- 无标题文档
查看论文信息

论文中文题名:

 涡旋光螺旋相位检测方法及应用研究    

姓名:

 薛文英    

学号:

 19207205073    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085400    

学科名称:

 工学 - 电子信息    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 电子与通信工程    

研究方向:

 光学衍射    

第一导师姓名:

 李昭慧    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-08    

论文答辩日期:

 2022-12-07    

论文外文题名:

 Vortex Beam Spiral Phase Detection Method and Application    

论文中文关键词:

 涡旋光束 ; 轨道角动量 ; 相位匹配 ; 编码通信    

论文外文关键词:

 Vortex beam ; Orbital angular momentum ; Phase matching ; Encoding communication    

论文中文摘要:

涡旋光束是波前相位为螺旋状的特殊光束,其光子携带轨道角动量(orbital angular momentum,OAM)。OAM具有无穷大的离散取值空间,可作为通信中一种全新的维度,带来巨大的信息带宽。而光信号中OAM状态的检测、识别,是实现OAM通信的关键步骤和重要环节,对OAM检测方法和基于OAM的通信方法的研究,具有重要的科研意义和潜在的应用前景。因此,本文对涡旋光束的OAM模式检测和通信应用做出研究,主要研究内容包括:

(1)阐述了涡旋光束的基本原理和其衍射传播特性,对常见的涡旋光产生和OAM检测方法进行了理论推导和实验验证。并针对传统OAM检测识别效率低下的问题,对相位匹配方法进行改进,提出了基于相位匹配序列的OAM检测方法。首先,采用一组时序循环的螺旋相位,对待测光束进行相位匹配;之后,通过增加4f系统和偏移相位调制,使得匹配后的高斯光束,转移到与OAM模式相关的空间位置上。仿真及光学实验结果表明,该方法相比传统方法具有更高的检测识别效率。

(2)针对相位匹配序列检测OAM导致的光场降维和信息丢失问题,对相位匹配序列法进行改进,在几何变换法的基础上,提出了二维向量输出的OAM检测方法。该方法采用一组不同环径狭缝滤波的螺旋相位序列,对不同极径上的光场进行提取和相位调制,实现匹配光斑转移到与拓扑核数和极径相关的二维空间位置上。仿真结果表明,该方法的输出光场具有同输入光场一致的维度和信息,能进一步实现光场重建。

(3)利用不同OAM模式涡旋光束可以携带不同符号信息的特点,将不同OAM模式的涡旋光脉冲作为不同逻辑值的码字,进行编码。采用16种OAM模式不同的涡旋光束,实现了八位二进制信号编码和扩展编码空间的四位四进制数据信号编码,然后利用相位匹配法对OAM光脉冲序列解码,从而直接判读获得原始信息,实现编码光束与信息数据的反映射。仿真实验表明,设计的编解码方案具有可行性。

论文外文摘要:

Vortex beam is a special beam with spiral wavefront phase, and its photons carry orbital angular momentum (OAM). OAM has infinite discrete value space, which can be used as a new dimension in communication and bring huge information bandwidth. The detection and identification of OAM state in optical signal is the key step and important link to realize OAM communication. The research on OAM detection method and communication method based on OAM has important scientific research significance and potential application prospect. Therefore, this paper studies the OAM mode detection and communication application of vortex beam. The main research contents include:

(1)The basic principle and diffraction propagation characteristics of vortex beam are studied. The common vortex light generation and OAM detection methods are theoretically deduced and experimentally verified. Aiming at the low efficiency of traditional OAM detection and recognition, the phase matching method is improved, and an OAM detection method based on phase matching sequence is proposed. Firstly, a set of spiral phases with sequential cycles are used to match the phase of the light beam to be measured; Then, by adding 4f system and offset phase modulation, the matched Gaussian beam is transferred to the spatial position related to OAM mode. Simulation and optical experiment results show that this method has higher detection and recognition efficiency than traditional methods.

(2)Aiming at the problem of light field dimensionality reduction and information loss caused by OAM detection by phase matching sequence, the phase matching method is improved. Based on the geometric transformation method, an OAM detection method with two-dimensional vector output is proposed. This method uses a set of helical phase sequences filtered by slits with different ring diameters to realize the light field extraction and phase modulation on different polar diameters. Then, through offset and phase modulation, the matching spot is transferred to the two-dimensional spatial position related to the topological kernel and polar diameter. The simulation results show that the output light field of this method has the same dimension and information as the input light field,so as to further realize the reconstruction of light field.

参考文献:

[1]Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical review A, 1992, 45(11): 8185-8189.

[2]谢友朋, 张珊, 雷霆, 等.奇点光束复用光通信(特邀)[J].光通信研究,2018(06):11-20.

[3]Wen Y, Chremmos I, Chen Y, et al. Spiral transformation for high-resolution and efficient sorting of optical vortex modes[J]. Physical review letters, 2018, 120(19): 193904(1-6).

[4]Yang Y, Niu L, Yang Z, et al. Measuring the topological charge of terahertz vortex beams with a focal hyperbolic lens[J]. Applied Optics, 2020, 59(15): 4685-4691.

[5]Ding L, Meng Z, Feng S, et al. Measuring the topological charge of optical vortices using elliptical airy phase mask[J]. IEEE Photonics Technology Letters, 2020, 32(12): 741-744.

[6]Paroli B, Siano M, Potenza M A C. Measuring the topological charge of orbital angular momentum radiation in single-shot by means of the wavefront intrinsic curvature[J]. Applied Optics, 2020, 59(17): 5258-5264.

[7]Zhang H, Li X, Ma H, et al. Grafted optical vortex with controllable orbital angular momentum distribution[J]. Optics express, 2019, 27(16): 22930-22938.

[8]Ke X, Xu J. Interference and detection of vortex beams with orbital angular momentum[J]. Chinese Journal of Lasers, 2018, 43(9): 0905003.

[9]Pan S, Pei C, Liu S, et al. Measuring orbital angular momentums of light based on petal interference patterns[J]. OSA continuum, 2018, 1(2): 451-461.

[10]周红平, 潘珍珍, 郭凯, 等.OAM光通信系统能量利用效率研究[J].电子学报,2021,49(10):1881-1892.

[11]Feng Z, Wang X, Dedo M I, et al. High-density Orbital Angular Momentum mode analyzer based on the mode converters combining with the modified Mach–Zehnder interferometer[J]. Optics Communications, 2019, 435: 441-448.

[12]Emile O, Emile J. Young’s double-slit interference pattern from a twisted beam[J]. Applied Physics B, 2014, 117(1): 487-491.

[13]Stahl C, Gbur G. Analytic calculation of vortex diffraction by a triangular aperture[J]. Journal of the Optical Society of America A, 2016, 33(6): 1175-1180.

[14]Dai K, Gao C, Zhong L, et al. Measuring OAM states of light beams with gradually-changing-period gratings[J]. Optics letters, 2015, 40(4): 562-565.

[15]Liu Z, Gao S, Xiao W, et al. Measuring high-order optical orbital angular momentum with a hyperbolic gradually changing period pure-phase grating[J]. Optics letters, 2018,43(13): 3076-3079.

[16] Berkhout G C G, Lavery M P J, Courtial J, et al. Efficient sorting of orbital angular momentum states of light [J]. P Physical Review Letters, 2010, 105(15): 153601.

[17]Li C, Zhao S. Efficient separating orbital angular momentum mode with radial varying phase[J]. Photonics Research, 2017, 5(4): 267-270.

[18]赵冬娥,王思育,马亚云,等.基于涡旋光与球面波干涉的微位移测量研究[J].红外与激光工程,2020,49(04):175-180.

[19]夏豪杰,谷容睿,潘成亮,等.涡旋光位移干涉测量方法与信号处理[J].光学精密工程,2020,28(09):1905-1912.

[20]Xie G, Song H, Zhao Z, et al. Using a complex optical orbital-angular-momentum spectrum to measure object parameters[J]. Optics Letters, 2017, 42(21): 4482-4485.

[21]Zhou H L, Fu D Z, Dong J J, et al. Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect[J]. Light: Science & Applications, 2017, 6(4): e16251-e16251.

[22]Foo G, Palacios D M, Swartzlander G A. Optical vortex coronagraph[J]. Optics letters, 2005, 30(24): 3308-3310.

[23]Tamburini F, Thidé B, Molina-Terriza G, et al. Twisting of light around rotating black holes[J]. Nature Physics, 2011, 7(3): 195-197.

[24]付栋之,贾俊亮,周英男,等.利用Sagnac干涉仪实现光子轨道角动量分束器[J].物理学报,2015,64(13):84-89.

[25]Ke X, Xu J. Interference and detection of vortex beams with orbital angular momentum[J]. Chinese Journal of Lasers, 2016, 43(9): 0905003.

[26]裴春莹, 茅志翔, 徐素鹏, 等.涡旋光束轨道角动量的一种新型干涉检测方法[J].激光与光电子学进展,2019,56(14):33-39.

[27]Fu S, Zhai Y, Zhang J, et al. Universal orbital angular momentum spectrum analyzer for beams[J]. PhotoniX, 2020, 1(1): 1-12.

[28]Liu Z, Gao S, Xiao W, et al. Measuring high-order optical orbital angular momentum with a hyperbolic gradually changing period pure-phase grating[J]. Optics Letters, 2018, 43(13): 3076-3079.

[29]柯熙政,谢炎辰,张颖.涡旋光束轨道角动量检测及其性能改善[J].光学学报,2019,39(01):258-264.

[30]Li Y, Han Y, Cui Z. Measuring the topological charge of vortex beams with gradually changing-period spiral spoke grating[J]. IEEE Photonics Technology Letters, 2019, 32(2): 101-104.

[31]胡满,杨春勇,倪文军,伍子文,候金,陈少平.立方相位光栅用于光轨道角动量模式测量研究[J].激光与光电子学进展,2021,58(17):162-171.

[32]Berkhout G C G, Lavery M P J, Courtial J, et al. Efficient sorting of orbital angular momentum states of light[J]. Physical review letters, 2010, 105(15): 153601.

[33]Mirhosseini M, Malik M, Shi Z, et al. Efficient separation of the orbital angular momentum eigenstates of light[J]. Nature communications, 2013, 4(1): 1-6.

[34]Wen Y, Chremmos I, Chen Y, et al. Spiral transformation for high-resolution and efficient sorting of optical vortex modes[J]. Physical Review Letters, 2018, 120(19): 193904.

[35]熊梦苏,丁攀峰,蒲继雄.高斯光束经过多阶螺旋相位板后光束特性研究[J].激光与光电子学进展,2015,52(08):274-279.

[36]Wang T, Fu S, He F, et al. Generation of perfect polarization vortices using combined gratings in a single spatial light modulator[J]. Applied optics, 2017, 56(27): 7567-7571.

[37]Gibson, G.,Courtial, J.,Padgett, M., et al. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express, 2004, 12 (22): 5448-5456.

[38]Krenn M, Fickler R, Fink M, et al. Communication with spatially modulated light through turbulent air across Vienna[J]. New Journal of Physics, 2014, 16(11): 113028.

[39]Krenn M, Handsteiner J, Fink M, et al. Twisted light transmission over 143 km[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(48): 13648–13653.

[40]Willner A J, Ren Y X, Xie G D, et al. Experimental demonstration of 20 Gbit/s data encoding and 2 ns channel hopping using orbital angular momentum modes[J]. Optics Letters, 2015, 40(24): 5810–5813.

[41]Li X, Li Y, Zeng X, et al. Perfect optical vortex array for optical communication based on orbital angular momentum shift keying[J]. Journal of Optics, 2018, 20(12): 125604.

[42]Wang W, Wang P, Guo L, et al. Performance investigation of OAMSK modulated wireless optical system over turbulent ocean using convolutional neural networks[J]. Journal of Lightwave Technology, 2020, 38(7): 1753-1765.

[43]Wang J, Liu J, Lv X, et al. Ultra-high 435-bit/s/Hz spectral efficiency using N-dimentional multiplexing and modulation link with pol-muxed 52 orbital angular momentum (OAM) modes carrying Nyquist 32-QAM signals[C]//2015 European Conference on Optical Communication (ECOC), Valencia, Spain, 2015: 1-3.

[44]Zhu Y, Zou K, Zheng Z, et al. 1 λ× 1.44 Tb/s free-space IM-DD transmission employing OAM multiplexing and PDM[J]. Optics Express, 2016, 24(4): 3967-3980.

[45]Zhu L, Zhu G, Wang A, et al. 18 km low-crosstalk OAM+ WDM transmission with 224 individual channels enabled by a ring-core fiber with large high-order mode group separation[J]. Optics letters, 2018, 43(8): 1890-1893.

[46]Kai C, Feng Z, Dedo M I, et al. The performances of different OAM encoding systems[J]. Optics Communications, 2019, 430: 151-157.

[47]Plick W N, Krenn M. Physical meaning of the radial index of Laguerre-Gauss beams[J]. Physical Review A, 2015, 92(6): 063841.

[48]Xie G, Ren Y, Yan Y, et al. Experimental demonstration of a 200-Gbit/s free-space optical link by multiplexing Laguerre–Gaussian beams with different radial indices[J]. Optics letters, 2016, 41(15): 3447-3450.

[49]Li L, XieG,Yan Y, et al. Power loss mitigation of orbital angular momentum multiplexed free-space optical links using nonzero radial index Laguerre–Gaussian beams[J]. JOSA B, 2017, 34(1): 1-6.

[50]Guo Z, Wang Z, Dedo M I, et al. The orbital angular momentum encoding system with radial indices of Laguerre–Gaussian beam[J]. IEEE Photonics Journal, 2018, 10(5): 1-11.

[51]徐强,潘丰,黄莉,等.拉盖尔高斯光束矢量远场特性的角谱法分析[J].中国激光,2017,44(08):202-207.

中图分类号:

 TN929.12    

开放日期:

 2023-06-08    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式