论文中文题名: |
神府煤小分子的分离及对甲烷吸附影响的机理研究
|
姓名: |
尹智强
|
学号: |
18213079021
|
保密级别: |
保密(2年后开放)
|
论文语种: |
chi
|
学科代码: |
081902
|
学科名称: |
工学 - 矿业工程 - 矿物加工工程
|
学生类型: |
硕士
|
学位级别: |
工学硕士
|
学位年度: |
2021
|
培养单位: |
西安科技大学
|
院系: |
化学与化工学院
|
专业: |
矿物加工工程
|
研究方向: |
煤及共伴生矿产综合利用
|
第一导师姓名: |
杨志远
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2021-06-17
|
论文答辩日期: |
2021-06-05
|
论文外文题名: |
Separation of small molecular in Shenfu coal and its effect on methane adsorption mechanism
|
论文中文关键词: |
煤 ; 小分子 ; 甲烷 ; 吸附 ; 分子模拟
|
论文外文关键词: |
coal ; small molecular ; methane ; adsorption ; molecular simulation
|
论文中文摘要: |
︿
煤中的小分子物质是以游离或镶嵌的形式赋存在煤大分子结构中并且分子量低于500的有机化合物,其对煤化学性质和物理性质都有重要影响。煤层气开发是集能源利用、环境保护和煤矿安全于一体的新兴能源产业,近年来备受关注。煤层气中主要成分甲烷基本以吸附态赋存在煤结构。探索小分子物质对煤吸附甲烷的影响,对查明煤中甲烷富集机理和赋存状态具有重要的理论意义,也可为煤层气资源勘探与开发及矿井瓦斯灾害防治提供科学依据。
本文以神府煤为研究对象,使用NMP-CS2萃取和去离子水反萃取法分离富集了神府煤中主要小分子物质,采用正己烷、苯和四氢呋喃对富集小分子物质的反萃取物进行逐级萃取实现小分子物质的组分分离,通过GC/MS测试了不同类型小分子物质的组成,研究了小分子物质萃取前后煤孔结构的变化特征。通过向萃余煤中加入不同种类的小分子模型化合物,研究了小分子物质对煤结构吸附甲烷的影响。结果表明:NMP-CS2混合溶剂对神府煤样进行萃取的最大萃取率为14.2%。煤中小分子物质主要包含脂肪烃类(31.01%)、芳烃类(12.1%)和杂原子类(51.71%);其中,脂肪烃类小分子主要是正构烷烃及少量烯烃,芳烃类主要是含有一个苯环的芳香烃和少量萘和蒽等,杂原子类主要是含氧和含氮化合物。样品对甲烷吸附量大小顺序依次为:原煤 > 添加芳烃类小分子的萃余煤 > 添加烷烃类小分子的萃余煤 > 添加杂原子类小分子的萃余煤 > 萃余煤。含烷烃、芳烃和杂原子三类小分子的反萃取物吸附甲烷量最大,随着烷烃和芳烃的去除,小分子物质对甲烷的吸附能力逐渐降低。证实了小分子物质对煤吸附甲烷有促进作用,其中芳烃类小分子的促进作用最大,杂原子类小分子促进作用最小。
利用分子模拟方法构建并优化了含有不同种类小分子的5个煤晶胞模型,研究了甲烷分子在煤微孔中的吸附状态。模拟结果表明:小分子对煤吸附甲烷有促进作用,其中芳烃类小分子的促进作用最大,杂原子类小分子最小。当孔径小于0.85 nm时,甲烷在微孔中的吸附呈微孔填充机制。随着微孔孔径的增大,煤对甲烷的吸附能力也增强。小分子的加入增加了煤的比表面积,扩大了煤中孔径。添加芳烃类小分子可以提高可进入孔的占比,而添加杂原子类小分子会降低可进入孔的比例。径向分布函数计算结果表明各元素对甲烷吸附的强弱顺序依次:N > O > C > H。模拟结果和实验测试有很好的一致性。
实验和模拟结果揭示了煤中小分子物质增强煤吸附甲烷吸附能力的微观机理。其中芳烃和烷烃类小分子增强甲烷吸附能力主要是通过扩大煤中微孔的孔径,增加微孔的数量来实现,而杂原子类小分子增强甲烷吸附能力是通过增强煤分子与甲烷分子相互作用来实现,这两种方式共同作用,增强小分子对煤甲烷吸附的促进作用。
﹀
|
论文外文摘要: |
︿
The small molecular substances in coal are organic compounds with a molecular weight of less than 500 that exist in the macromolecular structure of coal in a free or inlaid form, which have important effects on the chemical and physical properties of coal. CBM development is an emerging energy industry that integrates energy utilization, environmental protection, and coal mine safety, and has attracted much attention in recent years. Methane, the main component of coalbed methane, is basically present in the coal structure in an adsorbed state. Exploring the influence of small molecular substances on coal adsorption of methane has important theoretical significance for identifying the enrichment mechanism and occurrence status of methane in coal, and can also provide scientific basis for the exploration and development of coalbed methane resources and the prevention and control of mine gas disasters.
In this paper, the main small molecular substances in Shenfu coal were separated and enriched by NMP-CS2 extraction and deionized water back extraction, and the small molecular substances were separated by step extraction with n-hexane, benzene and tetrahydrofuran. The change characteristics of pore structure of coal before and after extraction. By adding different kinds of small molecular model compounds to the raffinate coal, the effect of small molecular substances on the adsorption of methane by coal structure was studied. The results showed that the maximum extraction rate of NMP-CS2 was 14.2%. The small molecular substances in coal mainly include aliphatic hydrocarbons (31.01%), aromatics (12.1%) and heteroatoms (51.71%); among them, the small molecules of aliphatic hydrocarbons are mainly n-alkanes and a small amount of olefins, aromatics are mainly aromatic hydrocarbons with a benzene ring and a small amount of naphthalene and anthracene, and heteroatoms are mainly oxygen-containing and nitrogen-containing compounds. The order of methane adsorption capacity is as follows: raw coal > raffinate coal with aromatic small molecules > raffinate coal with alkane small molecules > raffinate coal with heteroatom small molecules > raffinate coal. With the removal of alkanes and aromatics, the adsorption capacity of small molecules to methane gradually decreased. It is confirmed that small molecules can promote the adsorption of methane by coal, among which aromatic small molecules have the largest promotion effect and heteroatom small molecules have the smallest promotion effect.
Five coal cell models containing different kinds of small molecules were constructed and optimized by molecular simulation method, and the adsorption state of methane molecules in coal micropores was studied. The simulation results show that small molecules can promote the adsorption of methane by coal, among which aromatic molecules have the largest promotion and heteroatom molecules have the smallest. When the pore size is less than 0.85 nm, the adsorption of methane in the micropores presents a micropore filling mechanism. With the increase of pore size, the adsorption capacity of coal to methane also increases. The addition of small molecules increases the specific surface area of coal and expands the pore size of coal. The addition of aromatic small molecules can increase the proportion of accessible pores, while the addition of heteroatom small molecules can reduce the proportion of accessible pores. The results of radial distribution function calculation show that the order of methane adsorption is N > O > C > H. The simulation results are in good agreement with the experimental results.
The experimental and simulation results reveal the mechanism of the small and medium molecular matter in coal to enhance the adsorption capacity of methane. Among them, aromatics and alkanes molecules enhance the adsorption capacity of methane mainly by expanding the pore size of micropores in coal and increasing the number of micropores. The heteroatom molecules enhance the adsorption capacity of methane by enhancing the interaction between coal molecules and methane molecules. These two ways work together to enhance the promotion of small molecules on the adsorption of coal methane.
﹀
|
参考文献: |
︿
[1] Li J, Hu S. History and future of the coal and coal chemical industry in China [J]. Resources Conservation and Recycling, 2017, 124: 13-24. [2] 张振兵. 煤炭清洁高效利用技术发展探讨 [J]. 化工管理, 2018, 36: 90-91. [3] 樊金璐. 煤炭清洁高效利用方式发展方向研究 [J]. 中国能源, 2016, 38(9): 20-22. [4] 刘振宇. 煤化学的前沿与挑战: 结构与反应 [J]. 中国科学(化学), 2014, 44(9): 1431-1438. [5] Chen H, Ge L M, Li J W. Optimization of microwave-assisted extraction coal and analysis of soluble fraction and residue [J]. Journal of China Coal Society, 2009, 34(4): 46-50. [6] 李景明, 巢海燕, 李小军. 中国煤层气资源特点及开发对策 [J]. 天然气工业, 2009, 29(4): 9-13. [7] Ji H J, Li Z H, Peng Y J, et al. Pore structures and methane sorption characteristics of coal after extraction with tetrahydrofuran [J]. Journal of Natural Gas Science and Engineering, 2014, 19: 287-294. [8] 高晋生, 周霞萍. 煤中的低分子化合物及其在煤转化中的作用研究 [J]. 煤炭转化, 1992, 15: 51-55. [9] 彭英健. 煤中小分子有机物对煤层瓦斯赋存增强效应研究 [D]. 徐州: 中国矿业大学, 2015. [10] 解维伟. 煤化学与煤质分析 [M]. 北京: 冶金工业出版社,2012: 47. [11] 王晓华, 魏贤勇. 煤的溶剂萃取研究进展 [J]. 现代化工, 2003, 7: 19-22. [12] 郁欣悦. 硫磺沟烟煤的微波超声辅助萃取以及萃余煤的逐级热溶 [D]. 徐州: 中国矿业大学, 2018. [13] Önal Y, Ceylan K. Low temperature extractability and solvent swelling of Turkish lignites [J]. Fuel Processing Technology. 1997, 53(1-2): 81-97. [14] 郝宗超, 张小东, 杨燕青. 不同煤级煤四氢呋喃阶段萃取物的化学组成与动力学机制 [J]. 煤炭学报, 2018, 43(10): 247-254. [15] 秦志宏, 袁新华, 宗志敏. 用XRD, TEM和FTIR研究镜煤CS2在-N-甲基-2-吡咯烷酮混合溶剂中的溶解行为 [J]. 燃料化学学报, 1998(3): 275-279. [16] Yu X Y, Wei X Y, Li Z K, et al. Comparison of three methods for extracting Liuhuanggou bituminous coal [J]. Fuel, 2017, 210: 290-297. [17] Kong J, Wei X Y, Zhao M X, et al. Effects of sequential extraction and thermal dissolution on the structure and composition of Buliangou subbituminous coal [J]. Fuel Processing Technology, 2016, 148: 324-331. [18] Zhang S, Zhang X D, Hao Z C, et al. Dissolution behavior and chemical characteristics of low molecular weight compounds from tectonically deformed coal under tetrahydrofuran extraction [J]. Fuel, 2019, 257: 116030. [19] Chattaraj S, Mohanty D, Kumar T, et al. Thermodynamics, kinetics and modeling of sorption behaviour of coalbed methane – A review[J]. Journal of unconventional oil & gas resources, 2016, 16: 14-33. [20] Zhao D, Cai T, Zhou D, et al. Isothermal methane adsorption experiments at different temperature stages using the monolayer adsorption principle [J]. Arabian Journal of Geosciences, 2018, 11(9): 1-9. [21] Meng Z, Liu S, Li G. Adsorption capacity, adsorption potential and surface free energy of different structure high rank coals [J]. Journal of Petroleum Science & Engineering, 2016, 146: 856-865. [22] 张天军, 许鸿杰, 李树刚, 任树鑫. 粒径大小对煤吸附甲烷的影响 [J]. 湖南科技大学学报:自然科学版, 2009, 1: 11-14. [23] Liu X, Song D, He X, et al. Coal macromolecular structural characteristic and its influence on coalbed methane adsorption [J]. Fuel, 2018, 222(JUN.15): 687-694. [24] Zheng Y, Li Q, Yuan D, et al. Chemical structure of coal surface and its effects on methane adsorption under different temperature conditions [J]. Adsorption, 2018, 24(7): 613-628. [25] Chen M Y, Cheng Y P, Li H R, et al. Impact of inherent moisture on the methane adsorption characteristics of coals with various degrees of metamorphism [J]. Journal of Natural Gas Science & Engineering, 2018, 55: 312-320. [26] 荆雯. 甲烷在构造煤中吸附和扩散的分子模拟 [D]. 太原: 太原理工大学, 2010. [27] Yang Y, Liu S M, Zhao W, Wang L. Intrinsic relationship between Langmuir sorption volume and pressure for coal: Experimental and thermodynamic modeling study [J]. Fuel, 2019, 241: 105-117. [28] 黄俊, 李国庆, 韩爱果. 低煤阶煤基质甲烷吸附性能实验研究 [J]. 煤炭技术. 2018, 9: 190-192. [29] 李树刚, 安朝峰, 林海飞. 多因素影响下煤层吸附甲烷特性试验研究 [J]. 煤炭科学技术, 2014, 42(6): 40-44. [30] Chen M Y, Cheng Y P, Li H R, et al. Impact of inherent moisture on the methane adsorption characteristics of coals with various degrees of metamorphism [J]. Journal of Natural Gas Science and Engineering, 2018, 55: 312-320. [31] 周西华, 常利强, 白刚. 水分对不同煤种吸附甲烷特性影响及机理分析 [J]. 辽宁工程技术大学学报(自然科学版) 2019, 38(5): 402-408. [32] 雷景冲. 温度对不同变质程度煤吸附CH4/CO2特性的实验研究 [D]. 徐州: 中国矿业大学, 2018. [33] Guan C, Liu S M, Li C W, et al. The temperature effect on the methane and CO2 adsorption capacities of Illinois coal [J]. Fuel, 2018, 211: 241-250. [34] 姜永东, 宋晓, 刘浩. 大功率声波作用下煤层气吸附特性及其模型 [J]. 煤炭学报,2014, 39: 152-157. [35] 庄昌清, 岳红, 张慧军. 分子模拟方法及模拟软件Materials Studio在高分子材料中的应用 [J]. 塑料, 2010, 39(4): 81-84. [36] Xia Y, Xing Y, Gui X, et al. Oily collector pre-dispersion for enhanced surface adsorption during fine low-rank coal flotation [J]. Journal of Industrial and Engineering Chemistry, 2020: 303-308. [37] 张潇, 李珂,于春阳等. 分子模拟技术在膜分离技术领域的应用 [J]. 膜科学与技术, 2019, 39(02): 109-119. [38] 沈喆. 分子模拟方法在表面活性剂体系中的应用 [D]. 上海: 上海交通大学, 2013. [39] Mathews J P, Chaffee A L. The molecular representations of coal-A review [J]. Fuel, 2012, 96(1): 1-14. [40] Niekerk D V, Mathews J P. Molecular representations of Permian-aged vitrinite-rich and inertinite-rich South African coals [J]. Fuel, 2010, 89(1): 73-82. [41] Liu X, He X. Effect of pore characteristics on coalbed methane adsorption in middle-high rank coals [J]. Adsorption, 2017, 23: 3-12. [42] Fu H, Tang D, Xu T, et al. Characteristics of pore structure and fractal dimension of low-rank coal: A case study of Lower Jurassic Xishanyao coal in the southern Junggar Basin, NW China [J]. Fuel, 2017, 193: 254-264. [43] Amit K M, Raul F L, Norman J W. Wagner. Grand canonical Monte Carlo simulation of adsorption of nitrogen and oxygen in realistic nanoporous carbon models [J]. Aiche Journal, 2011, 57(6): 1496-1505. [44] Liu Y, Zhu Y, Liu S, et al. A hierarchical methane adsorption characterization through a multiscale approach by considering the macromolecular structure and pore size distribution [J]. Marine and Petroleum Geology, 2018, 96: 304-314. [45] Song W, Yao J, Ma J, et al. Grand canonical Monte Carlo simulations of pore structure influence on methane adsorption in micro-porous carbons with applications to coal and shale systems [J]. Fuel, 2018, 215: 196-203. [46] Yin T, Liu D, Cai Y, et al. A new constructed macromolecule-pore structure of anthracite and its related gas adsorption: A molecular simulation study [J]. International Journal of Coal Geology, 2020, 220: 103415. [47] Wu S, Jin Z, Deng C, et al. Molecular simulation of coal-fired plant flue gas competitive adsorption and diffusion on coal [J]. Fuel, 2019, 239: 87-96. [48] Xia Y, Yang Z, Xing Y, et al. Molecular simulation study on hydration of low-rank coal particles and formation of hydration film [J]. Physicochemical Problems of Mineral Processing, 2018, 55(2): 586-596. [49] Dang Y, Zhao L, Lu X, et al. Molecular simulation of CO2/CH4 adsorption in brown coal: Effect of oxygen-, nitrogen-, and sulfur-containing functional groups [J]. Applied Surface Science, 2017, 423: 33-42. [50] Song Y, Zhu Y, Wu L. Macromolecule simulation and CH4 adsorption mechanism of coal vitrinite [J]. Applied Surface Science, 2017, 396: 291-302. [51] Zheng Y N, Li Q Z, Yuan D S, et al. Chemical structure of coal surface and its effects on methane adsorption under different temperature conditions [J]. Adsorption-journal of The International Adsorption Society, 2018, 24(7): 613-628. [52] Ma X M, Dong X S, Fan Y P, et al. Prediction and characterization of the microcrystal structures of coal with molecular simulation [J].Energy & Fuels, 2018,32: 3097-3107. [53] Yang Q, Jin B, Banerjee D, et al. Direct visualization and molecular simulation of dewpoint pressure of a confined fluid in sub-10 nm slit pores [J]. Fuel, 2019: 1216-1223. [54] Pantatosaki E, Psomadopoulos D, Steriotis T A, et al. Micropore size distributions from CO2 using grand canonical Monte Carlo at ambient temperatures: cylindrical versus slit pore geometries [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 241: 127-135. [55] Liu Y, Ma X, Li A, et al. Competitive adsorption behavior of hydrocarbon(s) /CO2 mixtures in a double-nanopore system using molecular simulations [J]. Fuel, 2019 , 252: 612-621. [56] Zhang J, Liu K, Clennell M B, et al. Molecular simulation of CO2-CH4 competitive adsorption and induced coal swelling [J]. Fuel, 2015, 160: 309-317. [57] Wu S Y, Jin Z X, Deng C B. Molecular simulation of coal-fired plant flue gas competitive adsorption and diffusion on coal [J]. Fuel, 2019, 239: 87-96. [58] Wang X, Zhai Z, Jin X, et al. Molecular simulation of CO2/CH4 competitive adsorption in organic matter pores in shale under certain geological conditions [J]. Petroleum Exploration and Development, 2016, 43(5): 841-848. [59] Chen G, Lu S, Liu K, et al. GCMC simulations on the adsorption mechanisms of CH4 and CO2 in Killite and their implications for shale gas exploration and development [J]. Fuel, 2018, 224: 521-528. [60] Wang S, Feng Q, Javadpour F, et al. Competitive adsorption of methane and ethane in montmorillonite nanopores of shale at supercritical conditions: A grand canonical Monte Carlo simulation study [J]. Chemical Engineering Journal, 2019, 355: 76-90. [61] Chong L, Myshakin E M. Molecular simulations of competitive adsorption of carbon dioxide-methane mixture on illitic clay surfaces [J]. Fluid Phase Equilibria, 2018, 472: 185-195. [62] Hu H, Du L, Xing Y, et al. Detailed study on self- and multicomponent diffusion of CO2-CH4 gas mixture in coal by molecular simulation [J]. Fuel, 2017,187: 220-228. [63] Zhou Y, Li Z, Zhang R, et al. CO2 injection in coal: Advantages and influences of temperature and pressure [J]. Fuel, 2019, 236: 493-500. [64] Bae J, Bhatia S K. High-pressure adsorption of methane and carbon dioxide on coal [J]. Energy & Fuels, 2006, 20(6): 2599-2607. [65] Krooss B M, Van Bergen F, Gensterblum Y, et al. High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals [J]. International Journal of Coal Geology, 2002, 51(2): 69-92. [66] Mastalerz M, Gluskoter H J, Rupp J A, et al. Carbon dioxide and methane sorption in high volatile bituminous coals from Indiana, USA [J]. International Journal of Coal Geology, 2004, 60(1): 43-55. [67] Sun Y, Zhao Y, Yuan L, et al. CO2-ECBM in coal nanostructure: Modelling and simulation [J]. Journal of Natural Gas Science and Engineering, 2018, 54: 202-215. [68] Xiang J H, Zeng F G, Liang H Z, et al. Molecular simulation of the CH4/CO2/ H2O adsorption onto the molecular structure of coal [J]. Science China Earth Sciences, 2014, 57(8): 1749-1759. [69] Song Y, Jiang B, Lan F J. Competitive adsorption of CO2/N2/CH4 onto coal vitrinite macromolecular: Effects of electrostatic interactions and oxygen functionalities [J]. Fuel, 2019, 235: 23-38. [70] Wu J H, Yu J C, Wang Z F, et al. Experimental investigation on spontaneous imbibition of water in coal: Implications for methane desorption and diffusion [J]. Fuel, 2018, 231: 427-437. [71] Nie B, Liu X, Yuan S, et al. Sorption charateristics of methane among various rank coals: impact of moisture [J]. Adsorption-journal of the International Adsorption Society, 2016, 22(3): 315-325. [72] Yang Y, Liu S, Zhao W, et al. Intrinsic relationship between Langmuir sorption volume and pressure for coal: Experimental and thermodynamic modeling study [J]. Fuel, 2019, 241: 105-117. [73] Meng J, Li S, Niu J, et al. Effects of moisture on methane desorption characteristics of the Zhaozhuang coal: experiment and molecular simulation [J]. Environmental Earth Sciences, 2020, 79(1): 1-16. [74] Han J, Bogomolov A K, Makarova E Y, et al. Molecular simulation of H2O, CO2, and CH4 adsorption in coal micropores [J]. Russian Journal of Physical Chemistry B, 2018, 12(4): 714-724. [75] Pan Z, Connell L D, Camilleri M, et al. Effects of matrix moisture on gas diffusion and flow in coal [J]. Fuel, 2010, 89(11): 3207-3217 [76] Dutka B. CO2 and CH4 sorption properties of granular coal briquettes under in situ states [J]. Fuel, 2019, 247: 228-236. [77] Guo X, Wang Z, Zhao Y. A comprehensive model for the prediction of coal swelling induced by methane and carbon dioxide adsorption [J]. Journal of Natural Gas Science & Engineering, 2016, 36: 563-572. [78] Zhang Y, Lebedev M, Jing Y, et al. In-situ X-ray micro-computed tomography imaging of the microstructural changes in water-bearing medium rank coal by supercritical CO2 flooding [J]. International Journal of Coal Geology, 2019, 203: 28-35. [79] Zhang J, Clennell M B, Liu K, et al. Molecular dynamics study of CO2 sorption and transport properties in coal [J]. Fuel, 2016, 177: 53-62. [80] Zhang J, Clennell M B, Dewhurst D N, et al. Combined Monte Carlo and molecular dynamics simulation of methane adsorption on dry and moist coal [J]. Fuel, 2014, 122: 186-197. [81] Shafeeyan M S, Daud W M A W, Houshmand A, et al. Ammonia modification of activated carbon to enhance carbon dioxide adsorption: Effect of pre-oxidation [J]. Applied Surface Science, 2011, 257(9): 3936-3942. [82] Kawabuchi Y, Sotowa C, Kishino M, et al. Chemical vapor deposition of organic compounds over active carbon fiber to control its porosity and surface function [J]. Langmuir, 1997, 13(8): 2314-2317. [83] He X J, Li R C, Qiu J S, et al. Synthesis of mesoporous carbons for supercapacitors from coal tar pitch by coupling microwave-assisted KOH activation with a MgO template [J]. Carbon, 2012, 50(13): 4911-4921. [84] Francisco R R, Cristina A, Miguel M S. Contribution to the Evaluation of Density of Methane Adsorbed on Activated Carbon [J]. The Journal of Physical Chemistry, 2005, 109(43): 20227-20231. [85] 华宗琪, 秦志宏, 刘鹏, 李保民. 超声波条件下煤中不同赋存形态小分子的溶出规律 [J]. 中国矿业大学学报, 2012, 41(1): 91-94. [86] 李艳, 宗志敏, 黄丽莉等. 灵武煤CS2/NMP萃取物的柱层析分离及其馏分的GC/MS分析 [J]. 武汉科技大学学报, 2010, 33(1): 88-94. [87] 降文萍, 宋孝忠, 钟玲文. 基于低温液氮实验的不同煤体结构煤的孔隙特征及其对瓦斯突出影响 [J]. 煤炭学报, 2011, 36(4): 609-614. [88] 王林. 不同变质程度煤高温高压条件下甲烷扩散动力学特性研究 [D]. 徐州: 中国矿业大学, 2019. [89] Liu X F, He Y Q. Effect of pore characteristics on coalbed methane adsorption in middle-high rank coals [J]. Adsorption-journal of the International Adsorption Society, 2017, 23(1): 3-12. [90] 刘宇. 煤镜质组结构演化对甲烷吸附的分子级作用机理[D]; 徐州: 中国矿业大学, 2019. [91] Wang Z F, Su W W, Tang X, et al. Influence of water invasion on methane adsorption behavior in coal [J]. International Journal of Coal Geology, 2018, 197: 74-83. [92] Peng D Y, Robinson D B. A New Two-Constant Equation of State [J]. Industrial and Engineering Chemistry Fundamentals, 1976, 15(1): 59-64. [93] Wu S Y, Deng C B, Wang X F. Molecular simulation of flue gas and CH4 competitive adsorption in dry and wet coal [J]. Journal of Natural Gas Science and Engineering, 2019, 71: 102980. [94] Yang Z Y, Yin Z Q, Xue W Y, et al. Construction of Buertai coal macromolecular model and GCMC simulation of methane adsorption in micropores [J]. ACS Omega, 2021, 6(17): 11173-11182.
﹀
|
中图分类号: |
TQ530
|
开放日期: |
2023-06-18
|