论文中文题名: | 瓦斯对煤低温氧化特征影响的实验研究 |
姓名: | |
学号: | 18220214055 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085224 |
学科名称: | 工学 - 工程 - 安全工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 煤火灾害防治 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
论文提交日期: | 2022-03-07 |
论文答辩日期: | 2021-10-15 |
论文外文题名: | Experimental Research on the Influence of Gas on Coal Low Temperature Oxidation Characteristics |
论文中文关键词: | |
论文外文关键词: | Coal spontaneous combustion ; Low-temperature oxidation ; Gas adsorption ; Index gas ; Oxidation exotherm |
论文中文摘要: |
瓦斯与煤自燃灾害共存严重威胁着矿井的安全生产。因此,通过对瓦斯与煤自燃复合灾害方面开展相关研究,揭示不同瓦斯浓度对煤自燃特征的影响规律,研究结果对煤与瓦斯复合灾害发生机理及综合治理具有重要意义。本文以长焰煤、不粘煤、瘦煤和无烟煤四种不同变质程度煤样作为研究对象,对不同瓦斯浓度下煤样的气体吸附特征、氧化放热特征、微观物理特征和煤自燃指标气体特征等进行了实验研究,旨在为含瓦斯气氛下煤自燃的防控工作提供理论依据。 采用工业分析仪和元素分析仪测试了不同变质程度煤样的煤质组成,发现固定碳和碳元素的含量随着煤样变质程度的增加逐渐增加,挥发分和氧元素的含量则呈现出随煤样变质程度增加而逐渐减小的趋势。通过吸附常数测定实验发现在相同压力条件下,煤样对气体的吸附能力大小排序为CH4>N2>O2。采用瓦斯吸附解吸装置对比分析了不同瓦斯浓度下煤样的瓦斯吸附特征,得出煤样的瓦斯吸附能力与煤变质程度、压力以及瓦斯浓度成正比,但与温度成反比的结论。 通过C80微量热仪探究了瓦斯浓度对煤氧化放热的影响,对比分析了不同瓦斯浓度和变质程度煤样的热流曲线、初始放热温度以及放热量等。发现随着瓦斯浓度的升高,煤样的整个热流曲线向高温区域移动,总放热量也显著降低。瓦斯浓度升高对长焰煤、不粘煤等低变质程度煤样的低温氧化过程影响较大,瓦斯浓度的增加会使煤样优先吸附瓦斯气体,造成环境中氧气浓度的降低,进而对煤的氧化放热产生一定的抑制作用。 基于FTIR实验得到了不同瓦斯浓度条件下煤样在低温氧化过程的活性基团变化特征,并采用Peakfit软件对煤样的活性基团进行了半定量分析。随着环境中瓦斯浓度的增加,煤样氧化过程中羟基和脂肪烃含量逐渐减少,烷基醚含量增加,而芳香烃结构变化不明显。采用程序升温实验对不同瓦斯浓度下煤样低温氧化过程中的气体产物和热动力学参数等进行了探究。结果表明,随着环境中瓦斯浓度的升高,煤自燃过程中的CO产生量和CO2产生量、耗氧速率以及放热强度等均呈现出降低趋势,但表观活化能则相对升高。因此,环境中瓦斯浓度增加会对煤自燃过程造成一定的抑制作用。采用Pearson相关系数法探究了煤样活性基团变化量与表观活化能之间的关联程度,得出羟基和烷基醚对煤样的低温氧化过程的促进作用较大,脂肪烃则会对煤样的低温氧化过程起一定的抑制作用。 |
论文外文摘要: |
The coexistence of gas and coal spontaneous combustion disasters seriously threatens the safety of mine production. Therefore, by carrying out relevant research on the compound disasters of gas and coal spontaneous combustion, revealing the influence of different gas concentrations on the characteristics of coal spontaneous combustion, the research results are of great significance to the mechanism and comprehensive management of coal and gas compound disasters. In this thesis, four coal samples with different levels of metamorphism, long flame coal, non-stick coal, lean coal and anthracite, are taken as the research objects. The gas adsorption characteristics, oxidation heat release characteristics, micro-physical characteristics and coal spontaneous combustion index gases of coal samples under different gas concentrations are studied. Feature and other experimental researches have been conducted to provide a theoretical basis for the prevention and control of coal spontaneous combustion in a gas atmosphere. Industrial analyzers and elemental analyzers were used to test the coal composition of coal samples with different degrees of metamorphism. It was found that the content of fixed carbon and carbon elements gradually increased with the degree of metamorphism of the coal samples, while the content of volatile and oxygen elements showed varying degrees. The deterioration degree of coal samples increases and gradually decreases. Through the experiments of adsorption constant determination, it is found that under the same pressure conditions, the adsorption capacity of coal samples is in the order of CH4>N2>O2. The gas adsorption and desorption device is used to compare and analyze the gas adsorption characteristics of coal samples under different gas concentrations. It is concluded that the gas adsorption capacity of coal samples is directly proportional to the degree of coal deterioration, pressure and gas concentration, but inversely proportional to temperature. The C80 microcalorimeter was used to explore the influence of gas concentration on coal oxidation heat release, and the heat flow curve, initial heat release temperature and heat release of coal samples with different gas concentrations and metamorphic degrees were compared and analyzed. It is found that as the gas concentration increases, the entire heat flow curve of the coal sample moves to the high temperature area, and the total heat release is also significantly reduced. The increase of gas concentration has a greater impact on the low-temperature oxidation process of low-grade coal samples such as long flame coal and non-stick coal. The oxidation exotherm produced a certain inhibitory effect. Based on the FTIR experiment, the characteristics of the active group changes of coal samples in the low-temperature oxidation process under different gas concentration conditions were obtained, and the peakfit software was used to semi-quantitatively analyze the active groups of the coal samples. As the gas concentration in the environment increases, the content of hydroxyl and aliphatic hydrocarbons in the oxidation process of coal samples gradually decreases, and the content of alkyl ethers increases, but the structure of aromatic hydrocarbons does not change significantly. The temperature-programmed experiment was used to explore the gas products and thermodynamic parameters in the low-temperature oxidation process of coal samples under different gas concentrations. The results show that with the increase of gas concentration in the environment, the amount of CO production, CO2 production, oxygen consumption rate and heat release intensity during the spontaneous combustion of coal all show a decreasing trend, but the apparent activation energy increases relatively. Therefore, the increase of gas concentration in the environment will have a certain inhibitory effect on the spontaneous combustion process of coal. The Pearson correlation coefficient method was used to explore the correlation between the change of active groups of coal samples and the apparent activation energy, and it was concluded that hydroxyl groups and alkyl ethers had a greater promotion effect on the low-temperature oxidation process of coal samples, while aliphatic hydrocarbons would the low-temperature oxidation process of coal samples has a certain inhibitory effect. |
参考文献: |
[1]钱鸣高, 许家林, 王家臣. 再论煤炭的科学开采[J]. 煤炭学报, 2018, 43(01):1-13. [2]李拥军, 谢聪敏, 王贺彬. 对近八年煤炭供应总量的分析[J]. 冶金信息导刊, 2019, 56(2):6. [3]邓军, 李贝, 王凯, 等. 我国煤火灾害防治技术研究现状及展望[J]. 煤炭科学技术, 2016, 44(10):1-7+101. [4]周福宝. 瓦斯与煤自燃共存研究(I):致灾机理[J]. 煤炭学报, 2012, 37(05):843-849. [5]王伟, 李昱, 李贤功. 2010-2018年煤矿瓦斯事故时空耦合关联分析[J]. 煤矿安全, 2020, 51(05):177-182. [6]胡智芳. 区域瓦斯治理方案及效果分析[J]. 工矿自动化, 2018, 44(08):19-23. [7]任卓晨. 高瓦斯易自燃煤层采空区燃爆耦合灾害研究[D]. 西安科技大学, 2017. [8]邓军, 文虎. 煤田火灾防治理论与技术[M]. 中国矿业出版社, 2014. [9]余陶. 采空区瓦斯与煤自燃复合灾害防治机理与技术研究[D]. 中国科学技术大学, 2014. [10]周福宝, 夏同强, 史波波. 瓦斯与煤自燃共存研究(Ⅱ):防治新技术[J]. 煤炭学报, 2013, 38(03):353-360. [11]刘振岭. 采空区自燃诱发瓦斯灾害耦合致灾特性及防控技术[J]. 煤矿安全, 2016, 47(09):124-127. [12]黄贺江. 回采工作面推进过程中的瓦斯涌出预测分析[J]. 工矿自动化, 2017, 43(08):90-93. [13]司俊鸿, 张九零, 程根银, 等. 采空区瓦斯抽采与煤自燃共生灾害特征实验研究[J]. 华北科技学院学报, 2019, 16(04):1-5. [14]段三壮, 姚冠霖, 冯康伟. 不同煤种的瓦斯吸附解吸特性[J]. 内蒙古煤炭经济, 2020(10):32-34. [20]杨华平. 煤体甲烷吸附解吸机理研究[D]. 西安科技大学, 2014. [21]余力. 不同煤阶等温吸附实验研究[J]. 中国石油石化, 2017(11):82-84. [22]张慧杰, 张浪, 汪东, 等. 煤变质程度对瓦斯吸附能力的控制作用[J]. 煤矿安全, 2017, 48(07):5-12. [23]王志军, 宋文婷, 马小童, 等. 温度对煤体瓦斯吸附特性影响实验分析[J]. 河南理工大学学报(自然科学版), 2014, 33(05):553-557. [24]李树刚, 白杨, 林海飞, 等. 温度对煤吸附瓦斯的动力学特性影响实验研究[J]. 西安科技大学学报, 2018, 38(02):181-186. [25]严敏, 龙航, 白杨, 等. 温度效应对煤层瓦斯吸附解吸特性影响的实验研究[J]. 矿业安全与环保, 2019, 46(03):6-10. [26]于明科. 无烟煤瓦斯解吸特征及矿井防突应用研究[D]. 西安科技大学, 2013. [32]陈龙, 张嬿妮. 氧浓度对煤低温氧化热效应影响规律研究[J]. 中国安全生产科学技术, 2020, 16(06):49-54. [33]文虎, 陆彦博, 刘文永. 利用热重法研究不同氧浓度对煤自燃特性的影响[J]. 矿业安全与环保, 2021, 48(01):1-5. [34]肖旸, 郭涛, 赵婧昱, 等. 气煤恒温氧化动力学特性研究[J]. 煤矿安全, 2019, 50(09):51-56. [35]李青蔚, 任立峰, 任帅京. 煤低温贫氧氧化放热特性研究[J]. 煤矿安全, 2020, 51(11):34-38. [36]鲍庆国. 滕南矿区高地温环境中煤自燃特性及防灭火技术[D]. 中国矿业大学, 2014. [37]许涛. 煤自燃过程分段特性及机理的实验研究[D]. 中国矿业大学, 2012. [38]曹凯. 综放采空区遗煤自然发火规律及高效防治技术[D]. 中国矿业大学, 2013. [39]魏子淇. 水分对煤低温氧化特性参数的影响研究[D]. 西安科技大学, 2018. [40]徐俊, 王德明, 亓冠圣. 煤自燃发展过程微观反应机理函数[J]. 煤矿安全, 2014, 45(12):35-38. [44]张嬿妮, 陈龙, 邓军, 等. 基于程序升温实验的同组煤氧化动力学分析[J]. 煤矿安全, 2018, 49(05):31-34. [45]金永飞, 郭军, 文虎, 等. 煤自燃高温贫氧氧化燃烧特性参数的实验研究[J]. 煤炭学报, 2015, 40(3):596-602. [46]张辛亥, 张天赐, 王玥, 等. 不同氧浓度和温度下侏罗纪煤氧化动力学参数规律[J]. 西安科技大学学报, 2019, 39(04):564-570. [47]郝宇. 不同煤阶煤自燃特性的实验研究[J]. 煤矿安全, 2020, 51(06):55-59. [48]邓军, 张宇轩, 赵婧昱, 等. 基于程序升温的不同粒径煤氧化活化能试验研究[J]. 煤炭科学技术, 2019, 47(01):214-219. [49]刘宇帅. 不同变质程度煤自燃特性实验研究[J]. 煤矿安全, 2019, 50(02):10-13. [51]Petersen H I, Rosenberg P, Nytoft H P. Oxygen groups in coals and alginate-rich kerogen revisited[J]. International Journal of Coal Geology, 2007, 74(2). [54]邓军, 赵婧昱, 张嬿妮, 等. 不同变质程度煤二次氧化自燃的微观特性试验[J]. 煤炭学报, 2016, 41(05):1164-1172. [55]王凯. 陕北侏罗纪煤低温氧化反应性及动力学研究[D]. 西安科技大学, 2015. [56]张嬿妮, 刘春辉, 宋佳佳, 等. 长焰煤低温氧化主要官能团迁移规律研究[J]. 煤炭科学技术, 2020, 48(03):188-196. [57]白亚娥. 不同预氧化程度煤二次氧化特性研究[D]. 西安科技大学, 2017. [58]王坤, 宋双林, 王大强, 等. 新疆弱粘煤自燃氧化特性试验研究[J]. 煤矿安全, 2018, 49(01):57-60. [59]谭波, 徐斌, 胡明明, 等. 不同变质程度煤在氧化过程中的表面官能团红外光谱定量分析[J]. 中南大学学报(自然科学版), 2019, 50(11):2886-2895. [63]张辛亥, 李青蔚. 预氧化煤自燃特性试验研究[J]. 煤炭科学技术, 2014, 42(11):37-40. [64]陈兴, 余明高, 马智会, 等. 粒径对煤氧化升温进程影响的试验研究[J]. 河南理工大学学报, 2019, 38(04):25-31. [66]邓军, 徐精彩, 陈晓坤. 煤自燃机理及预测理论研究进展[J]. 辽宁工程技术大学学报, 2003(04):455-459. [67]高洋. 煤矿开采引起的采空区瓦斯与煤自燃共生灾害研究[D]. 中国矿业大学(北京), 2014. [68]邓军, 李鹏, 程文东, 等. 瓦斯对煤自燃特性参数影响的实验研究[J]. 煤矿安全, 2014, 45(11):31-37. [69]王伟峰, 葛令建, 任晓东, 等. 瓦斯异常区煤自燃特性参数实验研究[J]. 能源与环保, 2017, 39(04):40-47. [70]余照阳, 杨胜强, 胡新成. 甲烷气氛下煤低温氧化产气规律实验研究[J]. 煤矿安全, 2017, 48(06):35-39. [71]刘敬. 不同瓦斯含量煤样自燃特性实验研究[J]. 煤矿安全, 2016, 47(05):26-29. [72]宋万新. 含瓦斯风流对煤自燃氧化特性影响的理论及应用研究[D]. 中国矿业大学, 2012. [73]宋万新, 杨胜强, 蒋春林, 等. 含瓦斯风流条件下煤自燃产物CO生成规律的实验研究[J]. 煤炭学报, 2012, 37(08):1320-1325. [74]郝宇, 徐龙君, 陆伟, 等. 不同瓦斯气氛下煤自燃特性及动力学研究[J]. 煤炭转化, 2018, 164(04):4-9. [75]张志鹏. 鲍店矿瓦斯异常区采空区煤自燃特点及防控措施研究[D]. 西安科技大学, 2017. [76]李聪聪. 彬长矿区4号煤层煤质特征及洁净等级划分[J]. 洁净煤技术, 2017, 23(01):28-47 [77]张昕. 浅谈彬长矿区4#煤层煤质特征及利用方向[J]. 陕西煤炭, 2014, 33(05):104-106. |
中图分类号: | TQ333.93/X932 |
开放日期: | 2022-03-07 |