论文中文题名: |
加载速率下缓凝浆液-煤固结体力学特 性及强度损伤机理研究
|
姓名: |
王军燕
|
学号: |
20220226117
|
保密级别: |
保密(1年后开放)
|
论文语种: |
chi
|
学科代码: |
085700
|
学科名称: |
工学 - 资源与环境
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2023
|
培养单位: |
西安科技大学
|
院系: |
安全科学与工程学院
|
专业: |
安全工程
|
研究方向: |
矿井瓦斯智能防控
|
第一导师姓名: |
潘红宇
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2023-06-19
|
论文答辩日期: |
2023-06-03
|
论文外文题名: |
Study on mechanical properties and strength damage mechanism of grout consolidated coal
|
论文中文关键词: |
加载速率 ; 浆液-煤固结体 ; 宏微观力学特征 ; 细观损伤
|
论文外文关键词: |
Loading Rate ; Consolidation Body ; Macro and Micro Mechanical Characteristics ; Microscopic Dama
|
论文中文摘要: |
︿
煤层钻孔抽采是矿井瓦斯防治的有效手段,钻孔的稳定性严重影响瓦斯抽采效果。钻孔施工后,多采用注浆的方式进行封孔,封孔浆液在孔周煤体裂隙中渗透,可对煤体裂隙进行封堵,与煤粘结形成固结体,提高孔周煤体的承载性能,增强钻孔稳定性,提升瓦斯抽采效率。然而,在不同推进速度影响下,孔周煤体承受不同加载速率的采动应力扰动,低强度的固结体易发生变形,难以有效提供孔周煤体支撑力,形成新的裂隙漏气通道,极大影响钻孔抽采效果。为此,本文以自研的缓凝浆液作为封孔材料,从浆液-煤固结体力学性能着手,通过实验室试验、理论分析和数值模拟等方法,分析不同加载速率影响下,缓凝浆液-煤固结体的力学性能和损伤演化规律,建立缓凝浆液-煤固结体的损伤本构方程,对增强固结体抗压强度,改善封孔质量提供了理论依据,对提高钻孔瓦斯抽采效率具有重要的现实意义。论文主要成果如下:
(1)基于不同加载速率下浆液-煤固结体力学特性破坏实验,分析浆液-煤固结体应力应变曲线、抗压强度和表面破坏形式,研究加载速率对浆液-煤固结体宏观力学特性的影响;开展浆液-煤固结体扫描电镜实验,得到浆液-煤固结体的微观结构、孔隙率和分形维数,探究加载速率对浆液-煤固结体的微观力学性能的影响;结合浆液-煤固结体宏微观力学参数,建立浆液-煤固结体宏微观力学构效关系。
(2)为探究加载速率对浆液-煤固结体细观力学特性的影响,利用颗粒流模拟软件,根据实验结果建立数值计算模型,进行浆液-煤固结体加载破坏模拟,分析得到在不同加载速率下浆液-煤固结体细观接触力、力链分布规律和损伤强度的变化与宏观力学参数变化相一致。
(3)通过引入注浆修复变量表征注浆修复作用,进而建立加载速率下损伤变量表达式;基于应变等效理论,建立固结体损伤本构方程,利用实验室测得力学性能对损伤力学模型进行验证,发现力学曲线与实验曲线相吻合。
(4)开展封孔材料加固检测现场试验,采用水泥、聚氨酯和缓凝材料进行封孔,监测封孔后的钻孔瓦斯抽采浓度和压力,发现钻孔瓦斯抽采浓度和压力在3~4 m/d推进速度内逐渐增大,适宜的推进速度为4 m/d。
﹀
|
论文外文摘要: |
︿
Drilling and pumping in coal seam is an effective means to prevent and control gas in mine. The stability of drilling seriously affects the effect of gas pumping. After drilling construction, holes are mostly sealed by grouting, and the sealing slurry penetrates into the cracks of coal body around the hole, which can seal the cracks of coal body and bond with coal to form consolidated body, improve the bearing performance of coal body around the hole, enhance the stability of drilling hole and improve the efficiency of gas extraction. However, under the influence of different advancing speeds, the coal around the hole is subjected to the disturbance of mining stress at different loading rates, and the consolidated body with low strength is easy to deform, which is difficult to effectively provide the supporting force around the hole and form a new fissure leakage channel, which greatly affects the drilling and extraction effect. Therefore, in this paper, the self-developed slow-setting grout is used as the sealing material. Starting from the physical properties of the grout-coal consolidation, the mechanical properties and damage evolution law of the slow-setting grout-coal consolidation under the influence of different loading rates are analyzed by means of laboratory tests, theoretical analysis and numerical simulation, and the damage constitutive equation of the slow-setting grout-coal consolidation is established to enhance the compressive strength of the consolidated body. Improving the sealing quality provides a theoretical basis and has important practical significance for improving the efficiency of gas extraction. The main achievements are as follows:
(1) Experiments on mechanical properties of grout-coal consolidation were carried out at different loading rates, and the influence of loading rate on macroscopic mechanical properties of grout-coal consolidation was studied by analyzing the stress-strain curve, compressive strength and surface failure form of grout-coal consolidation. The microstructure, porosity and fractal dimension of grout-coal consolidation were obtained by scanning electron microscopy (SEM) experiments, and the influence of loading rate on the micromechanical properties of grout-coal consolidation was explored. Combined with macro and micro mechanical parameters of grout-coal consolidation body, the structure-activity relationship of grout-coal consolidation body was established.
(2) In order to explore the influence of loading rate on the meso-mechanical properties of grout-coal consolidation, particle flow simulation software was used to establish a numerical calculation model according to the experimental results to simulate the loading failure of grout-coal consolidation. It was analyzed that the changes of meso-contact force, force chain distribution law and damage strength of grout-coal consolidation were consistent with the changes of macroscopic mechanical parameters under different loading rates.
(3) By introducing the grouting repair variable to characterize the grouting repair, the expressions of loading rate and damage variable under the grouting repair were established. Based on the strain equivalent theory, the damage constitutive equation of the consolidated body was established, and the damage mechanical model was verified by the mechanical properties of the laboratory. It was found that the mechanical curve was consistent with the experimental curve.
(4) The field test of sealing materials reinforcement was carried out. Cement, polyurethane and retarding materials were used to seal the holes. The concentration and pressure of gas extraction in the borehole after sealing were monitored.
﹀
|
参考文献: |
︿
[1]杨宏民, 任发科, 王兆丰, 等. 瓦斯抽采钻孔封孔质量检测及定量评价方法[J]. 煤炭学报, 2019, 44(S1): 164-170. [2]潘红宇, 葛迪, 张天军, 等. 应变率对岩石裂隙扩展规律的影响[J]. 煤炭学报, 2018, 43(3): 675-683. [3]Wang K, Pan H, Zhang T. Experimental Study of Prefabricated Crack Propagation in Coal Briquettes under the Action of a CO2 Gas Explosion[J]. ACS omega, 2021, 6(38): 24462-24472. [4]张进鹏, 刘立民, 刘传孝, 等. 松软厚煤层异型开切眼新型预应力锚注支护研究与应用[J]. 煤炭学报, 2021, 46(10): 3127-3138. [5]Zhao D, Pan J. Numerical simulation on reasonable hole-sealing depth of boreholes for gas extraction[J]. Aip Advances, 2018, 8(4). [6]翟成, 向贤伟, 余旭, 等. 瓦斯抽采钻孔柔性膏体封孔材料封孔性能研究[J]. 中国矿业大学学报, 2013, 42(06): 982-988. [7]Chao Z, Jie C, Shugang L, et al. Experimental study comparing the microscopic properties of a new borehole sealing material with ordinary cement grout[J]. Environmental Earth Sciences, 2019, 78(5): 149. [8]贾进章, 赵丹, 孙亮. 瓦斯抽采钻孔套管支护封孔技术研究[J]. 辽宁工程技术大学学报(自然科学版), 2019, 38(01): 33-38. [9]H.F.Lu, Q.Z.Zhang. Investigations on Shear Properties of Soft Rock Joints under Grouting[J]. Rock Mech Rock Eng. 2021, 54, 1875-1883. [10]Wang H, Wang E, Li Z, et al. Study on sealing effect of pre-drainage gas borehole in coal seam based on air-gas mixed flow coupling model[J]. Process Safety and Environmental Protection. 2020, 136(1): 15-27. [11]王晓蕾, 熊祖强, 袁印, 等. 破碎围岩无机材料注浆加固机理及其应用研究[J]. 地下空间与工程学报, 2022, 18(01): 112-119. [12]王晓蕾, 秦启荣, 熊祖强. 破碎围岩注浆加固扩散机理及应用研究[J]. 科学技术与工程, 2017, 17(17): 188-193. [13]Jin Y, Han L, Meng Q, et al. Mechanical Properties of Grouted Crushed Coal with Different Grain Size Mixtures under Triaxial Compression[J]. Advances in Civil Engineering, 2018, 13. [14]Sun Z, Zhang J, Sun Y. Feasibility of a polymer foaming agent as a grouting material for broken coal masses[J]. Advances in Civil Engineering, 2019, 3: 1-11. [15]许昌毓, 韩立军, 田茂霖, 等. 耦合注浆加固机理及围岩力学参数位移反分析[J]. 煤矿安全, 2020, 51(11): 155-160. [16]王晓蕾, 姬治岗, 罗文强. 破碎煤岩体注浆加固效果综合评价技术及应用[J]. 煤田地质与勘探, 2019, 47(06): 92-97. [17]杜跃. 碳纳米管水泥基注浆材料加固破碎岩石机理的研究[D]. 徐州: 中国矿业大学, 2021. [18]刘长武, 陆士良. 水泥注浆加固对工程岩体的作用与影响[J]. 中国矿业大学学报, 2000(05): 12-16. [19]文旭东, 卢海峰, 刘泉声, 等. 考虑围岩孔隙特性的深部巷道注浆加固数值方法研究[J]. 金属矿山, 2023: 1-20. [20]Huang Y, Zhao A, Zhang T, et al. Experimental study on groutability and reconstructability of broken mudstone and their relationship[J]. Arabian Journal of Geosciences, 2020, 13(16): 774. [21]张农, 侯朝炯, 陈庆敏. 巷道围岩注浆加固体性能实验[J]. 辽宁工程技术大学学报(自然科学版), 1998(01): 15-18. [22]乐慧琳, 孙少锐. 注浆材料和预制裂纹缺陷角度对类岩石试件单轴抗压强度及破坏模式的影响[J]. 岩土力学, 2018, 39(S1): 211-219. [23]刘泉声, 周越识, 卢超波, 等. 含裂隙泥岩注浆前后力学特性试验研究[J]. 采矿与安全工程学报, 2016, 33(03): 509-514+520. [24]Deng C, Dang F, Chen X. Experimental Study on Grouting Effect and Mechanical Properties of the Rockfill Materials Grouted with SCM[J]. Advances in Civil Engineering, 2020, 32(2):1-9. [25]Yu X, Sun Z, Deng M, et al. Grouting Technique for Gob-Side Entry Retaining in Deep Mines[J]. Advances in Civil Engineering, 2021. [26]宋义敏, 邢同振, 邓琳琳, 等. 不同加载速率下岩石变形场演化试验研究[J]. 岩土力学, 2017, 38(10): 2773-2779+2788. [27]Song Y, Xing T, Deng L, et al. Experimental study of evolution characteristics of rock deformation field at different loading rates[J]. Rock and Soil Mechanics, 2017, 38(10): 2773-2779+2788. [28]Bolton M, Mckinley J . Geotechnical properties of fresh cement grout-pressure filtration and consolidation tests[J]. Géotechnique, 1997, 47(2): 347–352. [29]Jin Y, Han L, Meng Q, et al. Experimental investigation of the mechanical behaviors of grouted crushed coal rocks under uniaxial compression[J]. Geomechanics and Engineering, 2018, 16(3): 273-284. [30]刘泉声, 雷广峰, 卢超波, 等. 注浆加固对岩体裂隙力学性质影响的试验研究[J]. 岩石力学与工程学报, 2017, 36(S1): 3140-3147. [31]李桂臣, 孙长伦, 孙元田, 等. 基于“两介质-三界面”模型的散煤注浆固结宏细观规律[J]. 煤炭学报, 2019, 44(02): 427-434. [32]Wang F, Chen S, Gao P, et al. Research on Deformation Mechanisms of a High Geostress Soft Rock Roadway and Double-Shell Grouting Technology[J]. Geofluids, 2021. [33]Wang F, Zhang C, Wei S, et al. Whole section anchor-grouting reinforcement technology and its application in underground roadways with loose and fractured surrounding rock[J]. Tunnelling and Underground Space Technology, 2016, 51: 133-143. [34]苏承东, 李怀珍, 张盛. 等. 应变速率对大理岩力学特性影响的试验研究[J]. 岩力学与工程学报, 2013, 32(5): 943-950. [35]Le H, Wei J, Sun S, et al. Mechanical properties and cracking behaviors of limestone-like samples with two parallel fissures before and after grouting[J]. Journal of Central South University, 2021, 28(09): 2875-2889. [36]Su C, Li H, Zhang S, et al. Experimental investigation on effect of strain rate on mechanical characteristics of marble[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(5): 943-950. [37]Zhang J, Sun Y. Experimental and Mechanism Study of a Polymer Foaming Grouting Material for Reinforcing Broken Coal Mass[J]. KSCE Journal of Civil Engineering, 2018, 23(3). [38]Chao H, Zhu C, Liu L. Pore Structure Characteristics and Its Effect on Mechanical Performance of Cemented Paste Backfill[J]. Frontiers in Materials, 2021, 8. [39]Guo H, Yuan L, Cheng Y, et al. Experimental investigation on coal pore and fracture characteristics based on fractal theory[J]. Powder Technol. 2019, 346: 341-349. [40]Li M, Liang W, Yue G. Fractal and pore structure analysis of structural anisotropic coal under different impact loads[J]. Environmental Earth Sciences, 2020, 79(13). [41]Sun B, Liu S, Zeng S, et al. Dynamic characteristics and fractal representations of crack propagation of rock with different fissures under multiple impact loadings[J]. Scientific Reports, 2021, 11(1). [42]Gao M, Zhang J, Li S. Calculating changes in fractal dimension of surface cracks to quantify how the dynamic loading rates affects rock failure in deep mining[J]. Journal of Central South University, 2020, 27(10): 3013-3024. [43]王磊, 袁秋鹏, 谢广祥, 等. 冲击载荷下煤样能量耗散与破碎分形的长径比效应[J].煤炭学报, 2022, 47(04): 1534-1546. [44]Ma H, Sun J, Wu C, et al. Study on the Pore and Microstructure Fractal Characteristics of Alkali-Activated Coal Gangue-Slag Mortars[J]. Materials, 2020, 13(11): 2442. [45]李佩. 奥灰岩溶裂隙含水层水平注浆孔浆液扩散规律研究[D]. 北京: 煤炭科学研究总院, 2018. [46]范佳俊. 高放废物处置库北山预选区裂隙岩体注浆特性研究[D]. 徐州: 中国矿业大学, 2015. [47]张亮. 顺层瓦斯抽采钻孔合理封孔参数研究[D]. 北京: 华北科技学院, 2017. [48]赵刚, 程健维, 龚选平, 等. 新型无机缓凝封孔浆液注浆扩散形态研究[J]. 西安科技大学学报, 2021, 41(03): 425-433. [49]柳昭星, 靳德武, 尚宏波, 等. 矿区岩溶裂隙岩体帷幕截流注浆参数确定研究[J]. 煤炭科学技术, 2019, 47(06): 81-86. [50]张宏图, 李阳, 姚邦华, 等. 瓦斯抽采钻孔封孔水泥砂浆黏度时变性扩散模型[J]. 煤炭科学技术, 2020, 48(10): 52-59. [51]李术才, 冯啸, 刘人太, 等. 考虑渗滤效应的砂土介质注浆扩散规律研究[J]. 岩土力学, 2017, 38(4): 925-933. [52]黄耀光, 王连国, 陆银龙. 巷道围岩全断面锚注浆液渗透扩散规律研究[J]. 采矿与安全工程学报, 2015, 32(2): 240-246. [53]王强, 冯志强, 王理想, 等. 裂隙岩体注浆扩散范围及注浆量数值模拟[J]. 煤炭学报, 2016, 41(10): 2588-2595. [54]卢海峰, 曹爱德, 刘泉声, 等. 含内缺陷注浆固结体力学特性试验研究[J]. 岩石力学与工程学报, 2020, 39(08): 1560-1571. [55]胡巍, 隋旺华, 王档良, 等. 裂隙岩体化学注浆加固后力学性质及表征单元体的试验研究[J]. 中国科技论文, 2013, 8(05): 408-412. [56]许昌毓, 韩立军, 田茂霖, 等. 耦合注浆加固机理及围岩力学参数位移反分析[J]. 煤矿安全, 2020, 51(11): 155-160. [57]Xiong L , Wan Z , Qin S , et al. A Novel Class F Fly Ash-Based Geopolymer and Its Application in Coal Mine Grouting[J]. Advances in Civil Engineering, 2020, 2020(1): 1-12. [58]Zhang Z, Hideki S. Numerical Study on the Effectiveness of Grouting Reinforcement on the Large Heaving Floor of the Deep Retained Goaf-Side Gateroad: A Case Study in China[J]. Geotechnical and Geological Engineering, 2020, 38(1). [59]任刚, 严国超, 王朋飞, 等. 基于整体锚固理论的多裂隙顶板注浆加固机理[J]. 矿业研究与开发, 2020, 40(08): 111-115. [60]曹萍, 王帮建, 李强, 等. 基于BIM的地下金属矿区垮塌注浆加固风险数值模拟[J].矿冶工程, 2020, 40(04): 23-27. [61]华心祝, 谢广祥, 郑高升, 等. 极软岩破坏巷道修复技术与监测分析[J]. 煤炭科学技术, 2002(05): 22-25. [62]考四明. 动载作用下破碎岩石固结体力学特性研究[D]. 安徽: 安徽理工大学, 2021. [63]Yan, S, Chu, H, Jiao H, et al. Long-Distance Advanced Pre-grouting Layer Flexible Reinforcement Mechanism and Its Application in Large Mining Height Coal Face[J]. Metallurgy & Exploration, 2022, 39, 2379-2392. [64]杨米加, 张农. 破裂岩体注浆加固后本构模型的研究[J]. 金属矿山, 1998(05): 11-14. [65]Du M, Wang Z, Fang H, et al. Statistical damage constitutive model for the two-component foaming polymer grouting material[J]. Reviews on advanced Materials Science, 2022, pp: 350-362. [66]Wang Z, Du M, Fang H, et al. Influence of different corrosion environments on mechanical properties of a roadbed rehabilitation polyurethane grouting material under uniaxial compression[J]. Construction and Building Materials, 2021, 301: 124092. [67]Brunner A. Identification of damage mechanisms in fiber-reinforced polymer-matrix composites with Acoustic Emission and the challenge of assessing structural integrity and service-life[J]. Construction and Building Materials, 2018, 173: 629-637. [68]谢理想, 赵光明, 孟祥瑞. 岩石在冲击载荷下的过应力本构模型研究[J]. 岩石力学与工程学报, 2013, 32(S1): 2772-2781. [69]黎永索, 张可能. 考虑岩体损伤和注浆加固效应的单元稳定性[J]. 中南大学学报(自然科学版), 2012, 43(02): 651-655. [70]冯国瑞, 马敬凯, 李竹, 等. 破碎围岩注浆加固体承载特性与损伤破坏机制[J]. 煤炭学报, 2022, 1-13. [71]秦伟宏, 姜谙男, 许梦飞, 等. 基于Hoek-Brown弹塑性损伤模型的小净距隧道施工优化[J]. 广西大学学报(自然科学版), 2022, 47(04): 843-853. [72]许延春, 李昆奇, 谢小锋, 等. 裂隙岩体损伤的注浆加固效果试验[J]. 西安科技大学学报, 2017, 37(01): 26-31. [73]许延春, 谢小锋, 刘世奇, 等. 注浆加固工作面底板岩体力学性质“增强-损伤”的定量测定[J]. 采矿与安全工程学报, 2017, 34(06): 1186-1193. [74]黎明镜, 荣传新, 程桦, 等. 深立井过瓦斯抽排孔群扰动煤岩层损伤评估与支护优化[J]. 采矿与安全工程学报, 2014, 31(01): 146-153. [75]肖成志, 葛辰贺, 王子寒, 等. 注浆微型钢管桩桩体力学性能的试验和数值分析[J].工业建筑, 2020, 50(06): 85-92. [76]邱三月, 刘东杰, 傅珂. 隧道损伤修复岩体局部安全程度分析[J]. 矿业研究与开发, 2013, 33(05): 73-76. [77]黄明, 唐克, 詹金武, 等. 破碎软岩注浆结石体的动力冲击试验及动态损伤模型辨识[J]. 振动与冲击, 2017, 36(10): 63-68+75. [78]刘世奇, 许延春, 费宇, 等. 声波检测技术在裂隙岩体注浆加固工程质量检测中的应用[J]. 西安科技大学学报, 2018, 38(03): 396-402. [79]吕国鹏, 周传波. 隧道断层带注浆加固围岩体爆破动力损伤特征[J]. 岩石力学与工程学报, 2021, 40(10): 2038-2047. [80]Li Y, Bai J, Liu L, et al. Micro and macro experimental study of using the new cement-based self-stress grouting material to solve shrinkage problem[J]. Journal of Materials Research and Technology, 2022, 3118-3137. [81]王志, 秦文静, 张丽娟. 含裂隙岩石注浆加固后静动态力学性能试验研究[J]. 岩石力学与工程学报, 2020, 39(12): 2451-2459. [82]王志, 李龙. 含裂隙岩石注浆加固后的弯曲疲劳性能试验研究[J]. 岩石力学与工程学报, 2018, 37(08): 1823-1832. [83]赵洪宝, 尹光志, 张卫中. 围压作用下型煤蠕变特性及本构关系研究[J]. 岩土力学, 2009, 30(08): 2305-2308. [84]尹乾, 靖洪文, 苏海健, 等. 单轴压缩下充填正交裂隙花岗岩强度及裂纹扩展演化[J].中国矿业大学学报, 2016, 45(02): 225-232. [85]Li H, Zhou H, Jiang Y, et al. An Evaluation Method for the Bursting Characteristics of Coal Under the Effect of Loading Rate[J]. Rock Mech Rock Engineering,2016. [86]张天军, 景晨, 王喜娜, 等. 不同加载速率对含孔试样变形特性影响研究[J]. 采矿与安全工程学报, 2021, 38(04): 847-856. [87]王笑然, 王恩元, 刘晓斐, 等. 裂隙砂岩裂纹扩展声发射响应及速率效应研究[J]. 岩石力学与工程学报, 2018, 37(06): 1446-1458. [88]李海涛, 宋力, 周宏伟, 等. 多加载速率影响下煤强度的非线性演化机制试验研究及应用[J]. 岩石力学与工程学报, 2016, 35(S1): 2978-2989. [89]Liu Q, Sun W. A Hilbert-type fractal integral inequality and its applications[J]. Journal of Inequalities and Applications, 2017, 2017(1): 83. [90] Griffiths L, Heap M, Xu T, et al. The influence of pore geometry and orientation on the strength and stiffness of porous rock[J]. Journal of Structural Geology, 2017,96: 149-160. [91]朱昌星, 安烨明, 李伟东. 单轴压缩下相似材料煤样破裂过程研究[J]. 矿业研究与开发, 2022, 42(05): 144-148. [92]Chen X, Shi C, Ruan H, et al. Numerical simulation for compressive and tensile behaviors of rock with virtual microcracks[J]. Arabian Journal of Geosciences, 2021, 14(10): 870. [93]李冬冬, 胡浩然, 肖明, 等. 基于PFC-FLAC离散-连续耦合的隧洞开挖与锚杆支护颗粒流模型[J]. 武汉大学学报(工学版): 2023, 1-9. [94]徐文彬, 曹培旺. 三点弯曲荷载下胶结充填体断裂行为试验研究[J]. 金属矿山, 2018, 504(06): 51-56. [95]张威威, 许梦国, 王平, 等. 散体作用下塌陷坑围岩稳定性影响研究[J]. 矿业研究与开发, 2022, 42(05): 82-88. [96]刘伟吉, 王燕飞, 郭天阳, 等. 单齿切削破碎非均质花岗岩微宏观机理研究[J]. 工程力学, 2022, 39(06): 122-133. [97]陈祥, 肖桃李, 折海成. 三轴压缩条件下单裂隙岩样裂隙扩展研究[J]. 科学技术与工程, 2022, 22(26): 11567-11576. [98]沈飞. 基于颗粒流离散元法的含裂隙类岩石材料力学特性研究[D]. 浙江: 绍兴文理学院,2021. [99]冯卫东, 菅永明, 龚华勇. 沥青混合料弯曲疲劳性能演化规律的宏细观试验表征[J].铁道科学与工程学报, 2022, 19(10): 2984-2994. [100]夏明, 赵崇斌. 簇平行黏结模型中微观参数对宏观参数影响的量纲研究[J]. 岩石力学与工程学报, 2014, 33(02): 327-338. [101]张超, 俞缙, 白允, 等. 基于强度理论的岩石脆延转化统计损伤本构模型[J]. 岩石力学与工程学报, 2023, 42(02): 307-316. [102]岳西蒙. 基于FLAC3D的统计岩体力学本构模型拓展及建模方法研究[D]. 浙江: 绍兴文理学院, 2021. [103]Wang G, Lu D, Zhou X, et al. A stress-path-independent damage variable for concrete under multiaxial stress conditions[J]. International Journal of Solids and Structures, 2020, 206(1). [104]武文宾. 基于弹塑性损伤的软煤水压致裂渗流耦合数值模型[J]. 山东科技大学学报(自然科学版), 2021, 40(05): 69-76. [105]樊怡. 贺兰山岩画载体砂岩的变形破坏及声发射试验研究[D]. 宁夏: 宁夏大学, 2019. [106]张妹珠, 江权, 王雪亮, 等. 破裂大理岩锚注加固试样的三轴压缩试验及加固机制分析[J]. 岩土力学, 2018, 39(10): 3651-3660. [107]Li Z, Li S, Liu H, et al. Experimental Study on the Reinforcement Mechanism of Segmented Split Grouting in a Soft Filling Medium[J]. Processes, 2018, 6(8). [108]侯朝炯, 王襄禹, 柏建彪, 等. 深部巷道围岩稳定性控制的基本理论与技术研究[J].中国矿业大学学报, 2021, 50(01): 1-12. [109]王辉, 周世琛, 陈宇琪, 等. 基于均匀化理论的水合物沉积物修正Duncan-Chang本构模型[J]. 中南大学学报(自然科学版), 2021, 52(09): 3251-3263. [110]许万忠. 节理裂隙边坡稳定性及锚注加固效应研究[D]. 湖南: 中南大学, 2006. [111]Thapa M, Mulani S, Walters R. Stochastic multi-scale modeling of carbon fiber reinforced composites with polynomial chaos[J]. Composite Structures, 2019, 213:(apr): 82-97. [112]张翼宇. 不同风化程度花岗岩破坏特征及损伤演化试验研究[D]. 河南: 华北水利水电大学, 2022. [113]Yu S, Su X, Song J, et al. The Hole Sealing Technology of Solid-Liquid Materials with Three Pluggings and Two Injections for Gas Extraction Hole in the Coal Mine[J]. ACS omega, 2022, 7(48): 43847-43855. [114]Chao Z, Jie C, Shugang L, et al. Experimental study comparing the microscopic properties of a new borehole sealing material with ordinary cement grout[J]. Environmental Earth Sciences, 2019, 78(5): 149. [115]李傲. 煤孔测压用低粘度高渗透预注浆封孔材料制备及安全性能研究[D]. 徐州: 中国矿业大学, 2018.
﹀
|
中图分类号: |
TD712
|
开放日期: |
2024-06-19
|