(7): 1598-1609.

[12]Mandelbrot B B. Fractals: Form, Chance and Dimension[M]. San Francisco: W. H. Freeman, 1977.

[13]Mandelbrot B B. The Fractal Geometry of Nature[M]. New York: W. H. Freeman, 1982.

[14]Tyler S W, Wheat-craft S W. Fractal Scaling of Soil Particle-size Distributions: Analysis and Limitations[J]. Soil Science Society of America Journal, 1992, 56(2): 362-369.

[15]Mohanty B. Rock Fragmentation by Blasting[M]. Boca Raton: CRC Pes, 1996.

[16]TURCOTTE D. Fractals and fragmentation[J]. J.Geophys. Res, 1986, 91(B2):1921-1926.

[17]Katz A. J.Thompason A. H. Fractal sandstone Pores: Implications for conductivity and pore formation[M]. Phys Rev Lett, 1985, 54: 1325-1328.

[18]谢和平, 高峰, 周宏伟, 等. 岩石断裂和破碎的分形研究[J]. 防灾减灾工程学报, 2003, 23(4):1-9.

[19]徐志斌, 谢和平. 断裂构造的分形分布与其损伤演化的关系[J]. 武汉理工大学学报, 2004, 26(10): 28-30.

[20]徐鹏, 李翠红, 柳海成, 等. 多尺度多孔介质有效气体输运参数的分形特征[J]. 地球科学, 2017, 42(8): 1373-1378.

[21]刘瑜, 周甲伟, 杜长龙. 基于分形统计强度理论的煤颗粒冲击破碎概率研究[J]. 固体力学学报, 2012, 33(6): 631-636.

[22]李瑞川. 分形多孔介质渗流特性的研究[J]. 陕西科技大学学报, 2016, 37(2): 293-301.

[23]王世芳. 多孔介质渗透率的一种新分形模型[J]. 力学季刊, 2011, 29(6): 47-50.

[24]王益栋, 徐永福, 奚悦. 颗粒材料破碎能耗分形理论研究[J]. 长江科学院院报, 2016, 33(12): 86-90.

[25]石修松, 程展林. 堆石料颗粒破碎的分形特性[J]. 岩石力学与工程学报, 2010, 29(S2): 3852-3857.

[26]郭品坤, 程远平, 卢守青, 等. 基于分形维数的原生煤与构造煤孔隙结构特征分析[J]. 中国煤炭, 2013, 39(6): 73-77.

[27]郁邦永, 陈占清, 吴疆宇, 等. 级配饱和破碎岩石压缩变形与分形特性试验研[J]. 采矿与安全工程学报, 2016, 33(2): 342-347.

[28]郁邦永, 陈占清, 吴疆宇, 等. 饱和级配破碎泥岩压实与粒度分布分形特征试验研究[J]. 岩土力学, 2016, 37(7): 1887-1894.

[29]郁邦永, 陈占清, 冯梅梅, 等. 基于CT扫描的饱和破碎灰岩侧限压缩下微观结构演化特征[J]. 煤炭学报, 2017, 42(2): 367-372.

[30]褚廷湘, 李品, 晁江坤, 等. 承压破碎煤体碎胀系数演变特征与机制[J]. 煤炭学报, 2017, 42(12): 3182-3188.

[31]周意超, 陈从新, 刘秀敏, 等. 石膏矿岩水致老化效应试验[J]. 岩土力学, 2018, 39(6): 2124-2130.

[32]夏开宗, 陈从新, 宋许根, 等. 相对湿度作用下的石膏矿护顶层突变破坏机制分析[J]. 岩土力学, 2018, 39(2): 589-597.

[33]Forchheimer P . Der Durchfluß des Wassers durch Röhren und Gräben insbesondere durch Werkgräben großer Abmessungen[J]. 1923.

[34]Li Bingjun, Garga, Vinod K, et al. Relationships for non-Darcy flow in rockfill[J]. Journal of Hydraulic Engineering, 1998, 206-211.

[35]Li, Bingjun, Garga, Vinod K. Theoretical solution for seepage flow in overtopped rockfill [J]. Journal of Hydraulic Engineering, 1998, 124(2): 213-218.

[36]Legrand, J. Revisited analysis of pressure drop in flow through crushed rocks[J]. Journal of Hydraulic Engineering, 2002, 128(11): 1027-1031.

[37]Tzelepis V, Moutsopoulos K N, Papaspyros J N E, et al. Experimental investigation of flow behavior in smooth and rough artificial fractures[J]. Journal of Hydrology, 2015, 521(2): 108-118.

[38]Jiang Naiqian, Hirschi, Michael C., et al. Hydraulic performance of rockfill[C]. Paper-American Society of Agricultural Engineers, v 2, 972064, 1997: 12.

[39]KOGURE K.Experimental study on permeability of crushed rock[J]. Memoirs of the Defense Academy, Japan, 1976, 16(4): 149-154.

[40]尹升华, 薛振林, 吴爱祥, 等. 基于核磁共振成像技术的堆浸细观渗流速度场特性[J]. 工程科学学报, 2015, 37(3): 275-280.

[41]王洪江, 吴爱祥, 张杰, 等. 矿岩均质体各向异性渗流特性[J]. 北京科技大学报, 2009, 31(4): 405-411.

[42]马占国. 采空区破碎岩体中水渗流特性研究[D]. 徐州: 中国矿业大学, 2003.

[43]陈占清, 李顺才, 茅献彪, 等. 饱和含水石灰岩散体蠕变过程中孔隙度变化规律的试验[J]. 煤炭学报, 2006, 31(1): 26-30.

[44]陈占清, 缪协兴, 刘卫群. 采动围岩中参变渗流系统的稳定性分析[J]. 中南大学学报(自然科学版), 2004, 35(1): 129-132.

[45]李顺才. 破碎岩体非Darcy渗流的非线性动力学研究[D]. 徐州:中国矿业大学, 2006.

[46]MA D,MIAO X X,JIANG G H,et al.An experimental investigation of permeability measurement of water flow in crushed rocks[J]. Transport in Porous Media, 2014, 105(3): 571-595.

[47]MA D, BAI H B, CHAN Z Q, et al. Effect of particle mixture on seepage properties of crushed mudstones[J]. Transport in Porous Media, 2015, 108(2):257-277.

[48]MA D, BAI H B, MIAO X X, et al. Compaction and seepage properties of crushed limestone particle mixture: an experimental investigation for ordovician karst collapse pillar groundwater inrush[J]. Environmental Earth Sciences, 2016, 75(1): 11-23.

[49]王小江, 荣冠, 周创兵. 粗砂岩变形破坏过程中渗透性试验研究[J]. 岩石力学与工程学报, 2012, 31(S1): 2940-2947.

[50]张勃阳, 白海波, 张凯. 采动影响下陷落柱的滞后突水机理研究[J]. 中国矿业大学学报, 2016, 45(3): 447-454.

[51]李晓昭, 罗国煜, 陈忠胜. 地下工程突水的断裂变形活化导水机制[J]. 岩土工程学报, 2002(6): 695-700.

[52]武强, 刘金涛, 钟亚平, 等. 开滦赵各庄矿断裂滞后突水数值仿真模拟[J]. 煤炭学报, 2002, 27(5): 511-516.

[53]张蕊. 带压开采底板构造裂隙带活化导渗机制[D]. 徐州: 中国矿业大学, 2014.

[54]Liang Dexian, Jiang Zhenquan, Zhu Shuyun, et al. Experimental research on water inrush in tunnel construction[J]. Natural Hazards, 2016, 81(1): 467-480.

[55]梁德贤, 姜振泉, 曹丁涛. 高压压水试验渗透系数的求取[J]. 采矿与安全工程学报, 2016, 33(2): 324-328.

[56]Terzaghi K. Theoretical soil mechanics[M]. Wiley, New York, 1943.

[57]Biot M A. General theory of three dimensional consolidation[J]. J.Appl.Phys. 1941, 12: 155-164.

[58]Biot M A. General solution of the equation of elasticity and consolidation for a porous material[J]. J. Appl. Mech. 1956,78:91-96.

[59]Savage W Z and Bradock W A. A model for hydrostatic consolidation of pierre shale[J]. Int. J. Rock Mech. Min. Sci. &Geomech. Abstr. 1991, 28: 345-354.

[60]褚卫江, 徐卫亚, 苏静波. 变形多孔介质流固耦合模型及数值模拟研究[J]. 工程力学, 2007, 24(9): 56-64.

[61]李锡夔, 朴光虎, 邓子辰. 考虑固结效应的结构-土壤相互作用分析及其有限元解[J]. 计算结构力学及其应用, 1990, 7(3): 1-11.

[62]李培超, 孔祥言, 卢德唐. 饱和多孔介质流固耦合渗流的数学模型[J]. 水动力学研究与进展, 2003, 18(4): 419-426.

[63]杨新乐, 任常在, 张永利, 等. 低渗透煤层气注热开采热-流-固耦合数学模型及数值模拟[J]. 煤炭学报, 2013, 38(6): 1044-1049.

[64]伍永平, 王同, 高喜才, 等. 岩溶陷落柱围岩支承压力-渗流演化特征数值模拟[J]. 西安科技大学学报, 2021, 41(2): 187-195.

[65]何峰. 岩石蠕变-渗流耦合作用规律研究[D]. 阜新:辽宁工程技术大学, 2010.

[66]左宇军, 孙文吉斌, 邬忠虎, 等. 渗透压-应力耦合作用下页岩渗透性试验[J]. 岩土力学, 2018, 39(9): 3253-3260.

[67]张俊文, 宋治祥, 范文兵, 等. 应力-渗流耦合下砂岩力学行为与渗透特性试验研究[J]. 岩石力学与工程学报, 2019, 38(7): 1364-1372.

[68]郑少河. 裂隙岩体渗流场-损伤场耦合理论研究及工程应用[J]. 岩石力学与工程学报, 2001(03): 422.

[69]陈卫忠, 龚哲, 于洪丹, 等. 黏土岩温度-渗流-应力耦合特性试验与本构模型研究进展[J]. 岩土力学, 2015, 36(5): 1217-1238.

[70]滕腾, 王伟, 师访, 等. 温度-压力耦合下原煤中CO2渗流行为试验研究[J]. 中国矿业大学学报, 2019, 48(4): 760-767.

[71]夏同强, 王有湃, 周福宝, 等. 煤岩体应力-渗流-温度多过程耦合试验系统[J]. 中国矿业大学学报, 2021, 50(2): 205-213.

[72]陈占清, 王路珍, 孔海陵, 等. 变质量破碎岩体非线性渗流试验研究[J]. 煤矿安全, 2014, 45(2): 15-21.

[73]姚邦华, 徐向宇, 马庆庆, 等. 考虑质量流失的破碎岩体渗透试验系统研制及应用[J]. 安全与环境学报, 2016, 16(4): 149-154.

[74]张凯, 姚邦华, 吴松刚, 等. 陷落柱的变质量渗流特性及其突水危险性数值模拟[J]. 采矿与安全工程学报, 2013, 30(6): 892-896.

[75]陈占清, 李顺才, 浦海, 等. 采动岩体蠕变与渗流耦合动力学[M]. 北京: 科学出版社, 2010: 111-117.

[76]张小燕, 蔡燕燕, 王振波, 等. 珊瑚砂高压力下一维蠕变分形破碎及颗粒形状分析[J]. 岩土力学, 2018, 39(5): 1573-1580.

[77]MARSAL R J. Large scale testing of rockfill material [J]. Journal of the Soil Mechanics and Foundation Division, 1967, 93(2): 27-43.

[78]张勃阳, 林志斌, 吴疆宇, 等. 侧限条件下陷落柱破碎岩体的渗流特性研究[J]. 采矿与安全工程学报, 2020, 37(5): 1045-1053.

[79]雷镕源. 分形颗粒填充型储层孔-渗关系研究[D]. 河南理工大学, 2019.

[80]TYLER S W, WHEATCRAFT S W. Fractal scaling of soil particle size distributions: analysis and limitations[J]. Soil Science Society of America Journal, 1992, 56(2): 362-369.

[81]尚宏波, 靳德武, 张天军, 等. 三轴应力作用下破碎煤体渗透特性演化规律[J]. 煤炭学报, 2019, 44(4): 1066-1075.

[82]张天军, 彭文清, 庞明坤, 等. 基于雷诺数的级配结构破碎煤样渗流失稳特征研究[J].采矿与安全工程学报,2019,36(6):1273-1280.

[83]张天军, 庞明坤, 蒋兴科, 等. 负压对抽采钻孔孔周煤体瓦斯渗流特性的影响[J]. 岩土力学, 2019, 40(7): 2517-2524.

[84]CHEN Y F, ZHOU J Q, HU S H, et al. Evaluation of Forchheimer equation coefficients for non-Darcy flow in deformable rough-walled fractures[J]. Journal of Hydrology, 2015, 529: 993-1006.

[85]ZENG Z, GRIGG R A. criterion for non-Darcy flow in porous media[J]. Transport in Porous Media, 2006, 63(1): 57-69.

[86]闫铁, 李玮, 毕雪亮. 基于分形方法的多孔介质有效应力模型研究[J]. 岩土力学, 2010, 31(8): 2625-2629.

[87]陈辉辉, 张小波, 姚池, 等. 高温作用后岩石裂隙渗流试验及其模型分析[J]. 煤炭学报, 2019, 44(9): 2760-2766.

[88]Turcotte D L. Fractals and fragmentation[J]. Journal of Geophysical Research Solid Earth, 1986, 91(B2): 1921-1926.

[89]陶高梁, 岩土多孔介质孔隙结构的分形研究及其应用[D]. 武汉理工大学, 2010.

[90] Yu B, Ping C. A fractal permeability model for bidispersed porous media[J]. International Journal of Heat & Mass Transfer, 2002, 45(14): 2983-2993.

[91] Barree, R. D. Conway, M. W. Reply to Discussion of “Beyond Beta Factors: A Complete Model for Darcy, Forchheimer, and Trans-Forchheimer Flow in Porous Media.”[J]. JPT, 2005, 48: 73-74.

[92] Ergun, S. Fluid Flow through Packed Columns[J]. Chemical Engineering Progress, 1952, 48: 89-94.

中图分类号:

 TD315    

开放日期:

 2021-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式