- 无标题文档
查看论文信息

论文中文题名:

 基于时序InSAR的矿区地面沉降监测—以张家峁煤矿为例    

姓名:

 杨艳平    

学号:

 19209212049    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085217    

学科名称:

 工学 - 工程 - 地质工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质工程    

研究方向:

 地质灾害监测    

第一导师姓名:

 薛喜成    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-20    

论文答辩日期:

 2022-06-06    

论文外文题名:

 Monitoring of Land Subsidence In Ming Areas Based On Series InSAR---Take Zhangjiamao Coal Mine as an example    

论文中文关键词:

 时序InSAR ; 煤矿开采沉降 ; 小基线集 ; 麻雀搜索算法 ; 张家峁煤矿    

论文外文关键词:

 Time series InSAR ; Mining settlement in mining area ; Small baseline set ; Sparrow search algorithm    

论文中文摘要:

~随着我国经济的快速发展,人们对煤炭的需求不断扩大,煤炭开采是获取能源的主要方式,我国煤炭开采以地下开采为主,通过地下巷道系统将地层中的煤炭运输到地面。众所周知,煤炭开采会造成煤层上覆岩层的塌陷,从而对地形地貌及地面建筑物造成破坏。因此,对地表岩体在煤炭开采过程中发生的位移和形变的监测和研究迫在眉睫。
InSAR技术有其独特的技术优势,能够全天时、全天候且实现大范围的地表形变的高精度监测。InSAR技术相对于传统观测技术而言,空间分辨率高、监测精度高,而且InSAR技术具有传统监测技术所不具备的大范围监测能力。SAR影像可以根据卫星的重访周期进行重复观测,从而达到高效率实时动态监测。InSAR技术可以弥补人工外业测量的安全性问题,同时节省了人力、物力和财力。
本文以SBAS-InSAR技术监测煤矿区沉降的方法为研究重点。针对SBAS-InSAR技术选择地面控制点(GCP)受人为主观因素影像大的问题,将PS-InSAR技术中所得到的PS点通过筛选作为SBAS-InSAR的地面控制点(GCP)以改进SBAS-InSAR技术,并对三种InSAR技术的监测结果进行交叉对比,最后采用SSA-BP算法建立了矿区开采沉陷预测模型。论文主要研究成果如下:
(1)探讨了InSAR技术的几何原理和SBAS-InSAR、PS-InSAR技术的基本原理,并对两种技术进行了对比分析。
(2)以陕西省榆林市张家峁煤矿为例,采用21景C波段sentinel-1A数据,分别采用SBAS-InSAR技术、PS-InSAR技术和改进的SBAS-InSAR技术对数据进行处理,通过结果对比、实测数据比较两方面验证了结果的可靠性。
(3)利用地面水准观测点对SBAS-InSAR技术、PS-InSAR技术和改进的SBAS-InSAR技术结果进行精度验证,结果显示相关性较高。将获得的监测点累积形变量进行建模,实现煤矿采空沉陷区的三维重构。结果显示,研究区域内共有多处区域发生大量级沉降现象,其中北部区域沉陷状况最严重,最大沉降速率可达-146.76mm/a。
(4)提出了利用时序InSAR技术和SSA-BP算法建立煤矿开采沉陷预计模型,结合改进SBAS-InSAR技术监测得到的时序沉降量,在工作面走向和倾向上均匀选点,建立煤矿开采沉陷动态预计模型,并对预测结果进行了精度评定。
 

论文外文摘要:

~With the rapid development of my country's economy,people's demand for energy continues to expand. Mining is the main way to obtain energy. Mineral mining is an underground operation,and the coal buried deep in the ground is transported to the ground through underground tunnels. Therefore,the safety of underground coal mines should continue to be studied in depth. As the excavation depth increases,the overlying strata of the coal seam collapse. Therefore,it is necessary to conduct deeper research on the underground operation of mining,and take effective measures to prevent the occurrence of subsidence. China's economy is developing rapidly, and the country's demand for energy is also rapidly increasing. Mining is the most important way to obtain energy. Most of the mining work is carried out underground,and the mineral resources buried deep in the ground are transported to the land through underground tunnels, which requires a sufficient understanding of the displacement and deformation of the underground rock mass mining process. Therefore,it is urgent to provide effective and safe measures for underground mining technology.
InSAR technology has all-day,all-weather observation and can achieve high-precision monitoring of large-scale surface deformation. Compared with traditional observation technology,InSAR technology has high spatial resolution and high monitoring accuracy, and InSAR technology has large-scale monitoring capabilities that traditional monitoring technology does not have. SAR images can be repeatedly observed according to the revisit cycle of the satellite, so as to achieve high-efficiency real-time dynamic monitoring. InSAR technology can make up for the safety of manual field measurement, while saving manpower, material and financial resources.
This paper focuses on the SBAS-In SAR technology to monitor the method of mining subsidence. Aiming at the problem that the selection of ground control points (GCP) in SBAS-In SAR technology is affected by the large image of human subjective factors, the PS points obtained in PS-InSAR technology are screened as the ground control points (GCP) of SBAS-InSAR to improve SBAS-InSAR technology,and cross-compared the monitoring results of the three -InSAR technologies, and finally established the SSA-BP algorithm to establish the mining subsidence prediction model in the mining area. The main research work includes:
(1) The geometric principle of In SAR technology is discussed,the basic principle of SBAS-In SAR technology and the basic principle of PS-InSAR technology are introduced, and the two technologies are compared and analyzed.
(2) Taking Zhangjiamao mining area in Yulin City,Shaanxi Province as the research area, using 21 scene C-band sentinel-1A data,using traditional SBAS-InSAR technology, traditional PS-In SAR technology, and improved SBAS-In SAR technology to process the data In order to achieve cross-validation, the reliability of the results is verified through the comparison of results and field conditions.
(3) The results of traditional SBAS-InSAR technology,traditional PS-InSAR technology, and improved SBAS-In SAR technology are used to verify the accuracy of ground level observation points, and the results show high correlation. The accumulated deformation variables of the monitoring points obtained are modeled to realize the three-dimensional reconstruction of the goaf subsidence area. The processing results show that there are many areas in the study area where massive subsidence occurs, among which the northern area is the most serious subsidence, and the maximum subsidence rate can reach -146.76mm/a.
(4) It is proposed to use the time series InSAR technology and the SSA-BP algorithm to establish a mining subsidence prediction model in the mining area. Combined with the time series subsidence monitored by the improved SBAS-In SAR technology, the points are uniformly selected in the direction and inclination of the working face, and the mining subsidence dynamic of the mining area is established. Predict the model and evaluate the accuracy of the prediction results.
 

参考文献:

[1] 刘忠豹.时间序列InSAR在矿山沉降监测中的应用[D].山东科技大学,2019.DOI:10.27275/d.

[2] 黎炜,陈龙乾,赵建林.我国煤炭开采对生态环境的破坏及对策[J].煤,2011,20(5):35-37.

[3] 杨秀敏,胡桂娟,李宁,等.煤研石山的污染治理与复垦技术[f].中国矿业,2008,17(6):34-3h.

[4] Dong S.,Samsonov S.,Yin H.,et al.Time-series analysis of subsidence associated with rapid urbanization in Shanghai,China measured with SBAS InSAR method [J]. Environmental Earth Sciences,2014,72(3): 677-691.

[5] Osmanog1u B.,Dixon T. H.,Wdowinski S.,et al. Mexico City subsidence observed with persistent scatterer InSAR[J]. International Journal of Applied Earth Observations&Geoinformation,2011,13(1): 1一12.

[6] Li Z.,Zhou J.,Tian B.The glacier movement estimation and analysis with InSAR in the Qinghai-Tibetan plateau,Geoscience and Remote Sensing Symposium,2010 [C].

[7] Jin B.,Kim S.W.,Park H. J.,et al.Analysis of ground subsidence in coal mining area using SAR interferometry [J]. Geosciences Journal,2008,12(3):277-284.

[8] Berardino P,Fornaro G,Lanari R,et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. Geoscience and Remote Sensing,IEEE Transactions on,2002,40(11): 2375-2383.

[9] Ferretti A,Colesanti C Prati C,et al.Radar permanent scatters identification in urban area: target characterization and sub-pixel analysis[C].Proceedings of IEEE/ISPRS Joint Workshop 2001:Remote Sensing and Data Fusion over Urban AreasNovember8-9,2001,Rome,Italy.Rome:IEEE:52.

[10] 朱建军,李志伟,胡俊.InSAR变形监测方法与研究进展[J].测绘学报,2017,46(10):1718-1733.

[11] 王艳,廖明生,李德仁,魏子新,方正.利用长时间序列相干目标获取地面沉降场[J].地球物理学报,2007(02):598-604.

[12] 朱建军,杨泽发,李志伟.InSAR矿区地表三维形变监测与预计研究进展[J].测绘学报,2019,48(2):135-144.DOI:10.11947/J.AGCS.2019.20180188

[13] 陈炳乾,邓喀中,范洪冬.基于D-InSAR技术和SVR算法的开采沉陷监测与预计[J].中国矿业大学学报,2014,43(05):880-886.

[14] 李新新,沈震.基于GM(1,1)模型的矿山开采沉陷预测[J].北京测绘2015,(06):62-64.

[15] 姚琦,冯涛,李石林,李叔磊,宁齐元.基于概率积分法的煤矿“三下”开采沉陷预计[J].煤矿安全,2012,43(07):188-190+193.

[16] Gabriel A. K.,Goldstein R.M.,Zebker H. A. Mapping small elevation changes over large areas: differential radar interferometry. J Geophys Res 94(B7):9183-9191 [J].Journal of Geophysical Research Atmospheres,1989,94(B7): 183-9191.

[17] Kampes B.M.,Hanssen R.F.Ambiguity resolution for permanent scatterer interferometry [J].IEEE Transactions on Geoscience&Remote Sensing,2004,42(11):2446-2453.

[18] 黄其欢,何秀凤.附加约束条件短基线DInSAR法及其应用[J].中国矿业大学学报,2009,38(03):450-454.

[19] 孙广通,刘小阳,张永红,宋萍.小基线DInSAR技术在城市地面沉降监测中的应用研究[J].测绘通报,2013(10):91-94+108.

[20] Li Z.,Zhao R.,Hu J.et al.InSAR analysis of surface deformation over permafrost to estimate active layer thickness based on one-dimensional heat transfer model of soils [J].Scientific Reports,2015,5:15542.

[21] 尹振兴,钟丽云,许兵,吕晓旭.基于SBAS-InSAR的昆明地面沉降监测研究[J].地矿测绘,2016,32(04):1-5.DOI:10.16864/j.cnki.dkch.2016.0048.

[22] Atanubhattacharya,Arora M.,Sharma M.Usefulness of synthetic aperture radar(SAR) interferometry for digital elevation model (DEM) generation and estimationof land surface displacement in Jharia coal field area [J].Geocarto International,2012,27(1):57-77.

[23] 周志全.基于RADARSAT-2干涉数据的矿区地表形变提取研究[f].北京交通大学,2016.

[24] 黄继磊.面向矿区大梯度形变监测的SAR影像Pixel-tracking关键问题研究[D].中国矿业大学,2017.

[25] NGAHM,GELinIin,ZHANGKui,et al.Deformation mapping in three dimensions for underground mining using InSAR-southern high land coalfield in New South Wales,Australia[J].International Journal of Remote Sensing,2011,32(22):7227-7256.

[26] 张景发,龚利霞,姜文亮.PS InSAR技术在地壳长期缓慢形变监测中的应用[J].国际地震动态,2006(06):1-6.

[27] 成晓倩,马超,康建荣,邹友峰.联合D-InSAR和PIM技术的沉陷特征模拟和时序分析[J].中国矿业大学学报,2018,47(05):1141-1148.

[28] 谢酬,李震,李新武.青藏高原冻土形变监测的永久散射体方法研究[J].武汉大学学报(信息科学版),2009,34(10):1199-1203.

[29] 朱叶飞,于军,武健强,吴曙亮,李向前,张景发,罗毅,苏一鸣.D-InSAR与PS-InSAR技术应用于苏州地面沉降监测之比较[J].地质刊,2010,34(03):289-294.

[30] 魏宗海.粒子群算法在概率积分法沉陷预计模型参数反演中的应用[J].测绘工程,2017(10):36-39.

[31] 樊振宇.BP神经网络模型与学习算法[J].软件导刊,2011,10(07):66-68.

[32] 赵远方,汤高飞,鲁大尉.基于PS-InSAR的京津城际铁路地面沉降监测研究[J].测绘与空间地理信息,2013,36(12):229-232.

[34] 潘军,李威,赵冰,张华,吕孝雷,肖和平,叶建文,李建辉.面向PS-InSAR技术的桥梁随机形变规律[J].长沙理工大学学报(自然科学版),2016,13(04):57-65.

[35] Shimada M,Suzuki S . ALOS-2 PALSAR-2 Mission Status[C].Polinsar. POLINSAR2015,2015.

[36] 徐东彪,刘豪杰,张永光,李迎春,陈元申.PS-InSAR技术在南水北调中线河南省辉县市膨胀土段安全监测中的应用初探[J].测绘与空间地理息,2019,42(12):31-34.

[37] Gabriel A K,Goldstein R M,Zebker H A . Mapping small elevation changes over large areas - Differential radar interferometry[J]. Journal of Geophysical Research Solid Earth,1989,94(B7):9183-9191.

[38] Massonnet D,Rossi M,Carmona,César,et al. The displacement field of the Landers earthquake mapped by radar interferometry [J]. Nature, 1993,364(6433):138-142.

[39] Wright,P.A.[IEE IEE Colloquium on Radar Interferometry-London,UK(11April 1997)] IEE Colloquium on Radar Interferometry - Detection and measurement of mining subsidence by SAR interferometry[J]. 1997,1997:5-5.

[40] Perski Z. Applicability of ERS-2 InSAR for Land Subsidence Monitoring in the Silesian Coal Mining Region,Poland[J].International Archives of Photogrammetry and Remote Sensing,1998,32(7):555-558.

[41] C,Carnec,and,et al. Three years of mining subsidence monitored by SAR interferometry,near Gardanne,France[J].Journal of Applied Geophysics,2000,43(1):43-54.

[42] Urs Wegmüller,Strozzi T,Werner C,et al. Monitoring of mining-induced surface deformation in the Ruhrgebiet (Germany) with SAR interferometry[C].IEEE International Geoscience & Remote Sensing Symposium. IEEE,2000.

[43] Ge L L,Chris R,Han S W,Zebker H.Mining subsidence monitoring using thecombined InSAR and GPS approach[C]. In:The 10th FIG International Symposium on Deformation Measurements,Published on CDROM,2001.

[44] Raucoules D,MaisonsC ,Carnec C ,et al.Monitoring of slow ground deformation by ERS radar interferometry on the Vauvert salt mine (France): Comparisonwith ground-based measurement[J]. Remote Sensing of Environment,2003,88(4):468-478.

[45] Kim S,Lee C,Song K,et al.Application of L‐band differential SAR interferometry to subsidence rate estimation in reclaimed coastal land[J].International Journal of Remote Sensing,2005,26(7):1363-1381

[46] Karsten L,Henri E,Martin S,et al. Combining photogrammetry and laser scanning for the recording and modeling of the Late Intermediate Period site of Pinchango Alto,Palpa,Peru [J].Journal of Archaeological Science,2007,34(10):0-1712.

[47] Zbigniew Perski,Ramon Hanssen,Antoni Wojcik,Tomasz Wojciechowski. InSAR analyses of terrain deformation near the Wieliczka Salt Mine,Poland[J].Engineering Geology,2009,106(1).

[48] S.Thapa,R.S. Chatterjee. ESTIMATION OF ATMOSPHERIC EFFECTS OF RADARSAT-2 D-InSAR PRODUCT USING GROUNDBASEDAND SPACEBORNE METEROLOGICAL DATA. 2015,XL-3/W2(1):243-246.

[49] 王超,杨清友.干涉雷达在地学研究中的应用[J].遥感技术与应用1997(04):37-46.

[50] 刘国祥,丁晓利,陈永奇,李志林,李志伟.使用卫星雷达差分干涉技术测量香港赤腊角机场沉降场[J].科学通报,2001(14):1224-1228.

[51] 姜岩,高均海.合成孔径雷达干涉测量技术在矿山开采地表沉陷监测中的应用[J]. 矿山测量,2003(1):5-7.

[52] 吴立新,高均海,葛大庆,殷作如,邓智毅,刘宏军.基于D-InSAR 的煤矿区开采沉陷遥感监测技术分析[J].地理与地理信息科学,2004(02):22-25+37.

[53] 吴立新,高均海,葛大庆,等.工矿区地表沉陷D-InSAR监测试验研究[J]东北大学学报(自然科学版),2005,26(8):778-782.

[54] 阮信波,刘丽华,陈丽瑾. 麻雀搜索算法在物流配送中心选址的应用[J].物流技术,2021,40(12):40-43,101.DOI:10.3969/j.issn.1005-152X.2021.12.007.

[55] 孟志军, 刘淮玉,安晓飞,等.基于SPASSABP的小麦秸秆含水率检测模型[J].农业机械学报, 2022,53(2):9.

[56] 尹会永,周鑫龙,郎宁,等.基于SSA优化的GA-BP神经网络煤层底板突水预测模型与应用[J].煤田地质与勘探, 2021,49(6):11.

[57] 王行风,汪云甲,杜培军.利用差分干涉测量技术监测煤矿区开采沉陷变形的初步研究[J].中国矿业,2007(07):77-80.

[58] 杨成生.基于D-InSAR技术的煤矿沉陷监测[D].西安:长安大学,2008.

[59] 邓喀中,姚宁,卢正,范洪冬.D-InSAR监测开采沉陷的实验研究[J].金属矿山, 2009(12):25-27+120.

中图分类号:

 P642.26、TD325    

开放日期:

 2022-06-21    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式