- 无标题文档
查看论文信息

论文中文题名:

 山阳煤矿复合顶板回采巷道围岩失稳规律及控制技术研究    

姓名:

 李宏儒    

学号:

 19203213034    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085218    

学科名称:

 工学 - 工程 - 矿业工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 能源学院    

专业:

 矿业工程    

研究方向:

 矿山压力与岩层控制    

第一导师姓名:

 张杰    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-22    

论文答辩日期:

 2022-05-29    

论文外文题名:

 Research on the instability law and control technology of surrounding rock in ShanYang coal mine composite roof back mining roadway    

论文中文关键词:

 复合顶板 ; 膨胀应力 ; 失稳机理 ; 回采巷道 ; 巷道支护    

论文外文关键词:

 Composite roof plate ; expansion stress ; instability mechanism ; return roadway ; roadway support    

论文中文摘要:

随着煤层开采深度的不断增加,特别是在煤层软、顶板软、受裂隙水等多因素影响的情况下,复合顶板巷道的支护越来越困难。澄合矿区山阳煤矿复合顶板的主要特点是煤岩岩性较软、直接顶分层厚度小、分层层数多、巷道维护困难。因此针对澄合矿区复合顶板巷道支护问题,本文以山阳煤矿5#煤层1501回风巷为工程背景,对复合顶板软岩巷道的破坏机理及支护问题进行了研究,总结了复合顶板软岩巷道的顶板破坏规律,提出了合理的支护方案。通过物理力学参数实验,分析了顶板各岩层的物理参数,并判定出上部砂质泥岩为膨胀岩,软岩的最大膨胀率为42.3%,最大膨胀应力为198.2kPa。同时采用钻孔窥视仪对1501工作面回风巷进行观测,得出巷道围岩松动范围两帮为1.5~2.8m,顶板为4~6.5m,复合顶板巷道围岩变形量两帮的最大收敛量达到351mm,顶板最大下沉量达到831mm,根据顶板覆岩的分布判定,顶板为“砂质泥岩+细粒砂岩+砂质泥岩”的复合顶板结构。通过理论分析,建立了山阳煤矿巷道复合顶板力学模型,推导得出复合顶板各岩层所受拉应力,并对各个岩层在受到膨胀应力作用下的稳定性进行了判别,得到山阳煤矿复合顶板回采巷道围岩失稳规律,原因是K4稳定岩层之下的软弱复合顶板由于吸水膨胀产生的膨胀应力和自重载荷作用容易产生挠曲变形破坏,同时对山阳煤矿原支护方案的可行性进行了分析;并由物理相似模拟实验可得,山阳煤矿复合顶板在原支护条件下受膨胀应力作用,巷道围岩的变形破坏严重,顶板下沉量最大值为836mm,两帮最大收敛量为356mm。在理论分析、实验研究的基础上进行了不同支护方案的数值模拟分析,提出了合理的支护方案,并通过现场实测分别对围岩运移情况和巷道的顶板及两帮的位移进行了分析,验证了新的支护方案能有效的抑制软岩巷道复合顶板的离层,减小顶板的破坏深度,取得了良好的支护效果,满足山阳煤矿复合顶板回采巷道稳定的控制要求。

论文外文摘要:

With the continuous increase of coal seam mining depth, especially in the case of soft coal seam, soft roof, fissure water and other factors, the support of composite roof roadways is becoming more and more difficult. The main characteristics of the thick composite roof of ShanYang Mine in ChengHe Mining Area are soft lithology of coal rock, small thickness of direct top layering, large number of layers, and difficult maintenance of roadways. Therefore, in view of the problem of thick composite roof roadway support in ChengHe Mining Area, this paper takes the 5# coal seam 1501 track alley of ShanYang Coal Mine as the engineering background, studies the failure mechanism and support problem of thick composite roof soft rock roadway, summarizes the roof failure law of composite roof soft rock roadway, and proposes a reasonable support scheme.Through the physical and mechanical parameter experiments, the physical parameters of each rock layer of the roof plate were analyzed, and the upper sandy mud-stone was determined to be an expansion rock, the expansion rate of soft rock was 42.3%, and the maximum expansion stress was 198.2kPa. At the same time, the drilling peeping instrument was used to observe the 1501 working surface return wind alley, and it was obtained that the loosening range of the surrounding rock of the alley was 1.5 to 2.8m, the top plate was 4 to 6.5 m, the maximum convergence of the two gangs of the deformation of the composite roof roadway reached 351mm, and the maximum sinking amount of the top plate reached 831mm, and according to the distribution of the roof cover, the roof was a composite roof structure of "sandy mud-stone + fine sandstone + sandstone mud-stone".

Through theoretical analysis, the mechanical model of the composite roof of the roadway of ShanYang Coal Mine was established, the tensile stress of each rock layer of the composite roof plate was derived, and the stability of each rock layer under the action of expansion stress was judged, and the instability mechanism of the surrounding rock of the composite roof of the composite roof back mining roadway of ShanYang Coal Mine was obtained, which was the expansion stress and self-weight load of the weak composite roof plate under the K4 stable rock layer that were prone to flexion deformation damage due to the expansion stress and self-weight load of the water absorption expansion. Physical similar simulation experiments can be shown that the composite roof of ShanYang Coal Mine is subjected to expansion stress under the original support conditions, and the deformation and damage of the surrounding rock of the roadway is serious, and the maximum sinking amount of the roof plate is 836mm, and the maximum convergence of the two gangs is 356mm.

On the basis of theoretical analysis and experimental research, the numerical simulation analysis of different support schemes was carried out, a reasonable support scheme was proposed, and the surrounding rock transport situation and anchor rod (cable) force and the displacement of the roof plate and the two gangs of the roadway were analyzed through on-site measurement, which verified that the new support scheme could effectively inhibit the delamination of the composite roof plate of the soft rock roadway, reduce the failure depth of the roof plate, and achieve a good support effect, which met the control requirements of the stability of the composite roof of the ShanYang Coal Mine.

参考文献:

[1]黄盛初.中国煤炭发展报告[M].煤炭工业出版社,2004.

[2]沙迪,李雨成,田叶,等.煤矿安全生产事故统计分析及预测研究[J].高技术通讯,2018,28(01):83-89.

[3]潘小虎.特殊地质条件煤矿开采掘进工作面顶板管理[J].中国石油和化工标准与质量,2019,39(21):78-79.

[4]常聚才.深井复合顶板回采巷道支护技术研究[J].煤炭科学技术,2016,44(06):60-63+77.

[5]岳中文,杨仁树,闫振东,张耀辉,韩朋飞.复合顶板大断面煤巷围岩稳定性试验研究[J].煤炭学报,2011,36(S1):47-52.

[6]李桂臣.软弱夹层顶板巷道围岩稳定与安全控制研究[D].中国矿业大学,2008.

[7]杨峰,王连国,贺安民,等.复合顶板的破坏机理与锚杆支护技术[J].采矿与安全工程学报,2008,25(03):4.

[8]王文韬.深部开采复合顶板层间离层在不同原岩应力下的变化规律[D].安徽建筑大学.

[9]陈光林,王红胜,基于损伤分析的复合顶板煤巷离层判定[J].煤矿安全, 2017, 48 (11): 191-193,197.

[10]曹俊才,左宇军,李伟,等.特厚复合顶板离层破坏机理研究[J].煤矿安全,2017,48 (03): 52-55.

[11]杨峰.复合顶板动压巷道变形破坏机理与锚杆支护技术研究[D].济南:山东科技大学, 2006.

[12]和新亮,张代军.深部复合顶板支护技术的实践与研究[J].华北科技学院学报, 2008, 5(02).

[13]K. Harames. Floor heave analysis in a deep coal mine. Proe. of the27th U.S.SymPosium on Rock Meehanies [J].Alabama,1996:520-525.

[14]A froes. Geotechnical Assessment of the bearing Capacity of Coal Mine Floors [J].International Journal of Mining and Geological Engineering,1996(06):297-312.

[15]Y.P.Chough Analysis of soft Floor Interaction in Underground Mining at an Iuinoif Basin Coal Mine [C].Design and Performance of Underground Excavations,ISIM/BGS,Cambridge,1984:383-390.

[16]A.H.Wilson.The Stability of Tunnels in Soft Rock at Depth.Proc.Conf.On Rock Engineering [J].University Newcastle upon Tyne,1977:511-515.

[17]D. J. Rockaway. Investigation into the Effects of Weak Floor Conditions on the Stability of coal Pillar [J].United States Bureau of Mines open File Report Final,1979:237-243.

[18]S. Peng. Coal Mine Ground Control John Wiley & Sons [M].Inc. New York,1978. 1996(07):153-157.

[19]P.Williams.The Development of Rock Bolting in UK Coal Mines[J].Mining Engineering, 1994(05):233-237.

[20]李芳成,孙广义,李风仪,张东日,张国华.层状复合岩层回采巷道锚杆支护[J].矿山压力与顶板管理,1997(02):49-51+82

[21]吴甲春.松软及复合顶板管理初探[J].西部探矿工程,1994,6(01):61-63.

[22]温大维,吴爱民.困难条件下的煤巷锚杆控顶技术[J].煤炭科学技术,1999,27(06):1-6.

[23]柏建彪,侯朝炯.复合顶板极软煤层巷道锚杆支护技术研究[J].岩石力学与工程学报,2001,20(01):53-56.

[24]苏仲杰,于广明,杨伦.覆岩离层变形力学模型及应用[J].岩土工程学报, 2002, 24 (06):778-781.

[25]武昊.复合巷道顶板破坏部位的机理及支护研究[J].能源与节能,2016,189(05):3.

[26]李东印,邢奇生,张瑞林.深部复合顶板巷道变形破坏机理研究[J].河南理工大学学报(自然科学版),2006,(06):457-460.

[27]Abbas Majdi Seghinsara,Moghadampourhassan,HamidNasrabadi,MortezaMilani. Role of Probiotics in Managing of Helicobacter Pylori Infection: AReview[J].Drug Res (Stuttg),2016,67(02).

[28]郜进海,康天合,靳钟铭,郑铜镖.巨厚薄层状顶板回采巷道围岩裂隙演化规律的相似模拟试验研究[J].岩石力学与工程学报,2004,(19):3292-3297.

[29]贾蓬,唐春安,王述红.巷道层状岩层顶板破坏机理[J].煤炭学报,2006,(01):11-15.

[30]蒋力帅,马念杰,白浪,等.巷道复合顶板变形破坏特征与冒顶隐患分级[J].煤炭学报,2014,39(07):1205-1211.

[31]杨建辉,杨万斌,郭延华.煤巷层状顶板压曲破坏现象分析[J].煤炭学报,2001,(03):240-244.

[32]张顶立,王悦汉,曲天智.夹层对层状岩体稳定性的影响分析[J].岩石力学与工程学报,2000,(02):140-144.

[33]刘毅,李炜.平行层状岩体的自重应力场[J].岩土力学,2001,(01):63-66.

[34]林崇德.煤巷层状顶板破坏机理分析[M].北京:煤炭工业出版社,1994.

[35]张玉军,唐仪兴.层状岩体强度异向性地下洞室的有限元分析[J].地下空间,1999,(01):31-35+87.

[36]高清东.层状岩体中巷道钢丝绳锚杆网支护研究与应用[J].矿冶,2001,(04):16-19.

[37]杨松林,朱焕春,刘祖德.加锚层状岩体的本构模型[J].岩土工程学报,2001,(04):427-430.

[38]杨延毅.加锚层状岩体的变形破坏过程与加固效果分析模型[J].岩石力学与工程学报,1994,(04):309-317.

[39]王宏图,李晓红,杨春和,等.准各向同性裂隙岩体中有效动弹性参数与弹性波速关系的研究[J].岩土力学,2005,(06):873-876

[40]胡进.弱黏结薄层复合顶板煤巷支护与围岩控制技术[D].安徽理工大学,2015.

[41]耿大新,杨林德,层状岩体的力学特性及数值模拟分析[J].地下空间,2003,23(04):380-383,387.

[42]潘生健.五凤煤矿复合顶板巷道锚杆支护可行性分析[J].山东煤炭科技,2009,(06):69-70.

[43]陈勇,郝胜鹏,陈延涛,等.带有导向孔的浅孔爆破在留巷切顶卸压中的应用研究[J].采矿与安全工程学报,2015,32(02):253-259.

[44]张国华,梁冰,张宏伟,等.回采巷道顶板离层分析与锚杆组合支护技术参数确定[J].重庆大学学报,2010,(07):135-140.

[45]张农,李宝玉,李桂臣,等.薄层状煤岩体中巷道的不均匀破坏及封闭支护[J].采矿与安全工程学报,2013,30(01):1-6.

[46]张农,王成,高明仕,赵一鸣.淮南矿区深部煤巷支护难度分级及控制对策[J].岩石力学与工程学报,2009,28(12):2421-2428.

[47]李桂臣,张农,曹朋,等.含软弱夹层顶板巷道安全状况可拓评价模型[J].中国矿业大学学报,2013,42(01):24-30.

[48]康天合,郑铜镖,李焕群.循环荷载作用下层状节理岩体锚固效果的物理模拟研究[J].岩石力学与工程学报,2004,(10):1724-1729.

[49]李新平,王涛,宋桂红,等.锚固层状岩体的复合加固理论与数值模拟试验分析[J].岩石力学与工程学报,2006,(S2):3654-3660.

[50]杨永刚,张海燕,解盘石.复杂围岩环境下大断面巷道支护系统研究与实践[J].采矿与安全工程学报,2009,(03):354-358.

[51]魏锦平,郜进海,陈商强.基于梁—拱式组合结构的薄层状复合顶板锚固设计[J].采矿与安全工程学报,2009,(04):499-502.

[52]高明仕,郭春生,李江锋,等.厚层松软复合顶板煤巷梯次支护力学原理及应用[J].中国矿业大学学报,2011,(03):333-338.

[53]马其华,姜斌,许文龙,等.复合顶板巷道围岩控制技术研究[J].煤炭工程,2016,(05):47-49.

[54]常聚才.深井复合顶板回采巷道支护技术研究[J].煤炭科学技术,2016,(06):60-63+77.

[55]谷拴成,丁潇,刘方路.巷道顶板离层群对锚固荷载影响的弹性分析[J].煤矿安全,2013,(07):183-186.

[56]谷拴成,丁潇.岩体离层对锚固体荷载影响的弹塑性分析[J].岩土力学,2013,(09):2649-2654.

[57]谷拴成,丁潇.考虑围岩离层影响的端部锚固锚杆荷载分析及其支护设计[J].采矿与安全工程学报,2015,(05):760-764.

[58]康红普,崔千里,胡滨,吴志刚.树脂锚杆锚固性能及影响因素分析[J].煤炭学报,2014,39(01):1-10.

[59]康红普,吴拥政,李建波.锚杆支护组合构件的力学性能与支护效果分析[J].煤炭学报,2010,35(07):1057-1065.

[60]徐福林.三软综采大断面开切眼特厚复合顶板联合支护技术[J].科技创新与应用,2012(18):74.

[61]徐盼.深部软弱煤巷预应力锚杆支护效果分析[J].宿州学院学报,2020,35(08):68-71.

[62]于涛,李小鹏,申骏超,姜彦军.三软厚煤层超前切顶沿空留巷充填墙稳定性与尺寸优化研究[J].煤炭工程,2021,53(01):12-18.

[63]柏建彪,侯朝炯,杜木民,等.复合顶板极软煤层巷道锚杆支护技术研究[J].岩石力学与工程学报,2001,20(01):53-53.

[64]陈勇,于新锋,柏建彪.复合顶板巷道锚杆锚索支护技术探讨[J].能源技术与管理, 2005(06):3.

[65]赵士元.复合顶板巷道锚杆锚索支护技术探讨[J].山东煤炭科技,2015(12):2.

[66]杨峰,王连国,贺安民,高峰,许东来.复合顶板的破坏机理与锚杆支护技术[J].采矿与安全工程学报,2008(03):286-289.

[67]Holtz,W.G,Gibbs,H.J.Engineering properties of expansive clay proceedings[J]. ASCE,1954,8(02) : 232-244.

[68]Rauch A ,Harmon J ,Katz L ,et al.Measured Effects of Liquid Soil Stabilizers on Engineering Properties of Clay[J].Transportation Research Record Journal of the Transportation Research Board,2002,1787:33-41.

[69]HUDER J,AMBERG G.Sources in marl, clay and anhydrite[J]. Swiss Journal of Architecture,1970, 88(43): 975-980.

[70]韦秉旭,周玉峰.宁明膨胀土侧限有荷膨胀变形试验研究[J].力学与实践,2006, 28 (06):64-68.

[71]杨庆,廖国华.膨胀岩三轴膨胀试验的研究[J].岩石力学与工程学报,1996,13 (01):51-051.

[72]Newman, A. Pyrite oxidation and museum collections: a review of theory and conservationtreatments[J]. The Geological Curator,1998,6(10):363-370.

[73]Hoover, S. E. and Lehmann,D. The expansive effects of concentrated pyritic zones within the Devonian Marcellus Shale formation of North America[J].Quarterly Journal of Engineering Geology and Hydrogeology, 42, 2009,157-164.

[74]Czerewko M A ,Cross S A ,Dumelow P G ,et al.Assessment of pyritic Lower Liasmudrocks for earthworks[J]. Geotechnical Engineering,2011,164(2):59-77.

[75]谷拴成,苏锋,崔希鹏.煤巷复合顶板变形破坏规律分析[J].煤炭科学技术,2012,40(05):20-23-62.

中图分类号:

 TD353    

开放日期:

 2022-06-22    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式