- 无标题文档
查看论文信息

论文中文题名:

 水力压裂裂缝扩展轨迹数值模拟研究    

姓名:

 郑鹏    

学号:

 18109071010    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 0818    

学科名称:

 工学 - 地质资源与地质工程    

学生类型:

 博士    

学位级别:

 工学博士    

学位年度:

 2013    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质资源与地质工程    

研究方向:

 油气田开发工程    

第一导师姓名:

 周德胜    

第一导师单位:

 西安石油大学    

第二导师姓名:

 夏玉成    

论文提交日期:

 2023-01-13    

论文答辩日期:

 2022-12-08    

论文外文题名:

 Numerical simulation of fracture propagation trajectory in hydraulic fracturing    

论文中文关键词:

 水力压裂 ; 分岔 ; 裂缝轨迹 ; 裂缝相交 ; 数值模拟 ; 裂缝扩展    

论文外文关键词:

 Hydraulic fracturing ; Fracture trajectory ; Cracks intersect ; Numerical simulation ; Fracture propagation    

论文中文摘要:

在非常规油气开采中,由于储层岩石的低渗透性,需要水力压裂技术在储层中压出体积缝网,为油气采出开辟渗流通道。以往压裂施工中,以压出长直水力裂缝为目的。然而由于储层地质构造及油气分布的非均质性,这种长直扩展的水力裂缝不利于油气高效开采。为了解决和避免水力裂缝进入含水区、过早沟通近井裂缝带、井间裂缝窜通等实际问题,需要在水力压裂中构造倾斜、弯曲等依据储层实际情况展布的水力裂缝。目前针对该思路下的裂缝轨迹机理研究尚未见报道。

本文以储层水力裂缝为研究对象,以揭示水力裂缝轨迹形成机理和探讨其可调控性为研究目标,采用理论分析、数值模拟、实验验证相结合的方法,围绕水力裂缝转向及分岔、地层实地应力场变化时的裂缝扩展、水力裂缝和天然裂缝互作用及缝网演化、裂缝扩展轨迹调控方法四个方面,建立裂缝扩展数学模型,通过Matlab自主开发数值计算程序,进行水力压裂裂缝扩展轨迹数值模拟研究。本文主要研究成果如下:

(1)水力裂缝转向和分岔机理及数学模型。依据裂缝面摩尔库伦定律和位移梯度法建立了裂缝转向和分岔的数学模型,通过裂缝面受力计算分岔点位置和起裂角,解决了以往在连续介质模型水力裂缝扩展模拟过程中,难以处理转向水力裂缝分岔的问题。模拟了单簇水力裂缝转向过程中的三维扭转形态;研究了缝内压力、水平主应力差、射孔角、岩石力学性质、压裂液粘度对裂缝偏转轨迹的影响。研究表明:影响系数越大,裂缝越容易偏转。得到水力裂缝在转向过程中具有趋于中心对称扩展的特征以及“尺寸效应”的新认识,为压裂施工时裂缝轨迹调控提供了新思路。通过数值模拟揭示了水力裂缝面分岔的力学机理,指出地应力场产生的裂缝面切向滑移对分岔具有促进作用,缝内压力对裂缝面分岔具有抑制作用。

(2)实地应力场变化的裂缝扩展轨迹及数学模型。分别针对水力裂缝同时开裂和次序开裂,建立了考虑支撑剂支撑刚度、水力裂缝变形、局部地应力场变化的裂缝扩展数学模型和数值计算程序。解决了对历史压裂施工造成局部地应力场改变后新老水力裂缝轨迹干扰问题的模拟。研究了单井多簇压裂、多井同步压裂、拉链式压裂和加密井压裂过程中的裂缝轨迹。研究表明:多簇压裂时外侧裂缝转向后在三维空间内呈现贝壳状曲面,通过构造簇间应力场,可调控中间簇裂缝扩展轨迹;多井多裂缝压裂时交错布缝方式优于对顶布缝方式;加密井压裂中老井中间压新井的压裂顺序可降低水平井套管损伤风险。提出对于水力裂缝扩展轨迹,应统筹储层诱导应力场的时空演化特征进行分析,基于此有望在储层同一位置制造不同的裂缝轨迹。

(3)缝网演化机理及数学模型。耦合水力裂缝和天然裂缝变形计算模型、裂缝面支撑刚度计算模型、裂缝面摩尔库伦定律、最大周向应力准则,建立了可模拟水力裂缝-天然裂缝轨迹相互干扰和缝网演化的数学模型及模拟计算程序。该模型考虑了水力裂缝和天然裂缝非相交时,相互间的诱导起裂和轨迹干扰问题。首先变化水平主应力、天然裂缝倾角、水力裂缝逼近距离、簇间距,研究了水力裂缝和天然裂缝相交时的扩展轨迹;其次从天然裂缝尖端起裂扩展和沟通、周围局部应力场变化、对水力裂缝轨迹引导三个方面分析了其与水力裂缝非相交时的互作用机理;通过以上两方面揭示了复杂缝网形成机理。研究表明:水力裂缝逼近天然裂缝时,天然裂缝倾斜角越大,储层岩石抗拉强度越大,最小水平主应力越大,水力裂缝越不容易穿透天然裂缝扩展,同时越趋于形成单一主缝的轨迹形态。平行分布的大尺寸天然裂缝会放大水力裂缝的缝间干扰作用,导致水力裂缝在纵深方向上扩展轨迹的非对称分布。提出天然裂缝对诱导应力存在遮挡和传递效应,引起诱导应力锥进和天然裂缝沟通。水力裂缝可诱使与其非相交的天然裂缝发生失稳扩展。天然裂缝会诱使水力裂缝扩展轨迹发生偏移。

(4)裂缝扩展轨迹调控方法。基于裂缝扩展轨迹相关机理研究,提出可通过排量(压力)、射孔角、射孔位置、压裂次序等施工措施调控水力裂缝的起裂和止裂、转向扩展、直线扩展。首次基于比例积分微分控制方法建立了裂缝转向自动控制系统,可自动调整缝内压力以使裂缝在极小的偏转角度下冲过异常应力区,有利于实现以相对小的压裂液注入量获得最佳裂缝扩展轨迹的目的。

上述研究成果揭示了水力压裂储层改造过程中的裂缝扩展轨迹机理,建立了针对实际问题的裂缝轨迹调控方法。研究成果可以为压裂施工布井位置、射孔位置及射孔角度、压裂顺序、缝内压力等的设计,以及水力裂缝扩展形态刻画和预测、调控水力裂缝轨迹、制造体积缝网提供理论基础和指导。

论文外文摘要:

In unconventional oil and gas exploitation, due to the low permeability of reservoir rocks, hydraulic fracturing technology is required to prduce the fracture network in the reservoir to open up flow channels for oil and gas exploitation. In the past fracturing construction, the purpose was to produce long and straight hydraulic fractures. However, due to the heterogeneity of reservoir geological structure and oil distribution, such long, straight hydraulic fractures are not effective in improving the efficiency of oil and gas production. In order to solve and avoid following practical problems, such as hydraulic fractures propagate into water-bearing areas, connect with natural fractures near the wellboll, and hydraulic fractures communicate with each other. At this point, it is considered necessary to artificially construct curved and inclined fracture trajectories according to the actual conditions of the reservoir. At present, there is no report on the study of fracture trajectory mechanism under this idea.

This paper takes tight sandstone as the research object and aims to reveal the formation mechanism of hydraulic fracture trajectory and explore its controllability. Theoretical analysis, numerical simulation and experimental verification are adopted. A mathematical model of fracture propagation was established based on four aspects, including hydraulic fracture deflection and bifurcation, fracture propagation trajectory when the in-situ stress changes, the interaction between hydraulic fracture and natural fracture and the evolution of fracture network, and the control method of fracture propagation trajectory. The mathematical model and calculation program of fracture propagation are independently developed through the software of Matlab to conduct numerical simulation research. The main research results of this paper are as follows:

(1) The mechanism and its mathematical model about the deflection and bifurcation of hydraulic fracture. The mathematical calculation model of fracture deflection and bifurcation is established based on Mohr Coulomb's law and displacement gradient method, which solves the problem that it is difficult to deal with the bifurcation of fracture surface in the process of simulation of hydraulic fracture propagation in continuous media. Simulated the 3D torsional pattern of single cluster hydraulic fracture in deflecting process. The effects of fracture pressure, horizontal principal stress difference, perforation angle, rock mechanical properties and fracturing fluid viscosity on fracture deflection and bifurcation are studied. The research shows that the larger the influence coefficient is, the easier the fracture is to deflect. Pointed out the new understanding of "size effect" and symmetrical propagation characteristic in the process of hydraulic fracture deflection, which provides a new idea for the control of fracture trajectory during fracturing construction. The mechanical mechanism of fracture plane bifurcation is revealed by numerical simulation. It is pointed out that the tangential slip of fracture surface caused by geostress field can promote the bifurcation, and the pressure inside the fracture can inhibit the bifurcation of fracture surface.

(2) Fracture propagation trajectory and mathematical model with in-situ stress field variation. The mathematical model and numerical calculation program of fracture propagation considering the propping stiffness of proppant, hydraulic fracture deformation and local in-situ stress change are established respectively for simultaneous fracturing and sequential fracturing. The problem of simulating the interference between new and old hydraulic fracture tracks after local stress field changes caused by historical fracturing operation is solved. Fracture trajectories of single well multi cluster fracturing, multi well synchronous fracturing, zipper fracturing and infill well fracturing are studied. The research results show that the outer fracture turns to be a shell shaped curved surface in three-dimensional space after multi cluster fracturing. By adjusting the cluster spacing to construct the stress field between clusters, and the propagation trajectory of the middle cluster fracture can be controlled by constructing the stress field between clusters. The staggered joint arrangement is better than the top joint arrangement in multi well and multi fracture fracturing. In infill well fracturing, fracturing a new well between two old Wells reduces the risk of casing damage in horizontal Wells. It is proposed that the spatio-temporal evolution characteristics of induced stress field of reservoir should be considered to analyze the trajectory of hydraulic fracture, based on which it is expected to create different fracture tracks at the same location of reservoir.

(3) Evolution mechanism and mathematical model of fracture network. Coupled with hydraulic fracture and natural fracture deformation calculation model, the stiffness calculation model in fracture surface support, the Mohr Coulomb criterion in fracture surface, the maximum circumferential stress criterion, a mathematical model and simulation calculation program that can simulate the interaction between hydraulic fracture and natural fracture trajectory and the evolution of fracture network are established. The model considers the interaction between hydraulic fractures and natural fractures when they do not intersect. Firstly, the interaction mechanism between hydraulic fractures and natural fractures is studied by changing the horizontal principal stress, the natural fracture inclination, the approach distance of fractures, and the cluster spacing. Secondly, the interaction mechanism of the disjoint fractures is studied from three aspects: the initiation, propagation and communication of the natural fractures, the change of local stress field around the natural fractures, and the guidance of the natural fractures to the trajectory of the hydraulic fractures. Finally, the formation mechanism of complex fracture network is revealed through the above two aspects. The results show that when hydraulic fractures approach natural fractures, the greater the inclination Angle of natural fractures, the greater the tensile strength of reservoir rock and the greater the minimum horizontal principal stress, the more difficult it is for hydraulic fractures to penetrate the natural fractures, and the more easier it is to form a single main fracture trajectory. The long natural fractures with parallel distribution will amplify the interfracture interference and lead to the asymmetric distribution of the propagation trajectory of hydraulic fractures in the perforation direction. It proposed that natural fractures have shielding and transmission effects on induced stress, causing induced stress coning to communicate with natural fractures. Hydraulic fractures can induce the natural fractures that do not intersect with hydraulic fractures to propagate the natural fracture will induce the migration of hydraulic fracture propagation path, and at the same time, natural fractures will deflect the trajectory of hydraulic fracture propagation.

(4) Control method of fracture propagation trajectory. Based on fracture propagation trajectory mechanism, it is pointed out that the initiation and arrest of hydraulic fractures, the deflecting and linear propagation of hydraulic fractures can be controlled by such construction measures as displacement pressure, perforation angle, perforation position and fracturing sequence. An automatic fracture deflection control system based on the proportional integral differential control method was established for the first time, which can automatically adjust the pressure in the fracture and make the fracture rush through the abnormal stress zone with a small deflection Angle, which is conducive to the optimal fracture propagation trajectory under the condition that the injection amount of fracturing fluid is relatively small.

The above research results reveal the mechanism of fracture propagation trajectory in the process of hydraulic fracturing reservoir reconstruction, and establish a fracture trajectory control method for practical problems. The research results can provide theoretical basis and guidance for the design of well layout position, perforation position and angle, fracturing sequence, and fracture pressure, as well as the characterization and prediction of hydraulic fracture propagation morphology, control of hydraulic fracture trajectory, and optimization of volume fracture network.

参考文献:

[1] Rode A, Carleton T, Delgado M, et al. Estimating a social cost of carbon for global energy consumption[J]. Nature, 2021, 600(7889): E17.

[2] Brockway P E, Sorrell S, Semieniuk G, et al. Energy efficiency and economy-wide rebound effects: A review of the evidence and its implications[J]. Renewable and Sustainable Energy Reviews, 2021, 141:1-20.

[3] Peng J, Zheng Y, Mao K. Heterogeneous impacts of extreme climate risks on global energy consumption transition: an international comparative study[J]. Energies, 2021. 14(14):1-18.

[4] Murshed M, Tanha M M. Oil price shocks and renewable energy transition: Empirical evidence from net oil-importing South Asian economies[J]. Energy Ecol Environ, 2021. 6(3): 183-203.

[5] Tsai B H. Modelling energy consumption and carbon dioxide emissions of fossil fuels and nuclear energy using Lotka-Volterra equations[J]. Applied Ecology and Environmental Research, 2022. 20(2): 1435-1455.

[6] Petroleum, B. Statistical review of world energy[EB]. 2022: London: BP.

[7] 吴佳. 中石油加快非常规油气资源开发:今年已钻2000口新井[N]. 中国石油报. 2018.

[8] Li Y, Feng Y, Li X, et al. Productivity performance of open hole horizontal gas well for low permeability gas reservoirs[J]. Petroleum Science and Technology, 2022: 1-21.

[9] Xie Y, He Y, Hu Y, Jiang Y. Study on productivity prediction of multi-stage fractured horizontal well in low-permeability reservoir based on finite element method[J]. Transport in Porous Media, 2022. 141(3): 629-648.

[10] Salimzadeh S, Zimmerman R W, Khalili N. Gravity hydraulic fracturing: A method to create self‐driven fractures[J]. Geophysical Research Letters, 2020, 47(20).

[11] Zhao Y, Cao S, Shang D, et al. Crack propagation and crack direction changes during the hydraulic fracturing of coalbed[J]. Computers and Geotechnics, 2019, 111: 229-242.

[12] Chen X, Zhao J, Li Y, et al. Numerical simulation of simultaneous hydraulic fracture growth within a rock layer: implications for stimulation of low‐permeability reservoirs[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(12): 13227-13249.

[13] 张卫东, 杨志成, 魏亚蒙. 疏松砂岩水力压裂裂缝形态研究综述[J]. 力学与实践, 2014, 36(4): 396-402.

[14] Lau H C, Li H, Huang S. Challenges and opportunities of coalbed methane development in China[J]. Energy & Fuels, 2017, 31(5): 4588-4602.

[15] He Q, Suorineni F T, Oh J. Review of hydraulic fracturing for preconditioning in cave mining[J]. Rock Mechanics and Rock Engineering, 2016, 49(12): 4893-4910.

[16] Zhou D S, Zheng P, He P, et al. Hydraulic fracture propagation direction during volume fracturing in unconventional reservoirs[J]. Journal of Petroleum Science and Engineering, 2016, 141: 82-89.

[17] Zhang G Q, Chen M. Dynamic fracture propagation in hydraulic re-fracturing[J]. Journal of Petroleum Science and Engineering, 2010, 70:266-272.

[18] 唐梅荣, 赵振峰, 李宪文, 等. 多缝压裂新技术研究与试验[J]. 石油钻采工艺, 2010, 32(2): 71-74.

[19] Zhao J, Zhao J Z, Hu Y, et al. Non-planar fracture propagation model for fluid-driven fracturing based on fluid-solid coupling[J]. Engineering Fracture Mechanics, 2020, 235.

[20] Olson J E, Taleghani A D. Modeling simultaneous growth of multiple hydraulic fractures and their interaction with natural fractures[C]//SPE hydraulic fracturing technology conference. Woodlands, Texas, USA, 2009.

[21] Zheng P, Gu T, Liu E, et al. Simulation of fracture morphology during sequential fracturing[J]. Processes, 2022. 10(5):1-18.

[22] 刘乃震, 张兆鹏, 邹雨时, 等. 致密砂岩水平井多段压裂裂缝扩展规律[J]. 石油勘探与开发, 2018, 45(6): 1059-1068.

[23] Li Q, Chen M, Zhou Y, et al. Rock mechanical properties of shale gas reservoir and their influences on hydraulic fracture[C]//International Petroleum Technology Conference. 2013.

[24] Zheng H, Pu C S, Wang Y, et al. Experimental and numerical investigation on influence of pore-pressure distribution on multi-fractures propagation in tight sandstone[J]. Engineering Fracture Mechanics, 2020, 230.

[25] Zhou D S, He P. Major factors affecting simultaneous frac results[C]//SPE Production and Operations Symposium. Oklahoma, USA, 2015.

[26] Park C H, Bobet A. Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression[J]. Engineering Fracture Mechanics, 2010, 77(14): 2727-2748.

[27] Nemat-Nasser S, Horii H. Compression-induced nonplanar crack extension with application to splitting, exfoliation, and rockburst[J]. Journal of Geophysical Research: Solid Earth, 1982. 87(B8): 6805-6821.

[28] 潘鹏志, 丁梧秀, 冯夏庭, 等. 预制裂纹几何与材料属性对岩石裂纹扩展的影响研究[J]. 岩石力学与工程学报. 2008. 27(9): 1882-1889.

[29] Dyskin A V, Sahouryeh E, Jewell R J, et al. Influence of shape and locations of initial 3-D cracks on their growth in uniaxial compression[J]. Engineering Fracture Mechanics, 2003, 70(15): 2115-2136.

[30] Doe T W, Boyce G. Orientation of hydraulic fractures in salt under hydrostatic and non-hydrostatic stresses[C]//International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Pergamon, 1989, 26(6): 605-611.

[31] Chen L. Wang Z. Peng X, et al. Modeling pressurized fracture propagation with the isogeometric BEM[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021. 7(3):1-16.

[32] Shi J, Shen B. A numerical study of effect of cold temperature on growth orientation of horizontal fractures using displacement discontinuity method[J]. Geomechanics for Energy and the Environment, 2022. 31:1-8.

[33] Renshaw C E, Pollard D D. An experimentally verified criterion for propagation across unbounded frictional interfaces in brittle, linear elastic materials[J]. International journal of rock mechanics and mining sciences & geomechanics abstracts. Pergamon, 1995, 32(3): 237-249.

[34] Wang X L, Shi F, Liu C, et al. Extended finite element simulation of fracture network propagation in formation containing frictional and cemented natural fractures[J]. Journal of Natural Gas Science and Engineering, 2018, 50: 309-324.

[35] Tan P, Jin Y, Han K, et al. Analysis of hydraulic fracture initiation and vertical propagation behavior in laminated shale formation[J]. Fuel, 2017, 206: 482-493.

[36] 侯密山. 压电材料反平面运动裂纹的能量释放率与分叉角[J]. 应用力学学报, 2001, 18(2): 53-58.

[37] 多依丽, 谢禹钧, 海军, 等. 基于能量释放率的 Ⅱ 型裂纹分叉研究[J]. 力学季刊, 2019, 40(1): 167-174.

[38] Xie Y J, Li J, Hu X Z, et al. Modelling of multiple crack-branching from Mode-I crack-tip in isotropic solids[J]. Engineering Fracture Mechanics, 2013, 109: 105-116.

[39] Kamali A, Ghassemi A. Analysis of injection-induced shear slip and fracture propagation in geothermal reservoir stimulation[J]. Geothermics, 2018, 76: 93-105.

[40] Liu S, Wang Y, Peng C, et al. A thermodynamically consistent phase field model for mixed-mode fracture in rock-like materials[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 392.

[41] 王苏生, 养圣奇, 田文岭, 等. 预制裂隙岩石裂纹扩展相场模拟方法研究[J]. 岩石力学与工程学报, 2022, 42: 1-11.

[42] Yang W M, Geng Y, Zhou Z Q, et al. DEM numerical simulation study on fracture propagation of synchronous fracturing in a double fracture rock mass[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2020, 6(39):2-19.

[43] Sobhaniaragh B, Haddad M, Mansur W J, et al. Computational modelling of multi-stage hydraulic fractures under stress shadowing and intersecting with pre-existing natural fractures[J]. Acta Mechanica, 2019, 230(3): 1037-1059.

[44] Guo T, Wang X, Li Z, et al. Numerical simulation study on fracture propagation of zipper and synchronous fracturing in hydrogen energy development[J]. International Journal of Hydrogen Energy, 2019, 44(11): 5270-5285.

[45] Mayerhofer M J, Stegent N A, Barth J O, et al. Integrating fracture diagnostics and engineering data in the marcellus shale[C]//SPE annual technical conference and exhibition. Denver, Colorado, USA, 2011.

[46] Murillo G G, León J M, Leem J, et al. Successful deployment of unconventional geomechanics to first zipper hydraulic fracturing in low-permeability turbidite reservoir, Mexico[C]//EUROPEC 2015. Madrid, Spain , 2015.

[47] Sierra L, Mayerhofer M. Evaluating the benefits of zipper fracs in unconventional reservoirs[C]//SPE Unconventional Resources Conference. Woodlands, Texas, USA, 2014.

[48] Ren X, Zhou L, Li H, et al. A three-dimensional numerical investigation of the propagation path of a two-cluster fracture system in horizontal wells[J]. Journal of Petroleum Science and Engineering, 2019, 173: 1222-1235.

[49] Zheng P, Xia Y, Yao T, et al. Formation mechanisms of hydraulic fracture network based on fracture interaction[J]. Energy, 2022, 243.

[50] Olson J E. Multi-fracture propagation modeling: Applications to hydraulic fracturing in shales and tight gas sands[C]//The 42nd US rock mechanics symposium (USRMS). 2008.

[51] Li X G, He Y T, Yang Z Z. et al. Prediction and control of hydraulic fracture trajectory in enhanced geothermal system[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020: 1-23.

[52] Ju Y, Li Y, Wang Y, et al. Stress shadow effects and microseismic events during hydrofracturing of multiple vertical wells in tight reservoirs: A three-dimensional numerical model[J]. Journal of Natural Gas Science and Engineering, 2020, 84.

[53] Cheng W, Jian G S, Jin Y. Numerical simulation of fracture path and nonlinear closure for simultaneous and sequential fracturing in a horizontal well[J]. Computers and Geotechnics, 2017, 88: 242-255.

[54] Saberhosseini S E, Chen Z, Sarmadivaleh M. Multiple fracture growth in modified zipper fracturing[J]. International Journal of Geomechanics, 2021, 21(7).

[55] Jacobs T. Oil and gas producers find frac hits in shale wells a major challenge[J]. Journal of Petroleum Technology, 2017, 69(04): 29-34.

[56] Wang Z, Yang L, Gao R, et al. Numerical analysis of zipper fracturing using a non-planar 3D fracture model[J]. Frontiers in Earth Science, 2022, 10:1-11.

[57] Lamont N, Jessen F W. The effects of existing fractures in rocks on the extension of hydraulic fractures[C]//37th Annual Fall Meeting of SPE. 1962.

[58] Gu H R, Weng X W. Criterion for fractures crossing frictional interfaces at non-orthogonal angles[C]// 44th US Rock Mechanics Symposium and 5th U.S.-Canada Rock Mechanics Symposium. Salt Lake City, UT 2010.

[59] 张然, 李根生, 赵志红, 等. 压裂中水力裂缝穿过天然裂缝判断准则[J]. 岩土工程学报, 2014, 36(3): 585-588.

[60] 程万, 金衍, 陈勉, 等. 三维空间中水力裂缝穿透天然裂缝的判别准则[J]. 石油勘探与开发, 2014, 41(3): 336-340.

[61] 程万, 金衍, 陈勉, 等. 三维空间中非连续面对水力压裂影响的试验研究[J]. 岩土工程学报, 2015, 37(3): 559-563.

[62] 巩磊, 姚嘉琪, 高帅, 等. 岩石力学层对构造裂缝间距的控制作用[J]. 大地构造与成矿学, 2018, 42(6): 965-973.

[63] 王海洋, 卢义玉, 夏彬伟, 等. 射孔水压裂缝在层状页岩的扩展机制[J]. 中国石油大学学报 (自然科学版), 2018, 42(2): 95-101.

[64] Olson J E, Bahorich B, Holder J. Examining hydraulic fracture-natural fracture interaction in hydrostone block experiments[C]//SPE Hydraulic Fracturing Technology Conference. 2012.

[65] Bahorich B, Olson J E, Holder J. Examining the effect of cemented natural fractures on hydraulic fracture propagation in hydrostone block experiments[C]. in SPE Annual Technical Conference and Exhibition 2015. Houston, Texas, USA, 2015.

[66] 马兵, 李宪文, 刘顺, 等. 致密油层体积压裂人工裂缝与天然微裂缝相互作用研究[J]. 西安石油大学学报: 自然科学版, 2015 (2): 44-48.

[67] Wu S, Ladani R B, Zhang J, et al. Aligning multilayer graphene flakes with an external electric field to improve multifunctional properties of epoxy nanocomposites[J]. Carbon, 2015, 94: 607-618.

[68] 吕有厂. 层理性页岩断裂韧性的加载速率效应试验研究[J]. 岩石力学与工程学报, 2018, 37(6): 1359-1370.

[69] Zhang X, Yin M. Investigation of the hydraulic fracture propagation law of layered rock strata using the discrete-particle model[J]. Geofluids, 2022, 2022:1-16.

[70] Hosseini N, Khoei A R. Numerical simulation of proppant transport and tip screen-out in hydraulic fracturing with the extended finite element method[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 128.

[71] 王贤君, 王维, 张玉广, 等. 低渗透储层缝内暂堵多分支缝压裂技术研究[J]. 石油地质与工程, 2018, 32(03): 113-126.

[72] 付海峰, 张永民, 王欣, 等. 基于脉冲致裂储层的改造新技术研究[J]. 岩石力学与工程学报, 2017, 36(S2): 4008-4016.

[73] Wang H, Kou Z, Guo J, Chen Z. A semi-analytical model for the transient pressure behaviors of a multiple fractured well in a coal seam gas reservoir[J]. Journal of Petroleum Science and Engineering, 2021. 198: 1-13.

[74] Liu Y, Xia B, Liu X. A novel method of orienting hydraulic fractures in coal mines and its mechanism of intensified conduction[J]. Journal of Natural Gas Science and Engineering, 2015, 27: 190-199.

[75] Dou L, Mu Z, Li Z, et al. Research progress of monitoring, forecasting, and prevention of rockburst in underground coal mining in China[J]. International Journal of Coal Science & Technology, 2014, 1(3): 278-288.

[76] Zhu H, Deng J, Jin X, et al. Hydraulic fracture initiation and propagation from wellbore with oriented perforation[J]. Rock Mechanics and Rock Engineering, 2015, 48(2): 585-601.

[77] Almaguer J, Manrique J, Wickramasuriya S, et al. Orienting perforations in the right direction[J]. Oilfield Review, 2002, 14: 16-31.

[78] 于连俊, 邓金根, 曲从锋, 等. 斜井的定向射孔压裂技术研究[J]. 石油天然气学报, 2005, 27(6): 753-756.

[79] 侯玉杰, 郝财利, 闫循强. 马堡煤业定向水力压裂顶板控制技术研究与应用[J]. 能源技术与管理, 2022, 47(2): 84-86.

[80] 冯仁俊. 脉冲射流割缝控制压裂技术关键参数研究及应用[J]. 煤炭工程, 2021. 54(1): 63-69.

[81] 周雷, 李立, 夏彬伟, 等. 含径向水力割缝钻孔导向压裂裂缝形态及影响要素[J]. 煤炭学报, 2022. 47(4): 1559-1570.

[82] 张广清, 陈勉, 赵艳波. 新井定向射孔转向压裂裂缝起裂与延伸机理研究[J]. 石油学报, 2008, 29(1): 116-119.

[83] Xu Y, Zhai C, Hao L, et al. The pressure relief and permeability increase mechanism of crossing-layers directional hydraulic fracturing and its application[J]. Procedia Engineering, 2011, 26: 1184-1193.

[84] Yan F, Lin B, Zhu C, et al. A novel ECBM extraction technology based on the integration of hydraulic slotting and hydraulic fracturing[J]. Journal of Natural Gas Science and Engineering, 2015, 22: 571-579.

[85] Guo T, Qu Z, Gong D, et al. Numerical simulation of directional propagation of hydraulic fracture guided by vertical multi-radial boreholes[J]. Journal of Natural Gas Science and Engineering, 2016, 35: 175-188.

[86] Cheng Y, Lu Y, Ge Z, et al. Experimental study on crack propagation control and mechanism analysis of directional hydraulic fracturing[J]. Fuel, 2018, 218: 316-324.

[87] 田雨, 曲占庆, 郭天魁, 等. 径向井引导水力压裂裂缝定向扩展技术[J]. 科学技术与工程, 2017, 17(20):154-159.

[88] 张耀峰, 邵祖亮, 王涛, 等. 基于 FEMM 的径向井压裂裂缝扩展模拟研究[J]. 油气藏评价与开发, 2020, 10(1): 102-107.

[89] Perkins T K, Kern L R. Widths of hydraulic fractures[J]. Journal of Petroleum Technology, 1961, 13(09): 937-949.

[90] Nordgren R P. Propagation of a vertical hydraulic fracture[J]. Society of Petroleum Engineers Journal, 1972, 12(04): 306-314.

[91] Khristianovic S A, Zheltov Y P. Formation of vertical fractures by means of highly viscous liquid[C]//World Petroleum Congress Proceedings. 1955: 579-586.

[92] Green A E, Sneddon I N. The distribution of stress in the neighbourhood of a flat elliptical crack in an elastic solid[J]. Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge University Press, 1950, 46(1): 159-163.

[93] Adachi J, Siebrits E, Peirce A, et al. Computer simulation of hydraulic fractures[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(5): 739-757.

[94] 许文俊. 非常规油气藏缝网压裂裂缝扩展数值模拟研究[D]. 成都: 西南石油大学, 2019.

[95] Chen Z, Bunger A P, Zhang X, et al. Cohesive zone finite element-based modeling of hydraulic fractures[J]. Acta Mechanica Solida Sinica, 2009, 22(5): 443-452.

[96] 景东阳, 李治平, 韩瑞刚. 致密储层水力压裂裂缝几何形态地质影响因素及控制方法[J]. 科学技术与工程, 2022. 22(21): 9129-9136.

[97] Shahani A R, Fasakhodi M R A. Finite element analysis of dynamic crack propagation using remeshing technique[J]. Materials & Design, 2009, 30(4): 1032-1041.

[98] Liao M, Deng X, Guo Z. Crack propagation modelling using the weak form quadrature element method with minimal remeshing[J]. Theoretical and Applied Fracture Mechanics, 2018, 93: 293-301.

[99] Wowk D, Alousis L, Underhill P R. An adaptive remeshing technique for predicting the growth of irregular crack fronts using p-version finite element analysis[J]. Engineering Fracture Mechanics, 2019, 207: 36-47.

[100] Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601-620.

[101] Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131-150.

[102] Zhou X, Wang L, Jia Z. Field-enriched finite-element method for simulating crack propagation and coalescence in geomaterials[J]. Journal of Engineering Mechanics, 2021, 147(10).

[103] Deng J Q, Lin C, Yang Q, et al. Investigation of directional hydraulic fracturing based on true tri-axial experiment and finite element modeling[J]. Computers and Geotechnics, 2016, 75: 28-47.

[104] Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J]. Geotechnique, 1979, 29(1): 47-65.

[105] 张家伟, 刘向君, 熊健, 等. 基于离散元法的砾岩水力压裂裂缝扩展规律及主控因素[J]. 大庆石油地质与开发, 2022: 1-10.

[106] Yoon J S, Zang A, Stephansson O, et al. Discrete element modelling of hydraulic fracture propagation and dynamic interaction with natural fractures in hard rock[J]. Procedia Engineering, 2017, 191: 1023-1031.

[107] Munjiza A, Owen D R J, Bicanic N. A combined finite-discrete element method in transient dynamics of fracturing solids[J]. Engineering Computations, 1995. 12(2): 145–174.

[108] Nowak T, Kunz H, Dixon D, et al. Coupled 3-D thermo-hydro-mechanical analysis of geotechnological in situ tests[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(1): 1-15.

[109] Zhou W, Yuan W, Chang X. Combined finite-discrete element method modeling of rock failure problems[C]//7th International Conference on Discrete Element Methods. Springer, Singapore, 2017.

[110] Yan C, Zheng H. Three-dimensional hydromechanical model of hydraulic fracturing with arbitrarily discrete fracture networks using finite-discrete element method[J]. International Journal of Geomechanics, 2017, 17(6).

[111] Ghaderi A, Taheri-Shakib J, Nik M A S. The distinct element method (DEM) and the extended finite element method (XFEM) application for analysis of interaction between hydraulic and natural fractures[J]. Journal of Petroleum Science and Engineering, 2018, 171: 422-430.

[112] Borkowski M. 2D capacitance extraction with direct boundary methods[J]. Engineering Analysis with Boundary Elements, 2015, 58: 195-201.

[113] Shi J, Shen B, Stephansson O, et al. A three-dimensional crack growth simulator with displacement discontinuity method[J]. Engineering Analysis with Boundary Elements, 2014, 48: 73-86.

[114] Artioli E, De Miranda S, Lovadina C, et al. A stress/displacement virtual element method for plane elasticity problems[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 325: 155-174.

[115] Crouch S L, Starfield A M. Boundary element methods in solid mechanics[M]. London: Goerge Allen and Unwin Publishers, 1983.

[116] Crouch S L. Solution of plane elasticity problems by the displacement discontinuity method. I. Infinite body solution[J]. International Journal for Numerical Methods in Engineering, 1976, 10(2): 301-343.

[117] Alizadeh R, Marji M F, Abdollahipour A, et al. Development of higher-order displacement discontinuity method to simulate fatigue crack growth in brittle materials[J]. Engineering Fracture Mechanics, 2021, 258.

[118] García-Sánchez F, Zhang C, Sáez A. A two-dimensional time-domain boundary element method for dynamic crack problems in anisotropic solids[J]. Engineering Fracture Mechanics, 2008. 75(6): 1412-1430.

[119] Wu K. Numerical modeling of complex hydraulic fracture development in unconventional reservoirs[D]. Austin: The University of Texas, 2014.

[120] Shrivastava K, Sharma M M. Mechanisms for the formation of complex fracture networks in naturally fractured rocks[C]//SPE Hydraulic Fracturing Technology Conference and Exhibition. Woodlands, Texas, USA, 2018.

[121] Wen P, Fan T. The discontinuity displacement method applied to three dimensional co-planar crack problem for any boundary value condition[J]. Enaineering Fracture Mechanics, 1994, 48(5): 691-702.

[122] Cheng W, Wang R, Jiang G, et al. Modelling hydraulic fracturing in a complex-fracture-network reservoir with the DDM and graph theory[J]. Journal of Natural Gas Science and Engineering, 2017, 47: 73-82.

[123] Zhou D, He P. Major factors affecting simultaneous frac results[C]//SPE Production and Operations Symposium. Oklahoma City, Oklahoma, USA, 2015.

[124] Zhou D S, Zheng P, Yang J W, et al. Optimizing the construction parameters of modified zipper fracs in multiple horizontal wells[J]. Journal of Natural Gas Science and Engineering, 2019, 71.

[125] Cheng W, Jiang G S, Xie J Y, et al. A simulation study comparing the Texas two-step and the multistage consecutive fracturing method[J]. Petroleum Science, 2019, 16(5): 1121-1133.

[126] Zhao J Z, Chen X Y, Li Y M, et al. Numerical simulation of multi-stage fracturing and optimization of perforation in a horizontal well[J]. Petroleum Exploration and Development, 2017, 44(1): 119-126.

[127] Zhao C, Hu Y, Zhao J, et al. Numerical investigation of hydraulic fracture extension based on the meshless method[J]. Geofluids, 2020, 2020:1-16.

[128] Li K, Zhou S. Numerical investigation of multizone hydraulic fracture propagation in porous media: New insights from a phase field method[J]. Journal of Natural Gas Science and Engineering, 2019, 66: 42-59.

[129] 高效伟, 王静, 彭海峰, 等. 高等边界元法:理论与程序[M]. 北京:科学出版社, 2015.

[130] 姜弘道. 弹性力学问题的边界元法[M]. 北京:中国水利水电出版社, 2008.

[131] 肖洪天, 岳中琦. 梯度材料断裂力学的新型边界元法分析[M]. 北京: 高等教育出版社, 2011.

[132] Crouch S L. Solution of plane elasticity problems by the displacement discontinuity method. I. Infinite body solution[J]. International Journal for Numerical Methods in Engineering, 1976, 10(2): 301-343.

[133] 唐慧莹. 基于位移不连续方法的页岩储层压裂数值模拟[D]. 北京: 北京大学, 2017.

[134] 王飞. 位移不连续法及其在岩体工程中的应用[D]. 上海: 上海交通大学, 2010.

[135] Olson J E. Predicting fracture swarms—The influence of subcritical crack growth and the crack-tip process zone on joint spacing in rock[J]. Geological Society, London, Special Publications, 2004, 231(1): 73-88.

[136] Carter R D. Derivation of the general equation for estimating the extent of the fractured area[J]. Drilling and Production Practice. 1957: 261-270.

[137] Lawn B. Fracture of brittle solids (Cambridge solid state science series)[M]. England: Cambridge University Press, 1993.

[138] 黎在良, 王乘. 高等边界元法[M]. 北京: 科学出版社, 2008.

[139] 程万, 金衍. 基于边界元法的水力压裂数值模拟技术[M]. 北京: 科学出版社, 2018.

[140] 艾池, 赵万春, 焦石. 重复压裂裂缝周围应力场计算新方法[J]. 石油钻采工艺, 2008, 30(1): 63-66.

[141] Sneddon I N, Elliot H A. The opening of a Griffith crack under internal pressure[J]. Quarterly of Applied Mathematics, 1946, 4(3): 262-267.

[142] Palmer I D. Induced stresses due to propped hydraulic fracture in coalbed methane wells[J]. Society of Petroleum Engineers, 1993, 12.

[143] 中国航空研究院. 应力强度因子手册[M]. 北京: 科学出版社, 1983.

[144] 姚振汉, 王海涛. 边界元法[M]. 北京: 高等教育出版社, 2010.

[145] 林健, 徐成, 杨建威. 泵流量对纵向切槽水力压裂裂缝偏转距的影响[J]. 煤炭学报, 2020, 45(8): 2804-2812.

[146] Xing Y, Huang B. Injection rate-dependent deflecting propagation rule of hydraulic fracture: insights from the rate-dependent fracture process zone of mixed-mode (I-II) fracturing[J]. Geofluids, 2021, 2021: 1-17.

[147] Zhai M, Wang D, Li L, et al. Investigation on the mechanism of hydraulic fracture propagation and fracture geometry control in tight heterogeneous glutenites[J]. Energy Exploration & Exploitation, 2022, 40(1): 246-278.

[148] Zhou D S, He P. Major factors affecting simultaneous frac results[C]//SPE Production and Operations Symposium. Oklahoma City, Oklahoma, USA, 2015.

[149] Zhang J, Li Y W, Li W, et al. Study on propagation behaviors of hydraulic fracture network in tight sandstone formation with closed cemented natural fractures[J]. Geofluids, 2020, 2020:1-22.

[150] Xing Y, Huang B, Ning E, et al. Quasi-static loading rate effects on fracture process zone development of mixed-mode (I-II) fractures in rock-like materials[J]. Engineering Fracture Mechanics, 2020, 240.

[151] Yang R, Chen C, Xu P, et al. Experimental investigation of obliquely incident blast wave effect on deflection of running cracks[J]. Journal of Testing and Evaluation, 2019, 49(2): 866-880.

[152] Pollard D D. Theoretical displacements and stresses near fractures in rock: with applications to faults, joints, veins, dikes, and solution surfaces[J]. Fracture Mechanics of Rock, 1987: 277-349.

[153] 冯彦军, 康红普. 受压脆性岩石Ⅰ-Ⅱ型复合裂纹水力压裂研究[J]. 煤炭学报, 2013, 38(2): 226-232.

[154] Griffith A A. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of A Mathematical or Physical Character, 1921, 221(582-593): 163-198.

[155] Valkó P, Economides M J. Hydraulic fracture mechanics[M]. Chichester: Wiley, 1995.

[156] Yao Y, Wang W, Keer L M. An energy based analytical method to predict the influence of natural fractures on hydraulic fracture propagation[J]. Engineering Fracture Mechanics, 2018, 189: 232-245.

[157] Renshaw C E, Pollard D D. Numerical simulation of fracture set formation: A fracture mechanics model consistent with experimental observations[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B5): 9359-9372.

[158] Hu Y, Gan Q, Hurst A, et al. Hydraulic fracture propagation and interaction with natural fractures by coupled hydro-mechanical modeling[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021, 8(1): 1-26.

[159] 李世愚, 和泰名, 尹祥础. 岩石断裂力学导论[M]. 合肥: 中国科学技术大学出版社, 2010.

[160] Wong L N Y, Einstein H H. Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(2): 239-249.

[161] 谢雨霖, 李小双, 耿加波, 等. 不同形态下红砂岩力学特性和裂纹断裂特征研究[J]. 矿业研究与开发, 2022. 42(6): 119-125.

[162] Bobet A, Einstein H H. Fracture coalescence in rock-type materials under uniaxial and biaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(7): 863-888.

[163] Wong R H C, Chau K T. Crack coalescence in a rock-like material containing two cracks[J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(2): 147-164.

[164] Wong R H C, Chau K T, Tang C A, et al. Analysis of crack coalescence in rock-like materials containing three flaws—part I: experimental approach[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(7): 909-924.

[165] Horii H, Nemat‐Nasser S. Compression‐induced microcrack growth in brittle solids: Axial splitting and shear failure[J]. Journal of Geophysical Research: Solid Earth, 1985, 90(B4): 3105-3125..

[166] 李世愚, 滕春凯, 卢振业, 等. 裂纹间动态相互作用的实验观测与理论分析[J]. 地球物理学报, 1998, 41(1): 79-88.

[167] 尹祥础, 李世愚, 李红, 等. 闭合裂纹面相互作用的实验研究[J]. 地球物理学报, 1988, 31(03): 306-314.

[168] Hoek E, Bieniawski Z T. Brittle fracture propagation in rock under compression[J]. International Journal of Fracture Mechanics, 1965, 1(3): 137-155.

[169] Tapponnier P, Brace W F. Development of stress-induced microcracks in Westerly granite[C]//International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Pergamon, 1976, 13(4): 103-112.

[170] Ingraffea A R, Heuze F E. Finite element models for rock fracture mechanics[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1980, 4(1): 25-43.

[171] Jorand C, Chemenda A I, Petit J P. Formation of parallel joint sets and shear band/fracture networks in physical models[J]. Tectonophysics, 2012, 581: 84-92.

[172] Indraratna B, Haque A, Aziz N. Shear behaviour of idealized infilled joints under constant normal stiffness[J]. Geotechnique, 1999, 49(3): 331-355.

[173] Jayanathan, M. Shear behaviour of normally consolidated and overconsolidated infilled rock joints under undrained triaxial conditions[D]. Australia: University of Wollongong, 2007.

[174] Indraratna B, Oliveira D A F, Brown E T. A shear-displacement criterion for soil-infilled rock discontinuities[J]. Géotechnique, 2010, 60(8): 623-633.

[175] Timoshenko S P, Goodier J N. Theory of elasticity[M]. McGraw-Hill Book Company, 1934.

[176] Yang S Q, Tian W L, Huang Y H, et al. An experimental and numerical study on cracking behavior of brittle sandstone containing two non-coplanar fissures under uniaxial compression[J]. Rock Mechanics and Rock Engineering, 2016, 49(4): 1497-1515.

[177] Shaffner J, Cheng A, Simms S, et al. The advantage of incorporating microseismic data into fracture models[C]//Canadian Unconventional Resources Conference. Calgary, Alberta, Canada, 2011.

[178] Cheng W, Gao H, Jin Y, et al. A study to assess the stress interaction of propped hydraulic fracture on the geometry of sequential fractures in a horizontal well[J]. Journal of Natural Gas Science and Engineering, 2017. 37: 69-84.

[179] Sobhaniaragh B, Trevelyan J, Mansur W J, et al. Numerical simulation of MZF design with non-planar hydraulic fracturing from multi-lateral horizontal wells[J]. Journal of Natural Gas Science and Engineering, 2017, 46: 93-107.

[180] Sobhaniaragh B, Nguyen V P, Mansur W J, et al. Pore pressure and stress coupling in closely-spaced hydraulic fracturing designs on adjacent horizontal wellbores[J]. European Journal of Mechanics-A/Solids, 2018, 67: 18-33

[181] Kumar D, Ghassemi A. Three-dimensional poroelastic modeling of multiple hydraulic fracture propagation from horizontal wells[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 105: 192-209.

[182] Li K, Huang L, Huang X. Propagation simulation and dilatancy analysis of rock joint using displacement discontinuity method[J]. Journal of Central South University, 2014, 21(3): 1184-1189.

[183] Zhou J, Zhang L, Qi S, et al. Empirical ratio of dynamic to static stiffness for propped artificial fractures under variable normal stress[J]. Engineering Geology, 2020, 273.

[184] Wu B, Tang K. Modelling of dynamic crack propagation on concrete matrix-aggregate interface[J]. Procedia Structural Integrity, 2018, 13: 722-727.

[185] Cheng C, Li X, Li S, et al. Failure behavior of granite affected by confinement and water pressure and its influence on the seepage behavior by laboratory experiments[J]. Materials, 2017, 10(7): 798.

[186] Ghasemi S, Khamehchiyan M, Taheri A, et al. Crack evolution in damage stress thresholds in different minerals of granite rock[J]. Rock Mechanics and Rock Engineering, 2020, 53(3): 1163-1178.

[187] Kranz R L. Microcracks in rocks: a review[J]. Tectonophysics, 1983, 100(1-3): 449-480.

[188] Zou Y S, Zhang S C, Zhou T, et al. Experimental investigation into hydraulic fracture network propagation in gas shales using CT scanning technology[J]. Rock Mechanics and Rock Engineering, 2016, 49(1): 33-45.

[189] Guo T, Zhang S, Ge H, et al. A new method for evaluation of fracture network formation capacity of rock[J]. Fuel, 2015, 140: 778-787.

[190] 滕春凯, 李世愚, 和雪松, 等. 裂纹系微破裂集结和动态扩展的实验研究[J]. 地球物理学报, 2001, 44: 136-145.

[191] Blanton T L. An experimental study of interaction between hydraulically induced and pre-existing fractures[C]//SPE Unconventional Gas Recovery Symposium of the Society of Petroleum Engineers. Pittsburgh, 1982.

[192] Teufel L W, Clark J A. Hydraulic fracture propagation in layered rock: experimental studies of fracture containment[J]. Society of Petroleum Engineers Journal, 1984, 24(01): 19-32.

[193] Blanton T L. Propagation of hydraulically and dynamically induced fractures in naturally fractured reservoirs[C]//SPE Unconventional Gas Technology Symposium of the Society of Petroleum Engineers. Louisville. KY, 1986:613-627.

[194] Anderson G D. Effects of friction on hydraulic fracture growth near unbonded interfaces in rocks[J]. Society of Petroleum Engineers Journal, 1981, 21(01): 21-29.

[195] Biot M A, Medlin W L, Masse L. Fracture penetration through an interface[J]. Society of Petroleum Engineers Journal, 1983, 23(06): 857-869.

[196] Blair S C, Thorpe R K, Heuze F E. Propagation of fluid-driven fractures in jointed rock. Part 2—physical tests on blocks with an interface or lens[C]//International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Pergamon, 1990, 27(4): 255-268.

[197] Teufel L W, Clark J A. Hydraulic fracture propagation in layered rock: experimental studies of fracture containment[J]. Society of Petroleum Engineers Journal, 1984, 24(01): 19-32.

[198] Helgeson D E, Aydin A. Characteristics of joint propagation across layer interfaces in sedimentary rocks[J]. Journal of Structural Geology, 1991, 13(8): 897-911.

[199] Dollar A, Steif P S. A tension crack impinging upon frictional interfaces[J]. Journal of Applied Mechanics, 1989, 56(2): 291-298.

[200] Lam K Y, Cleary M P. Slippage and re-initiation of (hydraulic) fractures at frictional interfaces[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1984, 22(3): 589–604.

[201] Xu W J, Zhao J Z, Rahman S S, et al. A comprehensive model of a hydraulic fracture interacting with a natural fracture: analytical and numerical solution[J]. Rock Mechanics and Rock Engineering, 2018, 52(4): 1095-1113.

[202] Han S C, Cheng Y F, Gao Q, et al. Analysis of instability mechanisms of natural fractures during the approach of a hydraulic fracture[J]. Journal of Petroleum Science and Engineering, 2020, 185.

[203] Zhou Y , Arif M. A summary of PID control algorithms based on AI-enabled embedded systems[J]. Security and Communication Networks, 2022, 1-7.

[204]石宗瑞,王军.基于模糊理论和PID算法的电力系统控制方法[J].微型电脑应用,2022,38(7).

中图分类号:

 TE357    

开放日期:

 2025-03-09    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式