- 无标题文档
查看论文信息

论文中文题名:

 基于多源遥感数据的冬小麦识别和长势监测    

姓名:

 邹孟希    

学号:

 21210226107    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘工程    

研究方向:

 地理空间建模    

第一导师姓名:

 周自翔    

第一导师单位:

 西安科技大学    

第二导师姓名:

 李存军    

论文提交日期:

 2024-06-17    

论文答辩日期:

 2024-06-01    

论文外文题名:

 Winter Wheat Identification and Growth Monitoring Based on Multi-Source Remote Sensing Data    

论文中文关键词:

 冬小麦 ; 作物识别 ; 长势监测 ; 多源遥感    

论文外文关键词:

 Winter wheat ; Crop identification ; Growth monitoring ; Multi-source remote sensing    

论文中文摘要:

       遥感技术是当前农业生产领域的重要监测手段。河北省是中国13个小麦主产省份之一,协同多源遥感数据开展该区域冬小麦识别和长势监测研究,对保障国家粮食安全具有重要价值。本文以河北省泊头市为研究区,基于Google Earth Engine平台获取Sentinel-1/2主被动遥感影像,提取并融合光谱特征和极化特征,采用基尼指数重要性评价方法和随机森林分类器,筛选最佳特征组合,实现在冬小麦生长发育阶段早期的遥感识别。获取田块尺度的无人机多光谱影像,提取植被指数和纹理指数,并从中筛选出与冬小麦拔节期、灌浆期的株高、叶面积指数(LAI)地面实测样本数据相关性较强的特征指数,进行特征组合作为长势估测模型的输入量,再利用多种机器学习算法或深度学习算法构建出冬小麦关键生育期的长势估测模型,并优选出最佳方法。最后将基于无人机多光谱影像获取的田块尺度长势估测数据(0.1m栅格)升尺度应用至区域尺度的卫星影像(10m栅格),得到冬小麦在区域尺度下的长势空间分布反演结果图。具体结果如下:

(1)基于单时相遥感影像可以在生长发育早期阶段(12月)实现季节内的冬小麦识别。融合光谱特征与极化特征参与分类,有效提高了冬小麦的识别精度。将从Sentinel-1/2影像中提取的14种指数(MSAVI、PLUS、B8、NDVI、EVI、SAVI、MULTIPY、GNDVI、B2、VV、VH、B3、B4、S2REP)进行特征组合后,识别冬小麦的精度最佳,分类结果的总体精度和F1分数分别为97.09%、94.33%。

(2)多特征结合估算冬小麦关键生育期各长势指标的能力较强,小麦株高可以作为基于传统指数进行LAI反演建模的一个重要补充。利用4种机器学习算法(SVM、BPNN、RF、XGBoost)、2种深度学习算法(CNN、LSTM)构建的无人机长势指标反演模型可基本满足田块尺度上的冬小麦拔节期和灌浆期的株高、LAI估算,其中基于RF算法的回归模型估算冬小麦灌浆期LAI精度最高,R2为0.8628;基于XGBoost估算拔节期、灌浆期株高和拔节期LAI模型效果最好,R2分别为0.7683、0.7170、0.8689。

(3)无人机遥感平台可以作为田块调查和卫星数据之间的桥梁,能够为基于卫星多光谱影像的模型构建和作物长势监测提供足够的地面田块样本。其中,基于“机地反演-星机协同”的反演方法优于“机地建模-卫星反演”的反演方法,估算结果精度更高,特别是拔节期LAI预测值与实测值相关系数达0.6622。

论文外文摘要:

     Remote sensing technology has become an important means in the agricultural production field. Hebei Province is one of the 13 major wheat producing provinces in China, it is of great significance for ensuring national food security to carry out research on winter wheat planting area identification and growth indicator monitoring at the regional scale using multi-source remote sensing data. This paper took Botou City, Hebei Province as the research area. Sentinel-1/2 active and passive remote sensing images were obtained through the Google Earth Engine platform, spectral and polarization features were extracted and integrated. The Gini index importance evaluation method and random forest classifier were employed to select the best feature combination, and achieve remote sensing identification in the early stage of winter wheat growth and development. Subsequently, UAV multispectral imagery at the field scale were obtained. Vegetation indices and texture indices were extracted, and the indicies strongly correlated with ground-based measurements of plant height and leaf area index (LAI) at the jointing and filling stages of winter wheat were screened. Features were combined as input variables for model construction. Various machine learning and deep learning algorithms were applied to estimate growth indicators of winter wheat during the critical growth stages, and the best methods were selected. Finally, the field scale growth estimation data (0.1m grid) obtained from UAV multispectral images were upscaled and applied to regional scale satellite images (10m grid) to derive the spatial distribution inversion results of various growth of winter wheat at the regional scale. The results showed that:

(1) The capacity to accomplish the early identification of winter wheat during the relatively early stages of growth and development (December) could be achieved based on single-phase remote sensing imagery. The combination of spectral and polarization features in classification effectively improved the identification accuracy of winter wheat. The winter wheat recognition accuracy was the best when 14 indices (MSAVI、PLUS、B8、NDVI、EVI、SAVI、MULTIPY、GNDVI、B2、VV、VH、B3、B4、S2REP) extracted from Sentinel-1/2 single-temporal images were combined with features. The overall accuracy and F1_Score of the classification results were the highest, with 97.09% and 94.33%, respectively.

(2) The ability to estimate growth indicators during critical growth stages of winter wheat was strong when multiple features were combined, with plant height serving as an important supplement to LAI inversion modeling based on traditional indices. The UAV inversion models for various growth indicators constructed using four machine learning algorithms, namely, support vector machine (SVM), back propagation neural network (BPNN), random forest (RF), extreme gradient boosting (XGBoost), and two deep learning algorithms, namely, convolutional neural network (CNN) and long short-term memory neural network (LSTM), can basically meet the estimation of plant height and LAI during the jointing and filling stages of winter wheat at the field scale. Among them, the regression model based on the RF algorithm has the highest accuracy in estimating LAI during filling stage of winter wheat, with R2 values of 0.8628. The XGBoost based estimation of plant height during the jointing stage and filling stage, and LAI during jointing stage has the best performance, with R2 values of 0.7636, 0.7170 and 0.8689, respectively.

(3) The UAV remote sensing platform could serve as a bridge between field surveys and satellite data, providing sufficient ground field samples for model construction and crop growth monitoring based on satellite multispectral imagery. In the research on upscaling monitoring of winter wheat growth indicators, UAV-ground inversion and satellite-UAV collaboration was superior to the inversion method based on UAV-ground modeling and satellite inversion, and the estimation accuracy was higher, especially the correlation coefficient between the predicted LAI value during the jointing period and the measured value was 0.6622.

参考文献:

[1] 田欣媛, 张永红, 刘睿,等. 考虑植被红边信息的多时相Sentinel-2大范围冬小麦提取研究[J]. 遥感学报, 2022, 26(10): 1988-2000.

[2] 马腾, 刘全明, 孙红.多源遥感技术在土地利用分类中的应用[J]. 测绘通报, 2018, (08): 56-61.

[3] 李树涛, 李聪妤, 康旭东. 多源遥感图像融合发展现状与未来展望[J]. 遥感学报, 2021, 25(01): 148-166.

[4] Chen H, Ma Y, Zhu A, et al. Soil salinity inversion based on differentiated fusion of satellite image and ground spectra[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 101: 1-11.

[5] 马战林, 刘昌华, 薛华柱, 等. GEE环境下融合主被动遥感数据的冬小麦识别技术[J]. 农业机械学报, 2021, 52(09): 195-205.

[6] 张锦水, 赵光政, 洪友堂, 等. 基于像元物候曲线匹配的生长季内河北省冬小麦空间分布识别[J]. 农业工程学报, 2020, 36(23): 193-200.

[7] Dong Q, Chen X, Chen J, et al. Mapping Winter Wheat in North China Using Sentinel 2A/B Data: A Method Based on Phenology-Time Weighted Dynamic Time Warping[J]. Remote Sensing, 2020, 12(8): 1-22.

[8] Wang L, Wang J, Qin F. Feature Fusion Approach for Temporal Land Use Mapping in Complex Agricultural Areas[J]. Remote Sensing, 2021, 13: 1-29.

[9] Korhonen L, Hadi, Packalen P, et al. Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index[J]. Remote Sensing of Environment, 2017, 195: 259-274.

[10] Zhang C, Kovacs J M. The application of small unmanned aerial systems for precision agriculture: A review[J]. Precision Agriculture, 2012, 13(6): 693-712.

[11] Matese A, Toscano P, Di Gennaro S F, et al. Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture[J]. Remote Sensing, 2015, 7(3): 2971-2990.

[12] 奚雪, 赵庚星, 高鹏, 等. 基于Sentinel卫星及无人机多光谱的滨海冬小麦种植区土壤盐分反演研究——以黄三角垦利区为例[J]. 中国农业科学, 2020, 53(24): 5005-5016.

[13] 陈仲新, 任建强, 唐华俊, 等. 农业遥感研究应用进展与展望 [J]. 遥感学报, 2016, 20(05): 748-767.

[14] Massey R, Sankey T T, Congalton R G, et al. MODIS phenology-derived, multi-year distri-

bution of conterminous US crop types[J]. Remote Sensing of Environment, 2017, 198: 490-503.

[15] 郑长春, 王秀珍, 黄敬峰. 基于特征波段的SPOT-5卫星影像水稻面积信息自动提取的方法研究[J]. 遥感技术与应用, 2008, (03): 294-299.

[16] 曹伟男, 王文高, 王欣, 等. 基于高分二号卫星数据的农作物分类方法研究[J]. 测绘与空间地理信息, 2021, 44(04): 158-161.

[17] 黄青, 李丹丹, 陈仲新, 等. 基于MODIS数据的冬小麦种植面积快速提取与长势监测[J]. 农业机械学报, 2012, 43(07): 163-167.

[18] 潘学鹏, 李改欣, 刘峰贵, 等. 华北平原冬小麦面积遥感提取及时空变化研究[J]. 中国生态农业学报, 2015, 23(04): 497-505.

[19] Dong J W, Xiao X M, Menarguez M A, et al. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine[J]. Remote Sensing of Environment, 2016, 185: 142-154.

[20] Murthy C S, Raju P V, Badrinath K V S. Classification of wheat crop with multi-temporal images: performance of maximum likelihood and artificial neural networks[J]. International Journal of Remote Sensing, 2003, 24(23): 4871-4890.

[21] Kamusoko C, Kamusoko O W, Chikati E, et al. Mapping Urban and Peri-Urban Land Cover in Zimbabwe: Challenges and Opportunities[J]. Geomatics, 2021, 1: 114-147.

[22] Makinde E O, Oyelade E O. Land cover mapping using Sentinel-1 SAR and Landsat 8 imageries of Lagos State for 2017[J]. Environmental Science and Pollution Research, 2020, 27(1): 66-74.

[23] Mandal D, Kumar V, Ratha D, et al. Dual polarimetric radar vegetation index for crop growth monitoring using sentinel-1 SAR data[J]. Remote Sensing of Environment, 2020, 247: 1-17.

[24] 王迪, 周清波, 陈仲新, 等. 基于合成孔径雷达的农作物识别研究进展[J]. 农业工程学报, 2014, 30(16): 203-212.

[25] 周涛, 潘剑君, 韩涛, 等. 基于多时相合成孔径雷达与光学影像的冬小麦种植面积提取[J]. 农业工程学报, 2017, 33(10): 215-221.

[26] Van Tricht K, Gobin A, Gilliams S, et al. Synergistic Use of Radar Sentinel-1 and Optical Sentinel-2 Imagery for Crop Mapping: A Case Study for Belgium[J]. Remote Sensing, 2018, 10(10): 1-22.

[27] Tian H, Pei J, Huang J, et al. Garlic and Winter Wheat Identification Based on Active and Passive Satellite Imagery and the Google Earth Engine in Northern China[J]. Remote Sensing, 2020, 12(21): 1-17.

[28] 赵春霞, 钱乐祥. 遥感影像监督分类与非监督分类的比较[J]. 河南大学学报(自然科学版), 2004, (03): 90-93.

[29] Panigrahy S, Upadhyay G, Ray S S, et al. Mapping of Cropping System for the Indo-Gangetic Plain Using Multi-Date SPOT NDVI-VGT Data[J]. Journal of the Indian Society of Remote Sensing, 2010, 38(4): 627-632.

[30] 许青云, 杨贵军, 龙慧灵, 等. 基于MODISNDVI多年时序数据的农作物种植识别[J]. 农业工程学报, 2014, 30(11): 134-144.

[31] Pan H Y, Tong X H, Xu X, et al. Updating of Land Cover Maps and Change Analysis Using GlobeLand30 Product: A Case Study in Shanghai Metropolitan Area, China[J]. Remote Sensing, 2020, 12(19): 1-25.

[32] 罗桓, 李卫国, 景元书, 等. 基于SVM的县域冬小麦种植面积遥感提取[J]. 麦类作物学报, 2019, 39(04): 455-462.

[33] Fang P, Zhang X W, Wei P P, et al. The Classification Performance and Mechanism of Machine Learning Algorithms in Winter Wheat Mapping Using Sentinel-2 10 m Resolution Imagery[J]. Applied Sciences-Basel, 2020, 10(15): 1-21.

[34] Zhou T, Pan J J, Zhang P Y, et al. Mapping Winter Wheat with Multi-Temporal SAR and Optical Images in an Urban Agricultural Region[J]. Sensors, 2017, 17(6): 1-16.

[35] 何昭欣, 张淼, 吴炳方, 等. Google Earth Engine支持下的江苏省夏收作物遥感提取[J]. 地球信息科学学报, 2019, 21(05): 752-766.

[36] 杨彦荣, 宋荣杰, 胡国强, 等. 基于随机森林和纹理特征的苹果园遥感提取[J]. 现代电子技术, 2020, 43(03): 40-44.

[37] Teluguntla P, Thenkabail P S, Oliphant A, et al. A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform[J]. Isprs Journal of Photogrammetry and Remote Sensing, 2018, 144: 325-340.

[38] 刘建刚, 赵春江, 杨贵军, 等. 无人机遥感解析田间作物表型信息研究进展[J]. 农业工程学报, 2016, 32(24): 98-106.

[39] Zhang Y, Chen J M, Miller J R, et al. Leaf chlorophyll content retrieval from airborne hyperspectral remote sensing imagery[J]. Remote Sensing of Environment, 2008, 112(7): 3234-3247.

[40] Behrens T, Diepenbrock W. Using Digital Image Analysis to Describe Canopies of Winter Oilseed Rape (Brassica napus L.) during Vegetative Developmental Stages[J]. Journal of Agronomy Crop Science, 2010, 192(4): 295-302.

[41] Nie S, Wang C, Dong P L, et al. Estimating leaf area index of maize using airborne full-

waveform lidar data[J]. Remote Sensing Letters, 2016, 7(2): 111-120.

[42] Liu J, Pattey E, Jégo G. Assessment of vegetation indices for regional crop green LAI estimation from Landsat images over multiple growing seasons[J]. Remote Sensing of Environment, 2012, 123: 347-358.

[43] 潘海珠, 陈仲新. 无人机高光谱遥感数据在冬小麦叶面积指数反演中的应用[J]. 中国农业资源与区划, 2018, 39(03): 32-37.

[44] 孙诗睿, 赵艳玲, 王亚娟, 等. 基于无人机多光谱遥感的冬小麦叶面积指数反演[J]. 中国农业大学学报, 2019, 24(11): 51-58.

[45] Papadavid, George. Mapping potato crop height and leaf area index through vegetation indices using remote sensing in Cyprus[J]. Journal of Applied Remote Sensing, 2011, 5(1): 1-19.

[46] Georgios P, Diofantos H G, Kyriacos T, et al. Spectral vegetation indices from field spectroscopy intended for evapotranspiration purposes for spring potatoes in Cyprus[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2010, 7824(3): 269-269.

[47] 李燕强, 张娟娟, 熊淑萍, 等. 不同冬小麦品种株高的高光谱估算模型[J]. 麦类作物学报, 2012, 32(03): 523-529.

[48] Song Y, Wang J. Winter Wheat Canopy Height Extraction from UAV-Based Point Cloud Data with a Moving Cuboid Filter[J]. Remote Sensing, 2019, 11(10): 1-22.

[49] 刘治开, 牛亚晓, 王毅, 等. 基于无人机可见光遥感的冬小麦株高估算[J]. 麦类作物学报, 2019, 39(07): 859-866.

[50] Breda N J J. Ground-based measurements of leaf area index: a review of methods, instruments and current controversies[J]. Journal of Experimental Botany, 2003, 54(392): 2403-2417.

[51] Dente L, Satalino G, Mattia F, et al. Assimilation of leaf area index derived from ASAR and MERIS data into CERES-Wheat model to map wheat yield[J]. Remote Sensing of Environment, 2008, 112(4): 1395-1407.

[52] 杜育璋, 姜小光, 张雨泽, 等. 基于Landsat-8遥感数据和PROSAIL辐射传输模型反演叶面积指数[J]. 干旱区地理, 2016, 39(05): 1096-1103.

[53] Kupidura P. The Comparison of Different Methods of Texture Analysis for Their Efficacy for Land Use Classification in Satellite Imagery[J]. Remote Sensing, 2019, 11(10): 1-20.

[54] 曹中盛, 李艳大, 黄俊宝, 等. 基于无人机数码影像的水稻叶面积指数监测[J]. 中国水稻科学. 2022, 36(03): 308-317.

[55] 李健, 江洪, 罗文彬, 等. 融合无人机多光谱和纹理特征的马铃薯LAI估算[J]. 华南

农业大学学报, 2023, 44(01): 93-101.

[56] Potgieter A B, George-Jaeggli B, Chapman S C, et al. Multi-Spectral Imaging from an Unmanned Aerial Vehicle Enables the Assessment of Seasonal Leaf Area Dynamics of Sorghum Breeding Lines[J]. Frontiers in Plant Science, 2017, 8: 1-11.

[57] 戴冕, 杨天乐, 姚照胜, 等. 基于无人机图像颜色与纹理特征的小麦不同生育时期生物量估算(英文)[J]. 智慧农业(中英文), 2022, 4(01): 71-83.

[58] Fu Z P, Jiang J, Gao Y, et al. Wheat Growth Monitoring and Yield Estimation based on Multi-Rotor Unmanned Aerial Vehicle[J]. Remote Sensing, 2020, 12(3): 508.

[59] 刘畅, 杨贵军, 李振海, 等. 融合无人机光谱信息与纹理信息的冬小麦生物量估测[J]. 中国农业科学, 2018, 51(16): 3060-3073.

[60] Liu Y, Feng H K, Yue J B, et al. Estimation of potato above-ground biomass based on unmanned aerial vehicle red-green-blue images with different texture features and crop height[J]. Frontiers in Plant Science, 2022, 13: 1-18.

[61] 牛庆林, 冯海宽, 杨贵军, 等. 基于无人机数码影像的玉米育种材料株高和LAI监测 [J]. 农业工程学报, 2018, 34(05): 73-82.

[62] 高铭阳, 张锦水, 潘耀忠, 等. 结合植被指数与作物高度反演冬小麦叶面积指数[J]. 中国农业资源与区划, 2020, 41(08): 49-57.

[63] Hasan U, Sawut M, Chen S S. Estimating the Leaf Area Index of Winter Wheat Based on Unmanned Aerial Vehicle RGB-Image Parameters[J]. Sustainability, 2019, 11(23): 1-11.

[64] Azadbakht M, Ashourloo D, Aghighi H, et al. Wheat leaf rust detection at canopy scale under different LAI levels using machine learning techniques[J]. Computers and Electronics in Agriculture, 2019, 156: 119-128.

[65] 张春兰, 杨贵军, 李贺丽, 等. 基于随机森林算法的冬小麦叶面积指数遥感反演研究[J]. 中国农业科学, 2018, 51(05): 855-867.

[66] Zhang Y, Xia C Z, Zhang X Y, et al. Estimating the maize biomass by crop height and narrowband vegetation indices derived from UAV-based hyperspectral images[J]. Ecological Indicators, 2021, 129: 1-12.

[67] Koirala A, Walsh K B, Wang Z L, et al. Deep learning - Method overview and review of use for fruit detection and yield estimation[J]. Computers and Electronics in Agriculture, 2019, 162: 219-234.

[68] Khaki S, Wang L Z, Archontoulis S V. A CNN-RNN Framework for Crop Yield Prediction[J]. Frontiers in Plant Science, 2020, 10: 1-14.

[69] Wang J, Si H P, Gao Z, et al. Winter Wheat Yield Prediction Using an LSTM Model from MODIS LAI Products[J]. Agriculture-Basel, 2022, 12(10): 1-13.

[70] 郭晗, 陆洲, 徐飞飞, 等. 基于全局敏感性分析与机器学习的冬小麦叶面积指数估算[J]. 浙江农业学报, 2022, 34(09): 2020-2031.

[71] Zhang S M, Zhao G X, Lang K, et al. Integrated Satellite, Unmanned Aerial Vehicle (UAV) and Ground Inversion of the SPAD of Winter Wheat in the Reviving Stage[J]. Sensors, 2019, 19(7): 1-17.

[72] Lu L, Luo J, Xin Y, et al. How can UAV contribute in satellite-based Phragmites australis aboveground biomass estimating?[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 114: 1-10.

[73] Kumar L, Mutanga O. Google Earth Engine Applications Since Inception: Usage, Trends, and Potential[J]. Remote Sensing, 2018, 10(10): 1-15.

[74] Patel N N, Angiuli E, Gamba P, et al. Multitemporal settlement and population mapping from Landsat using Google Earth Engine[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 35: 199-208.

[75] Jordi I, Arthur V, Marcela A, et al. Improved Early Crop Type Identification By Joint Use of High Temporal Resolution SAR And Optical Image Time Series[J]. Remote Sensing, 2016, 8(5): 362.

[76] Plank S. Rapid Damage Assessment by Means of Multi-Temporal SAR — A Comprehensive Review and Outlook to Sentinel-1[J]. Remote Sensing, 2014, 6: 4870-4906.

[77] 田海峰. 基于Sentinel-1&2卫星影像的中国主产区冬小麦遥感识别研究[D]. 北京:中国科学院大学, 2019.

[78] 杨魁, 杨建兵, 江冰茹. Sentinel-1卫星综述[J]. 城市勘测, 2015, (02): 24-27.

[79] Drusch M, Bello U D, Carlier S, et al. Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services[J]. Elsevier, 2012, 120: 25-36.

[80] 陈旭, 郝震寰. 哨兵卫星Sentinel-2A数据特性及应用潜力分析[J]. 科技视界, 2018, (16): 48-50.

[81] Goldstein B A, Polley E C, Briggs F B S. Random forests for genetic association studies[J]. Statistical applications in genetics and molecular biology, 2011, 10(1): 32.

[82] Galvao R K H, Araujo M C U, Jose G E, et al. A method for calibration and validation subset partitioning[J]. Talanta: The International Journal of Pure and Applied Analytical Chemistry, 2005, 67(4): 736-740.

[83] Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System[J]. ACM, 2016, 785-794.

[84] Sukhpreet D, Abdullah-Al N, Robert A. Effective Intrusion Detection System Using XGBoost[J]. Information, 2018, 9(7): 149.

[85] Zhang J J, Cheng T, Guo W, et al. Leaf area index estimation model for UAV image hyper-

spectral data based on wavelength variable selection and machine learning methods[J]. Plant Methods, 2021, 17(1): 1-14.

[86] Panda S S, Ames D P, Suranjan P. Application of Vegetation Indices for Agricultural Crop Yield Prediction Using Neural Network Techniques[J]. Remote Sensing, 2010, 2(3): 673-696.

[87] Lee S H, Chan C S, Wilkin P, et al. Deep-plant: Plant identification with convolutional neural networks[C]// IEEE International Conference on Image Processing. New York: IEEE, 2015: 452-456.

[88] Hochreiter S, Schmidhuber J. Long Short-Term Memory[J]. Neural Computation, 1997, 9(8): 1735-1780.

[89] 姚远, 陈曦, 钱静. 定量遥感尺度转换方法研究进展[J]. 地理科学, 2019, 39(03): 367-376.

[90] 郝大磊, 肖青, 闻建光, 等. 定量遥感升尺度转换方法研究进展[J]. 遥感学报, 2018, 22(03): 408-423.

[91] Lelong C C D, Burger P, Jubelin G, et al. Assessment of unmanned aerial vehicles imagery for quantitative monitoring of wheat crop in small plots[J]. Sensors, 2008, 8(5): 3557-3585.

[92] 陶惠林, 徐良骥, 冯海宽, 等. 基于无人机高光谱遥感数据的冬小麦产量估算[J]. 农业机械学报, 2020, 51(07): 146-155.

[93] Pearson R L, Miller L D. Remote Mapping of Standing Crop Biomass for Estimation of Productivity of the Shortgrass Prairie[J]. Remote Sensing of Environment, 1972, 8: 1355.

[94] Becker F, Choudhury B J. Relative sensitivity of normalized difference vegetation Index (NDVI) and microwave polarization difference Index (MPDI) for vegetation and desertification monitoring[J]. Remote Sensing of Environment, 1988, 24(2): 297-311.

[95] Rouse J W, Haas R H, Schell J A, et al. Monitoring vegetation systems in the Great Plains with ERTS[C]// Goddard Space Flight Center 3d ERTS-1 Symphony. Washington DC, USA: NASA, 1974: 309-317.

[96] Gitelson A A, Kaufman Y J, and Merzlyak M N. Use of a green channel in remote sensing of global vegetation from eos-modis[J]. Remote Sensing of Environment, 1996, 58(3): 289-298.

[97] Jiang Z, Huete A R, Didan K, et al. Development of a two-band enhanced vegetation index without a blue band[J]. Remote Sensing of Environment, 2008, 112(10): 3833-3845.

[98] Gitelson A A, Keydan G P, Merzlyak M N. Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves[J]. Geophysical

Research Letters, 2006, 33(11), 431-433.

[99] Chen J M, Cihlar J. Retrieving leaf area index of boreal conifer forests using Landsat TM images[J]. Remote Sensing of Environment, 1996, 55(2): 153-162.

[100] Daughtry C S T, Walthall C, Kim M S, et al. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance[J]. Remote Sensing of Environment: An Interdisciplinary Journal, 2000, 74(2): 229-239.

[101] Gilabert M A, González-Piqueras J, Garca-Haro F J, et al. A generalized soil-adjusted vegetation index[J]. Remote Sensing of Environment, 2002, 82(2): 303-310.

[102] Kim M S, Daughtry C S T, Chappelle E W, et al. The use of high spectral resolution bands for estimating absorbed photosynthetically active radiation (A par)[C]// Proceedings of 6th International Symposium on Physical Measurements and Signatures in Remote Sensing. CNES: Handbook of Models for Human Aging, 2006: 415-434.

[103] Rondeaux G, Steven M, Baret F. Optimization of soil-adjusted vegetation indices[J]. Remote Sensing of Environment, 1996, 55(2): 95-107.

[104] Potgieter A B, Barbara G J, Chapman S C, et al. Multi-Spectral Imaging from an Unmanned Aerial Vehicle Enables the Assessment of Seasonal Leaf Area Dynamics of Sorghum Breeding Lines[J]. Frontiers in Plant Science, 2017, 8: 1-11.

[105] Broge N H, Leblanc E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density[J]. Remote Sensing of Environment, 2001, 76(2): 156-172.

[106] Haboudane D, Miller J R, Pattey E, et al. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture[J]. Remote Sensing of Environment, 2004, 90(3): 337-352.

[107] Dash J, Curran P J. MTCI: The meris terrestrial chlorophyll index[J]. International Journal of Remote Sensing, 2004, 25(549): 151-161.

[108] 万亮, 岑海燕, 朱姜蓬, 等. 基于纹理特征与植被指数融合的水稻含水量无人机遥感监测[J]. 智慧农业(中英文), 2020, 2(01): 58-67.

[109] Zheng H B, Cheng T, Zhou M, et al. Improved estimation of rice aboveground biomass combining textural and spectral analysis of UAV imagery[J]. Precision Agriculture, 2019, 20(3): 611-629.

[110] Gorelick N, Hancher M, Dixon M, et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone[J]. Remote Sensing of Environment, 2017, 202: 18-27.

[111] 杭艳红, 苏欢, 于滋洋, 等. 结合无人机光谱与纹理特征和覆盖度的水稻叶面积指数估算[J]. 农业工程学报, 2021, 37(09): 64-71.

[112] Zhang X W, Zhang K F, Sun Y Q, et al. Combining Spectral and Texture Features of UAS-Based Multispectral Images for Maize Leaf Area Index Estimation[J]. Remote Sensing, 2022, 14(2): 1-17.

[113] Yuan Y, Wang X, Yin F, et al. Examination of the Quantitative Relationship between Vegetation Canopy Height and LAI[J]. Advances in Meteorology, 2013, 2013(3): 1-6.

中图分类号:

 P237/S127    

开放日期:

 2024-06-25    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式