- 无标题文档
查看论文信息

论文中文题名:

 空间步进频探地雷达煤层异常体 电磁特性正演研究    

姓名:

 罗彩祯    

学号:

 18207042029    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081002    

学科名称:

 工学 - 信息与通信工程 - 信号与信息处理    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 信号与信息处理    

研究方向:

 电磁计算    

第一导师姓名:

 贺顺    

第一导师单位:

  西安科技大学    

论文提交日期:

 2021-06-19    

论文答辩日期:

 2021-06-05    

论文外文题名:

 Forward modeling of electromagnetic characteristics of abnormal body in coal seam with space stepping frequency ground penetrating radar    

论文中文关键词:

 煤层异常体探测 ; 时域有限差分 ; 正演    

论文外文关键词:

 Coal seam abnormal body detection ; Finite difference time domain ; The forward    

论文中文摘要:

目前,煤矿在我国的能源体系中仍占据主导地位。开采掘进方向煤层中存在的采空区、富水区及陷落柱等不良地质异常体构造为煤矿开采带来了极大的安全隐患。探地雷达作为一种安全高效的无损检测勘探技术,被广泛应用于井下掘进面前方地质构造的超前探测。针对传统井下单发单收探测雷达存在的探测分辨率低、获取数据信息量少的问题,提出将多输入多输出体制下的空间步进频雷达用于井下探测。

本文主要围绕着空间步进频信号在掘进方向煤层构造中的传播情况进行研究。首先,利用中心差分思想,推导时域有限差分算法,并对算法的稳定性条件与吸收边界条件进行了研究。然后,针对煤矿开采掘进方向煤层中存在异常构造的问题,建立井下煤层异常体探测模型,利用时域有限差分算法对所建模型进行正演模拟,探究空间步进频信号在掘进方向煤层中的传播规律。根据煤矿井下小构造环境构建模型,对煤层异常体形状不同、介质不同以及埋藏深度不同的三种情况进行正演模拟。实验结果表明,随着煤层中异常体的相对介电常数增大,反射回波波幅增大;信号在煤层中传播进入水和岩石后回波相位发生反向变化,进入空气则保持原相位;相同介质的情况下随着深度的增加,反射回波幅值减小。根据层状地质环境建立煤层采空区、富水区及两种岩石区模型,正演结果表明,采空区与岩层均可观测到前、后表面产生的反射回波,富水区仅可观察到前表面的反射回波。通过模拟验证空间步进频信号可对煤层异常体进行检测。

正演数据预处理过程中,针对模拟结果中存在直耦波的问题,采用减对空信号方法对其去除;针对结果中存在煤体表面直达波问题,提出SVD平均抵消融合算法对直达波滤除,并通过实验验证其有效性;采用增益调节的方法对煤层内部异常体回波信号增强。数据预处理后直耦波与直达波的干扰降低,异常体回波清晰可辩。通过利用正演模拟结果对模型厚度参数进行验证并实现异常体区域的成像。

论文外文摘要:

At present, coal mines still occupy a dominant position in China's energy system. The unfavorable geological anomaly structures such as mine goafs, water-rich areas, and collapse columns in the coal body in front of mining and tunneling have brought great safety hazards to coal mining. As a safe and efficient non-destructive detection and exploration technology, ground penetrating radar is widely used in advanced detection of geological structures in front of underground tunneling. Aiming at the problems of low detection resolution and small amount of acquired data in traditional underground single-transmit and single-receive detection radars, it is proposed to use the spatial stepped frequency radar under the multiple-input multiple-output system for underground detection.

This article mainly focuses on the propagation of the spatial stepped frequency signal in the coal seam structure in the direction of driving. Firstly, using the central difference theory, the finite-difference time-domain algorithm is derived, and the stability conditions and absorption boundary conditions of the algorithm are studied. Then, aiming at the problem of abnormal structure in the coal seam in the heading direction of coal mining, the abnormal body detection model of coal seam was established. The FDTD algorithm was used to carry out forward simulation on the established model to explore the propagation law of spatial stepping frequency signal in the coal seam in the heading direction. According to the small structural environment of underground coal mine, the forward modeling is carried out for the three situations of different shapes of abnormal bodies in coal seam, different media and different burial depths. The experimental results show that with the increase of relative dielectric constant of abnormal body in coal seam, the amplitude of reflected echo increases. When the signal propagates in coal seam and enters water and rock, the phase of echo changes in reverse, while when it enters air, it remains the original phase. With the increase of depth in the same medium, the amplitude of reflected wave decreases. According to the stratified geological environment, the model of coal seam goaf, water-rich area and two kinds of rock area is established. The forward modeling results show that the reflection echoes from the front and back surface can be observed in both the goaf and the rock layer, and only one reflection echo from the upper surface can be observed in the water-rich area. The simulation proves that the spatial stepping frequency signal can detect the abnormal body of coal seam.

In the process of forward data preprocessing, in view of the direct coupling wave in the simulation result, the method of reducing the air-to-air signal is used to remove it; in view of the direct wave problem on the coal surface, the SVD average cancellation fusion algorithm is proposed to filter the direct wave. In addition, its effectiveness is verified through experiments; the method of gain adjustment is used to enhance the echo signal of abnormal bodies inside the coal seam. After the data is preprocessed, the interference between the direct coupling wave and the direct wave is reduced, and the echo of the abnormal body is clear and distinguishable. Through the use of forward simulation results to verify the model thickness parameters and achieve effective imaging of abnormal body regions.

参考文献:

[1]杨明.煤矿高效掘进技术质量研究[J].中国石油和化工标准与质量,2019,39(15):231-232.

[2]许忠.煤矿巷道快速掘进及高效支护技术标准的探讨[J].中国石油和化工标准与质量,2019,39(15):9-10.

[3]王太元,董远浪,屈旭辉.地质雷达技术在阳泉矿区井下超前探测中的应用[J].中州煤炭,2015(02):99-101+105.

[4]An S , Lee B , Bae Y , et al. Numerical Analysis of the Transient Inductance Gradient of Electromagnetic Launcher Using 2-D and 3-D Finite-Element Methods[J]. IEEE Transactions on Plasma Science, 2017, PP(7):1-4.

[5]Araneo R , Celozzi S . Ground Transient Resistance of Underground Cables[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(3):931-934.

[6]Ponti C , Santarsiero M , Schettini G . Electromagnetic Scattering of a Pulsed Signal by Conducting Cylindrical Targets Embedded in a Half-Space Medium[J]. IEEE Transactions on Antennas & Propagation, 2017, 65(6):3073-3083.

[7]姜志海,岳建华,刘树才.多匝重叠小回线装置的矿井瞬变电磁观测系统[J].煤炭学报,2007(11):1152-1156.

[8]梁庆华. 矿井全空间小线圈瞬变电磁探测技术及应用研究[D].中南大学,2012.

[9]胡博,岳建华,于润桥.巷道对全空间瞬变电磁场影响的边界元数值模拟[J].中国矿业大学学报,2013,42(05):774-781.

[10]程久龙, 李明星, 肖艳丽,等. 全空间条件下矿井瞬变电磁法粒子群优化反演研究[J]. 地球物理学报, 2014, 057(010):3478-3484.

[11]陈丁,程久龙,黄琪嵩,姜国庆,郝敬博.矿井瞬变电磁矩形回线源瞬变电磁响应[J].煤炭学报,2015,40(12):2865-2873.

[12]崔江宏.瞬变电磁超前探测技术在巷道掘进中的应用[J].西部探矿工程,2018,30(12):113-115.

[13]邢修举.矿井瞬变电磁超前探测陷落柱三维可视化技术[J].中国煤炭,2018,44(10):60-64.

[14]安又新.煤矿掘进工作面电法超前探测技术的应用研究[D].西安科技大学,2015.

[15]徐慧,牟义,李江华,姜鹏,黎灵.河流区域露-井联采矿区水文地质综合勘查技术研究[J].煤炭科学技术,2020,48(11):191-198.

[16]崔江伟,王施智,王一凡,万宏伟.瞬变电磁数据精细处理技术在煤层顶板富水区探测中的应用研究[J].煤炭技术,2020,39(04):153-156.

[17]李明星,程建远.基于标准差标准化的矿井瞬变电磁数据处理方法研究[J].煤炭科学技术,2019,47(05):225-229.

[18]Sengani F. The use of ground Penetrating Radar to distinguish between seismic and non-seismic hazards in hard rock mining[J]. Tunnelling and Underground Space Technology, 2020, 103: 103470.

[19]Yao Li, Bin Liu, Shucai Li, et al.Forward Simulation and Engineering Application of Borehole Ground Penetrating Radar for Grouting Effect Detection. The electronic Journal of Geotechnical Engineering, 2016, 21 (13):4895-4909.

[20]曹树刚,刘勇,杨红运,陈先哲.基于地质雷达与3DEC回采巷道支护优化研究[J].地下空间与工程学报,2017,13(S2):777-783.

[21]王昕,丁恩杰,胡克想等.煤岩散射特性对探地雷达探测煤岩界面的影响.中 国矿业大学学报,2016, 45(1):34-41

[22]程久龙,潘冬明,李伟等.强电磁干扰区灾害性采空区探地雷达精细探测研究[J].煤炭学报,2010,35 (2):227-231

[23]黄忠来,张建忠.利用探地雷达频谱反演层状介质几何与电性参数.地球物理学报,2013,56(4): 1381-1391.

[24]石明,冯德山,吴奇.CFS-PML 在探地雷达 FDTD 法模拟中应用.大连理工大学学报,2015,55(6): 559-567.

[25]习建军,曾昭发,黄玲等.阵列式探地雷达信号极化场特征.吉林大学学报(地球科学版),2017,47(2): 633-644.

[26]刘帅,赵文生,高思伟.超宽带探地雷达煤层厚度探测试验研究[J].煤炭科学技术,2019,47(08):207-212.

[27]张守祥,刘帅.脉冲雷达透地探测煤岩实验研究[J].煤炭学报,2019,44(01):340-348.

[28]梁庆华.矿井探地雷达井下快速超前探测与数据分析[J].物探化探计算技术,2011,33(05):531-535+464.

[29]Li Y, Wang J, Chen Y, et al. Overlying strata movement with ground penetrating radar detection in close-multiple coal seams mining[J]. International Journal of Distributed Sensor Networks, 2019, 15(8): 1550147719869852.

[30]段毅,许献磊.地质雷达超前探测在常村煤矿的应用研究[J].中国矿业,2017,26(08):150-153.

[31]Teixeira, F.L, Chew, W.C. General closed-form PML constitutive tensors to match arbitrary bianisotropic and dispersive linear media[J]. IEEE Microwave & Guided Wave Letters, 1998, 8(6):223-225.

[32]Layek M K, Sengupta P. Forward Modeling of GPR Data by Unstaggered Finite Difference Frequency Domain (FDFD) Method: An Approach towards an Appropriate Numerical Scheme[J]. Journal of Environmental and Engineering Geophysics, 2019, 24(3): 487-496.

[33]Angelis D, Tsourlos P, Tsokas G, et al. Accessing a historic wall structure using GPR. The case of Heptapyrgion fortress Thessaloniki Greece[C]//2017 9th International Workshop on Advanced Ground Penetrating Radar (IWAGPR). IEEE, 2017: 1-6.

[34]Loewer M, Igel J. FDTD simulation of GPR with a realistic multi-pole Debye description of lossy and dispersive media[C]//2016 16th International Conference on Ground Penetrating Radar (GPR). IEEE, 2016: 1-5.

[35]Luo T X H, Lai W W L, Giannopoulos A. Forward modelling on GPR responses of subsurface air voids[J]. Tunnelling and Underground Space Technology, 2020, 103: 103521.

[36]Warren, Craig, Giannopoulos, Antonios, Giannakis, Iraklis. gprMax: Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar[J]. Computer Physics Communications, 2016, 209:163-170.

[37]张杨,周黎明,肖国强.堤防隐患探测中的探地雷达波场特征分析与应用[J].长江科学院院报,2019,36(10):151-156.

[38]仇念广.煤矿掘进巷道地质雷达超前探测数值模拟及应用[J].矿业安全与环保,2019,46(05):42-46.

[39]冯德山,陈佳维,吴奇.混合ADI-FDTD亚网格技术在探地雷达频散媒质中的高效正演[J].地球物理学报,2014,57(04):1322-1334.

[40]崔凡,耿晓航,俞慧婷,原炯轩.基于探地雷达的煤层小构造超前探测[J].煤矿安全,2019,50(05):153-157.

[41]刘旭华,徐正玉,李峰平,赵海娇.探地雷达波场二维有限差分正演模拟[J].西部探矿工程,2017,29(01):78-81.

[42]Ma Y , Shen J , Su B , et al. Research on Ground of Penetrating Radar in the Coal Mine Detecting: A Case Study of Application in Huaibei Coal Mine[J]. Elektronika ir Elektrotechnika, 2019, 25(5):37-42.

[43]王树奇,宁箭,王振.基于FDTD的煤层工作面上保护层检测正演分析[J].采矿技术,2020,20(01):145-149.

[44]李展辉,曹学峰,朱自强.基于GPU并行加速的探地雷达伪谱法三维正演模拟[J].工程地球物理学报,2021,18(01):67-74.

[45]杨道学,赵奎,曾鹏,李瑞雪,王晓军,钟文,龚囱.基于露天开采地下盲空区探地雷达正演模拟及应用[J].岩石力学与工程学报,2019,38(11):2288-2298.

[46]王敏玲,廖天元,王洪华,张智,熊彬.基于FDTD的探地雷达三维逆时偏移成像[J].地球物理学进展,2019,34(04):1671-1678.

[47]Luo G , Cao Y , Xu H , et al. Research on typical soil physical properties in a mining area: Feasibility of three-dimensional ground penetrating radar detection[J]. Environmental Earth Sciences, 2021, 80(3): 1-11.

[48]Liu X , Dong X , Leskovar D I . Ground penetrating radar for underground sensing in agriculture: a review[J]. International Agrophysics,2016,30(4): 533-543.

[49]葛德彪, 闫玉波. 电磁波时域有限差分方法(第三版)[M]. 西安电子科技大学出版社, 2011.

[50]王康,李冬.探地雷达在煤矿井下地质预报中的应用[J].煤炭技术,2018,37(06):124-127.

中图分类号:

 O441.4    

开放日期:

 2021-06-21    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式