- 无标题文档
查看论文信息

论文中文题名:

 基于GIS和层次分析法的神木市 地质灾害风险评价    

姓名:

 张浩暄    

学号:

 19309212001    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085217    

学科名称:

 工学 - 工程 - 地质工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质资源与地质工程    

研究方向:

 地质灾害预测与防治    

第一导师姓名:

 孙学阳    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-19    

论文答辩日期:

 2023-06-07    

论文外文题名:

 Geological hazard risk investigation and assessment in Shenmu City based on GIS and AHP    

论文中文关键词:

 地质灾害 ; 层次分析法 ; 易发性评价 ; 风险评价 ; GIS    

论文外文关键词:

 Geological hazards ; Analytic hierarchy process ; Vulnerability assessment ; Risk assessment ; GIS    

论文中文摘要:

陕北黄土高原沟壑纵横、地形起伏大,岩土体破碎,崩塌、滑坡等突发性地质灾害频发,是陕西省地质灾害重点防范区。神木地处陕北黄土高原腹地北部,黄土梁峁沟壑发育,地质环境脆弱,地质灾害隐患点多面广,威胁着人民群众生命财产安全,一定程度上制约了市域经济和社会可持续发展。本文以神木市为研究区地质环境背景为基础,从地质灾害发育特征及分布规律的分析入手,采用层次分析法,构建判断矩阵,确定各影响因子的权重值,利用GIS的空间计算和分析功能,得出地质灾害易发性评价结果。通过降雨量影响因素与地质灾害易发性评价结果叠加,得到地质灾害危险性评价结果。利用1∶5万遥感数据提取房屋建筑、铁路、主要道路作为承灾体分布的主要依据,通过承灾体类型对研究区地质灾害的易损性进行分析。最终综合考虑地质灾害危险性和易损性评价结果,通过GIS叠加,得到地质灾害风险评价结果。通过本文的研究,最终取得以下成果:

(1)研究区现有地质灾害隐患点203处,其中,滑坡40处,崩塌163处。

(2)地质灾害在空间上具有在黄土粱峁区相对集中分布和沿河流沟谷两侧条带状展布的规律,地质灾害隐患点较集中分布于万镇、贺家川镇、马镇镇,且神木市地质灾害隐患点的分布随人口密度的增大呈正相关。在时间域上主要表现为,在地质历史时期,滑坡、崩塌在晚更新世末和全新世初期相对集中;在人类历史时期,滑坡、崩塌在人类活动强烈的时期相对集中;在一年之内,滑坡、崩塌在6~10月份雨季相对集中。

(3)神木市共划分为地质灾害高风险、中风险、低风险区3种级区,无极高风险区。其中地质灾害高风险区面积112.57km2,占调查区总面积的1.51%,共发育地质灾害隐患点62处;中风险区面积2333.64km2,占调查区总面积的31.22%,共发育地质灾害隐患点115处;低风险区面积5028.43km2,占调查区总面积的67.27%,共发育地质灾害隐患点26处。

论文外文摘要:

The Loess Plateau in northern Shaanxi is a key prevention area for geological disasters due to its crisscross and undulating terrain, broken rock and soil, frequent occurrence of sudden geological disasters such as collapses and landslides. Shenmu is located in the northern part of the hinterland of the Loess Plateau in northern Shaanxi, with developed loess ridges, hills, and gullies. The geological environment is fragile, and geological hazards are numerous and widespread, posing a threat to the safety of people's lives and property. To some extent, it restricts the sustainable development of the city's economy and society. Based on the geological environment background of Shenmu City as the study area, starting from the analysis of the development characteristics and distribution laws of geological disasters, this paper uses the analytic hierarchy process to build a judgment matrix, determine the weight value of each impact factor, and use the spatial calculation and analysis functions of GIS to obtain the evaluation results of geological disaster vulnerability. By overlaying the factors affecting rainfall with the evaluation results of geological hazard susceptibility, the geological hazard risk assessment results are obtained. Using 1:50000 remote sensing data to extract buildings, railways, and main roads as the main basis for the distribution of disaster bearing bodies, the vulnerability of geological disasters in the study area was analyzed based on the types of disaster bearing bodies. Finally, taking into account the risk and vulnerability assessment results of geological disasters, the risk assessment results of geological disasters are obtained through GIS overlay. Through the research in this article, the following results were ultimately achieved:

(1) There are 203 potential geological hazard points in the research area, including 40 landslides and 163 collapses.

(2) In space, geological disasters are relatively concentrated in the loess Liangmao area and distributed in strips along both sides of rivers and valleys. Potential geological disasters are concentrated in Wanzhen Town, Hejiachuan Town and Mazhen Town, and the distribution of potential geological disasters in Shenmu City is positively correlated with the increase of population density. In the time domain, landslides and collapses were relatively concentrated at the end of the late Pleistocene and the early Holocene in the geological history; In human history, landslides and collapses were relatively concentrated during periods of intense human activity; Within a year, landslides and collapses are relatively concentrated during the rainy season from June to October.

(3) Shenmu is divided into three levels of areas with high risk, medium risk and low risk of geological disasters, without extremely high risk areas. Among them, the high-risk area of geological disasters covers an area of 112.57km2, accounting for 1.51% of the total area of the survey area, with a total of 62 potential geological hazard points developed; The medium risk area covers an area of 2333.64km2, accounting for 31.22% of the total surveyed area, with a total of 115 potential geological hazard points developed; The low-risk area covers an area of 5028.43km2, accounting for 67.27% of the total surveyed area, with a total of 26 potential geological hazard points developed.

参考文献:

[1]毕鸿基,聂磊,曾超,等. 基于三种多变量不安定指数分析模型的汶川县地质灾害易发性评价[J]. 中国地质灾害与防治学报,2022,33(1): 123-131.

[2]Tham L G Landslide susceptibility mapping based on Support Vector Machine:A case study on natural slopes of Hong Kong,China[J]. Geomorphology, 2008, 101(4):572-582.

[3]ZAWAWI M H,NG F,AZMAN A, 等 .Reliability analysis on the reservoir dam spillway structure using fluid-structure interaction; proceedings of the IOP Conference Series: Materials Science and Engineering, F, 2020[C].IOP Publishing.

[4]YANG J,SONG C,YANG Y, et al. New method for landslidesusceptibility mapping supported by spatial logistic regression and GeoDetector: Acase study of Duwen Highway Basin, Sichuan Province, China [J]. Geomorphology2019.324: 62-71.

[5]卢全中,彭建兵,赵法锁.地质灾害风险评估(价)研究综述[J].灾害学, 2003, 18(4):59-63.

[6]LIU M, HE Y,WANG , et al. Hybrid intelligent algorithm and itsapplication in geological hazard risk assessment [J]. Neurocomputing, 2015, 149847-53.

[7]SUNG C-H, LIAW S-C. A GIS-based approach for assessing socialvulnerability to flood and debris flow hazards [J]. International journal of disaster riskreduction,2020,46: 101531.

[8]GHESHLAGHI H A,FEIZIZADEH B. An integrated approach ofanalytical network process and fuzzy based spatial decision making systems appliedto landslide risk mapping [J]. Journal of African Earth Sciences, 2017, 133: 15-24.

[9]Glade T, Anderson M, Crozier M J. 21. Quantitative Landslide Risk Assessment of Caims, Australia[M].Landslide Hazard and Risk. 2012.

[10]Alotti P, Polloni G et Hydrogeological Risk Asscssment of the Po River Basin (taly)[M]. Landslides in research, theory and practice, Thomas Telford, London,2000,13-18.

[11]霍艾迪,张骏,卢玉东,等地质灾害易发性评价单元划分方法——以陕西省黄陵县为例 [J],吉林大学学报(地), 2011, 41(2):523-528.

[12]ARABAMERI A, PRADHAN B,LOMBARDO L.Comparative assessmentusing boosted regression trees, binary logistic regression, frequency ratio andnumerical risk factor for gully erosion susceptibility modelling [J]. Catena, 2019, 183104223

[13]ARABAMERI A,PRADHAN B,REZAEI K. Gully erosion zonationmapping using integrated geographically weighted regression with certainty factoland random forest models in GIS J]. Journal of environmental management, 2019232: 928-42

[14]ZHAO Y, WANG R, JIANG Y, et al. GIS-based logistic regression forrainfall-induced landslide susceptibility mapping under different grid sizes in YueqingSoutheastemn China [. Engineering geology,2019, 259: 105147.

[15]陈飞,郭顺,熊如宗,钟连祥.基于层次分析法的地质灾害危险性评价[J].有色金属科学与工程,2018,9(05):54-60.

[16]曹璞源,胡胜,邱海军,杨冬冬,曹明明.基于模糊层次分析的西安市地质灾害危险性评价[J]. 干旱区资源与环境, 2017,31( 08) : 136-142.

[17]范文,刘雪梅,高德彬等主成分分析法在地质灾害危险性综合评价中的应用[N].地球科学与环境学报, 2001, 23(4):53-57.

[18]许强,黄润秋,施继承.斜坡稳定性空间预测的神经网络方法[N].中国地质灾害与防治学 报, 1994(2):17-22.

[19] HUANG Y,ZHAO L. Review on landslide susceptibility mapping usingsupport vector machines [J]. Catena, 2018.165: 520-9

[20]阮沈勇,黄润秋.基于GIS的信息量法模型在地质灾害危险性区划中的应用[].成都理 工大学学报(自科版), 2001, 28(1):89-92.

[21] Michael-Leiba M. Quantitive Landslide Risk Assessment of Caims[M].Australia, Landslides in research, theory and practice, Thomas Telford, 2000:2-91.

[22] Lee S, Min K. Statistical analysis of landslide susceptibility at Yongin, Korea[].Environmental Geology, 2001, 40(9):1095-1113.

[23]席盼盼.基于GIS的朗县地质灾害易发性评价研究[D].吉林大学, 2014.

[24]曾裕平.重大突发性滑坡灾害预测预报研究[D].成都理工大学,2009.

[25]朱良峰,殷坤龙,张梁,等基于GIS技术的地质灾害风险分析系统研究[J]工程地质学 报, 2002, 10(4):428 433.

[26]张业成,胡景江,张春山中国地质灾害危险性分析与灾变区划[J].地质灾害与环境保 护, 1995(3):55-67.

[27] 韦祖鹏,眭华生,贺建涛,等.层次分析法在通海县地质灾害易发性分区中的应用[J].中国水土保持,2019(5):28-31.

[28]张记军,基于GIS的汾阳市地质灾害危险性定量区划研究[D],2017-6.

[29]窦强,基于GIS和层次分析法的深圳市废弃矿山地质环境评价[D],2020-6.

[30]王伟中,山阳县城区斜坡地质灾害风险评价[D],2020-6.

[31]林涛、冯丽先,贵州山区典型地质灾害风险评价[J],2022-1.

[32]马晓峰、朱浩濛,省级地质灾害风险评价技术方法研究——以浙江省为例[J],2021-1.

[33]毕鸿基,聂磊,曾超,等.基于三种多变量不安定指数分析模型的汶川县地质灾害易发性评价[J].中国地质灾害与防治学报, 2022, 33(1): 123-131.

[34]吴树仁,石菊松,王涛.突发地质灾害预测评价概论[J].地质通报, 2008,27(11):1753-1763.

[35]金晓飞,黄德喜.浙江永嘉楠溪江沿线的江南古村群[J]. 国家人文地理,2009(11):118-125.

[37]永嘉县统计局.2016年永嘉县国民经济和社会发展统计公报[R].2016

[38]李瑞冬,丛凯.地质构造对地质灾害发育的影响分析--以甘肃 省文县为例[J]甘肃地 质, 2012(3):25-29.

[39]李晓重庆地区的强降雨过程与地质灾害的相关分析[J].中国地质灾害与防治学报,

[40]罗元华.地质灾害风险评估方法[M].地质出版社, 1998.

[41]刘峥.小区域发展对现行规划县域规划编制体系影响的研究一-以永嘉县为例[M]. 建 筑工程学院, 2009.

[42]吕金林,易发成,李艺丹,等.基于GIS的山区小流域地质灾害易发性评价[J].城市地理,2016(2).

[43]沈芳,黄润秋.地理信息系统与地质环境评价[J].地质灾害与环境保护,2000, 11(1):6-10. 

[44]陈洪凯,唐红梅.川藏公路地质灾害危险性评价[J].公路, 2011(9):17-23.

[45]金艳珠,谈树成,虎雄岗,等.基于层次分析法与GIS相结合的岩溶塌陷地质灾害易发性 分区评估一以云 南省师宗县为例[J].热带地理, 2012, 32(2):173-178.

[46]张旭光,李瑞冬.基于层次分析法和GIS的甘肃省武山县地质灾害易发性区划研究[J].甘肃地质, 2012(3):70-78.

[47]陆兆溱.工程地质学[M].水利电力出版社, 1989.

[48]GB18306-2015.中国地震动参数区划图[S].北京:中国标准出版社,2015.

[49]GB50011-2010.建筑抗震设计规范[S].北京:中国建筑工业出版社,2016.

[50]王国良.层次分析法在地质灾害危险性评估中的应用[C].夭津青年科技论坛.2006. 

[51]滕继东,项梦杰,李苏,等.改进模糊层次分析法确定地质灾害危险性评价指标权重的研究[J].安徽农业科学, 2008, 36(1):22-23.

[52]刘宇恒,邓辉,熊倩莹.基于层次分析法的茂县斜坡地质灾害易发性评价[J].长江科学院院报,2017,34( 05) : 31-35.

[53]邵艳坡,郭志勇,白书建.基于 GIS的资源环境承载力评价与空间布局优化——以荣成市为例[J].山东国土资源,2019,35(1):57-61.

[54]张丽,李瑞敏,许书刚,等.江苏宜兴市地质资源环境承载能力评价[J].地质通报,2020,39(1):131-137.

[55]李晓波,赵新卓,郄亮,等.基于 GIS空间分析的地质环境承载能力评价:以泰安市高新区为例[J].山东国土资源,2020,36(11):48-54.

[56]段顺荣,李延福,李春阳.基于 GIS和层次分析法的青海甘德县地质灾害危险性评价 [J].矿产勘查,2021,12(2):453-460.

[57]牛水源,刘金勇,黄伟荣.指标法与层次分析法在浅层地温能适宜性评价中的应用讨论[J].山东国土资源,2021,37(4):73-80.

[58]韦祖鹏,眭华生,贺建涛,等.层次分析法在通海县地质灾害易发性分区中的应用[J].中国水土保持,2019(5):28-31.

[59]王少华,郭令芬,赵力颖.基于模糊层次分析法的吉林省临江市地质灾害危险性评价[J].黑龙江工程学院学报,2018,32(04):16-20+26.

[60]刘刚.层次分析法在地质灾害危险性评价中的应用[J].江西建材,2017(06):220.

[61]LOMBARDO L,MAI P M. Presenting logistic regression-based landslidesusceptibility results [J].Engineering geology, 2018, 244: 14-24.1141

[62]SHAHRI A A, SPROSS J JOHANSSON F, et al. Landslide susceptibilityhazard map in southwest Sweden using artificial neural network [J]. Catena, 2019183: 104225

[63]宋洪杰 , 娄志香 .水利工程标准化管理在大型水库的应用研究[J]. 中国设备工程 ,2021,(18):220-221.

[64]余中平 .斯木塔斯水库蓄水初期坝体安全监测评价[J]. 陕西水利 , 2022,(3):192-194.

[65]蔡志刚 , 陈晓川 , 王迪 , 等 . 碳碳复合材料的水射流钻孔技术研究 [J]. 机械工程学报 ,2019,55(3):226-232.

[66]刘菊莲 . 防渗墙对某水库地下渗流场影响研究[J]. 海河水利 , 2022,(1):97-100.

[67]周毅,丁明涛,黄涛,等. 芦山县滑坡灾害影响因素的空间分异性[J]. 中国地质调查 2022,9( 4) : 45 - 55.

[68]陈毫,黄启林,张权,等. 基于卫星遥感的地质灾害特征提取及实勘验证[J]. 三明学院学报 2019,36( 4) : 57 - 63.

[69]铁永波,孙强,徐勇,等. 南方山地丘陵区典型地质灾害成因机制与风险评价[J].中国地质调查 2022,9( 4) : 1 - 9

[70]陈素琼,丁玉霞。层次分析法和模糊算法在高职课堂教学质量评价的应用研究[J]。科学咨询(教育科研),2022(04):185 -187.

[71]李桃,赵元棣,徐祥途.基于层次分析法的就业质量影响因素评价研究一以中国民航大学交通运输专业毕业生为例[J].中国民航飞行学院学报,2019,30(01) :33 -386

[72]徐春霞。基于层次分析法的国际化创新型复合人才评价指标体系研究团[J].黑龙江教育(高教研究与评估),2022(09):58 -61

[73]童娟。基于层次分析法的大学生就业质量评价[J].现代电子技术,2018,41(07):160 -164.

[74]朱文慧,邹浩,何明明,王纪云.基于BP神经网络的地质灾害易发性分区方法研究——以蕲春县为例[J].资源环境与工程,2021,35(06):840-844.

[75]潘宏坚.基于信息量法及层次分析法的地质灾害易发性评价——以桂东南地区北流市为例[J].低碳世界,2021,11(07):148-149.

[76]祁于娜,王磊.层次分析-熵值定权法应用于山区城镇地质灾害易发性评价[J].测绘通报,2021(06):112-116.

[77]陈绪钰,倪化勇,李明辉,田凯,宋志,高延超.基于加权信息量和迭代自组织聚类的地质灾害易发性评价[J].灾害学,2021,36(02):71-78.

[78]朱霞,张戈,颜秉英,张旭升.基于GIS和层次分析法的清原县地质灾害易发性评价[J].河北地质大学学报,2020,43(06):77-83.

[79]丁文洁,张蕾,别凤华,冯春玲,刘同伟.基于层次分析法的地质灾害易发性评价应用——以日照市为例[J].山东国土资源,2020,36(10):73-78.

[80]郁文,丁国轩,樊小鹏,董毅兵,韩兵兵,万宝峰,岳珊珊.基于层次分析-模糊综合模型的矿山地质生态环境评价研究[J].三峡生态环境监测,2021,6(02):26-35.

[81]何超,李萌,李婷婷,等.多目标综合评价中四种确定权重方法的比较与分析[N].湖北大学学报(自科版), 2016, 38(2):172-178.

[82]孟庆华,孙炜锋,张春山,陕西凤县泥石流灾害危险性评估[J].自然灾害学报, 2014, 23(1):121-131. 

中图分类号:

 P642    

开放日期:

 2023-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式