- 无标题文档
查看论文信息

论文中文题名:

 三维非线性阻尼微极流体方程解的衰减性研究    

姓名:

 刘圆圆    

学号:

 21201103007    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0701    

学科名称:

 理学 - 数学    

学生类型:

 硕士    

学位级别:

 理学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 理学院    

专业:

 数学    

研究方向:

 偏微分方程理论    

第一导师姓名:

 宋雪丽    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-14    

论文答辩日期:

 2024-06-04    

论文外文题名:

 Studies on the Decay of Solutions to the Three-Dimensional Nonlinear Damped Micropolar Fluid Equations    

论文中文关键词:

 微极流体方程 ; Fourier分解方法 ; 解的衰减性 ; 渐近稳定性    

论文外文关键词:

 Micropolar Fluid equations ; Fourier decomposition method ; Decay of solutions ; Asymptotic stability    

论文中文摘要:

微极流体方程可以描述悬浮液、动物血液和液晶等多种复杂流体的流动现象,在科学研究和实际生产中均有重要的意义。许多学者在研究微极流体方程时,引入了非线性阻尼项以描述流体粒子在流动过程中的阻力和摩擦效应。为了使微极流体方程的结论更具广泛应用性,本文旨在拓宽阻尼项参数 的范围对三维非线性阻尼微极流体方程解的衰减性进行研究,主要研究内容如下: 针对不含外力项的三维非线性阻尼微极流体方程解的衰减性,首先通过对微极流体方程组的第一个方程和第二个方程的耦合得到方程对应的能量不等式,并给出 和 时强解的存在性定理;其次,分别使用逐项估计法和矩阵估计法克服了非线性项 和 的困难,利用各种基本不等式对方程变换后的各项进行了先验估计,并使用Fourier分解方法和Plancherel定理对方程解和解的梯度进行了衰减估计,得到了 在不同范围内的一致衰减率;最后借助于Duhamel原理对旋转场的衰变做出了进一步改进。 针对含外力项的三维非线性阻尼微极流体方程解的衰减性,基于本文第三部分的衰减性结论,提出了外力假设条件Ⅰ、Ⅱ,并结合外力假设条件与其他项的估计,推导得出了含外力项时方程解的一致衰减率;此外,给出了外力的梯度假设条件Ⅲ,对时间 进行限制得到了方程解的梯度是单调递减函数;最后,经过改进得到了含外力项旋转场的衰减估计。 针对三维非线性阻尼微极流体方程解的渐近稳定性,本文引入了在任意初始扰动条件下的扰动方程,然后对扰动方程与原始方程作差,同样使用矩阵估计法和Fourier分解方法对作差后的方程进行了深入讨论,证明了扰动解渐近收敛于原始解,并得出了相应的一致衰减率。

论文外文摘要:

The micropolar fluid equation can describe the flow phenomena of various complex fluids such as suspension, animal blood and liquid crystal, which is of great significance in scientific research and practical production. In the study of micropolar fluid equations, many scholars have introduced nonlinear damping terms to describe the resistance and friction effects of fluid particles in the flow process. In order to make the conclusion of the micropolar fluid equation more widely applicable, this paper aims to broaden the range of damping parameters  to study the decay of the solution of the three-dimensional nonlinear damped micropolar fluid equation. The main research contents are as follows:

For the decay of the solutions of the three-dimensional nonlinear damped micropolar fluid equations without external force terms, firstly, the energy inequality corresponding to the equation is obtained by coupling the first equation and the second equation of system , as well as the existence theorems of the strong solutions when  and  are given. Secondly, the term by term and matrix estimation methods are used to overcome the difficulties of the nonlinear terms  and , respectively, and the transformed terms of the equations are estimated a priori by using the various basic inequalities, and the gradients of the solutions of the equations and the solutions are estimated at a decay rate in different ranges by using Fourier decomposition methods and Plancherel's theorem. The decay of the gradient of the equation solution is estimated using the Fourier decomposition method and Plancherel's theorem, and the consistent decay rate of  in different ranges is obtained. Finally, the decay of the rotating field is further improved with the help of Duhamel's principle.

For the decay of the three-dimensional nonlinear damped micropolar fluid equation solutions containing external force terms, based on the decay estimates from the third section, we propose external force assumption conditions Ⅰ and Ⅱ. By coupling these external force assumption conditions with the estimates of other terms, we derive a uniform decay rate for the solutions of the equations with external force terms. Additionally, we present the gradient assumption condition Ⅲ for the external force, and by imposing time restrictions, we demonstrate that the gradient of the solution is a monotonically decreasing function. Finally, we improve the decay estimate for the rotating field with external force terms.

For the asymptotic stability of the solutions of the three-dimensional nonlinear damped micropolar fluid equations, this paper introduces the perturbation equation under any initial perturbation condition, and then makes a difference between the perturbation equation and the original equation. The matrix estimation method and Fourier decomposition method are also used to discuss the difference equation in depth. It is proved that the perturbation solution converges asymptotically to the original solution, and the corresponding uniform decay rate is obtained.

参考文献:

[1] 孙业成. 三维微极流体方程和广义磁流体方程正则性准则[D]. 湘潭: 湘潭大学, 2013.

[2] 陶群群. 几类流体力学方程的衰减估计和正则准则[D]. 合肥: 安徽大学, 2016.

[3] 侯淑莲. 微极流体方程组的适定性与正则性[D]. 成都: 四川师范大学, 2024.

[4] Eringen A C. Simple microfluids[J]. International Journal of Engineering Science, 1964, 2(2): 205-217.

[5] Eringen A C. Theory of micropolar fluids[J]. Journal of Mathematics and Mechanics, 1966, 16(1): 1-18.

[6] Galdi G, Rionero S. A note on the existence and uniqueness of solutions of the micropolar fluid equations[J]. International Journal of Engineering Science, 1977, 15(2): 105-108.

[7] Lukaszewicz G. On nonstationary flows of asymmetric fluids[J]. Mathematical Methods in the Applied Sciences, 1990, 13(3): 219-232.

[8] Lukaszewicz G. On the existence, uniqueness and asymptotic properties for solutions of flows of asymmetric fluids[J]. Mathematical Methods in the Applied Sciences, 1989, 11(3): 343-351.

[9] Lukaszewicz G. Micropolar Fluids[M]. Birkhäuser Boston, MA, 1999.

[10] Chen Q, Miao C. Global well-posedness for the micropolar fluid system in critical Besov spaces[J]. Differential Equations, 2012, 252: 2698-2724.

[11] Ferreira L, Precioso J. Existence of solutions for the 3D-micropolar fluid system with initial data in Besov-Morrey spaces[J]. Zeitschrift für angewandte Mathematik und Physik, 2013, 64: 1699-1710.

[12] Yamaguchi N. Existence of global strong solution to the micropolar fluid systemin a bounded domain[J]. Mathematical Methods in the Applied Sciences, 2005, 28(13): 1507-1526.

[13] Yuan B. On the regularity criteria for weak solutions to the micropolar fluid equations in Lorentz space[J]. Proceedings of the American Mathematical Society, 2010, 138(6): 2025-2036.

[14] Ye Z. Global existence of strong solution to the 3D micropolar equations with a damping term[J]. Applied Mathematics Letters, 2018, 83: 188-193.

[15] Wang W, Long Y C. A note on global existence of strong solution to the 3D micropolar equations with a damping term[J]. Boundary Value Problems, 2021, 2021(72): 1-6.

[16] Ye H L, Wang Q Q, Jia Y. Well-posedness and large time decay for the 3D micropolar equations with only velocity dissipation[J]. Nonlinear Analysis, 2022, 219: 112796.

[17] Liu S Q, Si Z J. Global well-posedness of the 3D micropolar equations with partial viscos-ity and damping[J]. Applied Mathematics Letters, 2020, 109: 106543.

[18] Yang X J, Liu H. Global attractors of the 3D micropolar equations with damping term[J]. Mathematical Foundations of Computing, 2021, 4: 117-130.

[19] Li H M, Xiao Y L. Large time behavior of solutions to the 3D micropolar equations with nonlinear damping[J]. Nonlinear Analysis: Real World Applications, 2022, 65: 103493.

[20] Silva P B, Cruz F W. On the L2 decay of weak solutions for the 3D asymmetric fluids equations[J]. Journal of Differential Equations, 2019, 267(6): 3578-3609.

[21] Schonbek M E. L2 decay for weak solutions of the Navier-Stokes equations[J]. Archive for Rational Mechanics and Analysis, 1985, 88: 209-222.

[22] Schonbek M E. Large time behavior of solutions to the Navier-Stokes equations[J]. Com-munications in Partial Differential Equations, 1986, 11(7): 733-763.

[23] Schonbek M E. Large time behavior of solutions to the Navier-Stokes equations in Hm spaces[J]. Communications in Partial Differential Equations, 1995, 20(1-2): 103-117.

[24] Schonbek M E, Wiegner M. On the decay of higher-order norms of the solutions of Na-vier–Stokes equations[J]. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 1996, 126(3): 677-685.

[25] Cai X J, Jiu Q S. Weak and strong solutions for the incompressible Navier-Stokes equa-tions with damping[J]. Journal of Mathematical Analysis and Applications, 2008, 343(2): 799-809.

[26] Cai X J, Lei L H. L2 decay of the incompressible Navier-Stokes equations with damping[J]. Acta Mathematica Scientia, 2010, 30(4): 1235-1248.

[27] Jia Y, Xie Q, Dong B Q. Global regularity of the 3D magneto-micropolar equations with fractional dissipation[J]. Zeitschrift für angewandte Mathematik und Physik, 2022, 73: 1-15.

[28] Song X L, Hou Y R. Attractors for the three-dimensional incompressible Navier-Stokes equations with damping[J]. Discrete Continuous Dynamical Systems, 2011, 31(1): 239-252.

[29] Song X L, Hou Y R. Uniform attractors for three-dimensional Navier-Stokes equations with nonlinear damping[J]. Journal of Mathematical Analysis and Applications, 2015, 422(1): 337-351.

[30] Song X L, Hou Y R. Uniform attractors for a non-autonomous Brinkman-Forchheimer equation[J]. Journal of Mathematical Research with Applications, 2012, 32(1): 63-75.

[31] 宋雪丽, 徐爽, 乔宝明. 三维全空间上Brinkman-Forchheimer方程弱解的L2衰减性[J]. 数学的实践与认识, 2020(22): 307-314.

[32] 乔宝明, 李小凤, 宋雪丽. 三维Brinkman-Forchheimer方程强解的全局吸引子的存在性[J]. 数学的实践与认识, 2020, 50(10): 238-251.

[33] Li M, Shang H F. Large time decay of solutions for the 3D magneto-micropolar equa-tions[J]. Nonlinear Analysis: Real World Applications, 2018, 44: 479-496.

[34] Li M. Stability and large time decay for the three-dimensional magneto-micropolar equa-tions with mixed partial viscosity[J]. Zeitschrift für angewandte Mathematik und Physik, 2023, 74: 110.

[35] Liu H, Sun C F, Meng F. Global well-posedness of the 3D magneto-micropolar equations with damping[J]. Applied Mathematics Letters, 2019, 94: 38-43.

[36] Nunes R H, Nunes J R, Perusato C F. Decay rates for the magneto-micropolar system in L2(Rn)[J]. Archiv der Mathematik, 2018, 111: 431-442.

[37] Yuan B Q. Regularity of weak solutions to magneto-micropolar fluid equations [J]. Acta Mathematica Scientia, 2010, 30(5): 1469-1480.

[38] 王术. Sobolev空间与偏微分方程引论[M]. 北京: 科学出版社, 2009.

[39] 匡继昌. 常用不等式(第四版)[M]. 济南: 山东科学技术出版社, 2010.

[40] Peter J O. Introduction to Partial Differential Equations[M]. Department of Mathematics and Computer Science, 2016.

[41] Ferreira L C F, Villamizar-Roa E J. Micropolar fluid system in a space of distributions and large time behavior[J]. Journal of Mathematical Analysis and Applications, 2007, 332(2): 1425-1445.

[42] 段雨希. 一类具有热对流作用的非牛顿微极流体方程组解的适定性研究[D]. 长春: 长春理工大学, 2023.

[43] 郭毓驹. 索伯列夫空间引论[M]. 上海: 上海科学技术出版社, 1981: 72-74.

[44] 杨晓捷. 抛物方程和微极流体方程吸引子的存在性问题[D]. 曲阜: 曲阜师范大学, 2023.

[45] Roger T. Infinite-Dimensional Dynamical Systems in Mechanics and Physics[M]. Applied Mathematical Sciences, 1997.

中图分类号:

 O175.2    

开放日期:

 2024-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式