- 无标题文档
查看论文信息

论文中文题名:

 奥氏体不锈钢裂尖缝隙腐蚀与腐蚀产物膜致应力研究    

姓名:

 张文琦    

学号:

 22205224147    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085500    

学科名称:

 工学 - 机械    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 机械工程学院    

专业:

 机械工程    

研究方向:

 结构安全性评价    

第一导师姓名:

 杨富强    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-14    

论文答辩日期:

 2025-05-30    

论文外文题名:

 Research on Crevice Corrosion at the Crack Tip of Austenitic Stainless Steel and Stress Caused by Corrosion Product Film    

论文中文关键词:

 不锈钢 ; 裂尖力学 ; 缝隙腐蚀 ; 腐蚀产物膜 ; 多物理场耦合    

论文外文关键词:

 Stainless steel ; Crack tip mechanics ; Crevice corrosion ; Corrosion product film ; Multi-physics field coupling    

论文中文摘要:

316L不锈钢具有良好的力学性能和很强的耐腐蚀能力,因此在航空航天、舰船、工业生产、核电等各领域被广泛应用。不锈钢材料长期在腐蚀环境服役,受腐蚀介质和外加应力等复杂工况的影响,容易出现应力腐蚀开裂等问题,导致结构材料的失效,造成不可挽回的经济损失。本文以316L不锈钢为研究对象建立电化学-化学缝隙腐蚀模型和裂尖力学-电化学耦合模型,研究316L不锈钢在NaCl溶液中缝隙腐蚀过程中化学物质的变化规律,并分析腐蚀产物膜形成前后不同位移载荷和裂纹宽度作用下裂纹尖端的力学变化,进一步分析腐蚀产物膜厚度对裂尖力学的影响,得到了裂纹扩展速率与裂尖应变梯度的定量关系。主要研究内容有: (1) 在COMSOL软件中模拟316L不锈钢在NaCl溶液中的缝隙腐蚀,分析了缝隙腐蚀对溶液性能的影响;通过计算缝隙内各种化学物质的输运以及化学和电化学反应,对溶液中各种离子成功地进行了高精度的数值模拟。结果得到O2、Cl-、Fe2+、H+等各种离子在缝隙中的分布。 (2) 基于裂纹缝隙腐蚀电化学模型,对腐蚀产物膜的形成进行定量表征;基于吸湿膨胀理论,用腐蚀产物膜的膨胀模拟腐蚀产物膜的生长过程,计算无位移载荷时,不同氧气浓度下的腐蚀产物膜致应力;研究不同载荷以及不同裂纹宽度时腐蚀产物膜对裂尖力学的影响。 (3) 根据菲克定律建立固体力学与物质扩散的计算模型,分析腐蚀产物膜形成前后裂纹尖端的应力应变;分析腐蚀产物膜形成后不同裂纹宽度以及不同腐蚀产物膜厚度对裂纹尖端应力应变的影响;以滑移溶解理论和Ford-Andresen模型为基础,采用裂尖应变梯度替代裂尖应变率的分析方法,研究得到裂纹扩展速率随裂尖应变梯度的改变所导致裂尖力学特性的变化规律。

论文外文摘要:

316L stainless steel has good mechanical properties and strong corrosion resistance, so it is widely used in various fields such as aerospace, ships, industrial production, and nuclear power. Stainless steel materials are in service in a corrosive environment for a long time. Affected by complex working conditions such as corrosive media and externally applied stress, problems such as stress corrosion cracking are likely to occur, leading to the failure of structural materials and causing irreparable economic losses. In this paper, 316L stainless steel is taken as the research object to establish an electrochemical-chemical crevice corrosion model and a coupled model of crack tip mechanics and electrochemistry. The variation law of chemical substances during the crevice corrosion process of 316L stainless steel in a NaCl solution is studied, and the mechanical changes at the crack tip under different displacement loads and crack widths before and after the formation of the corrosion product film are analyzed. Furthermore, the influence of the thickness of the corrosion product film on the mechanics at the crack tip is analyzed, and the quantitative relationship between the crack propagation rate and the strain gradient at the crack tip is obtained. The main research contents are as follows: (1) Simulate the crevice corrosion of 316L stainless steel in a NaCl solution in the COMSOL software, and analyze the influence of crevice corrosion on the properties of the solution. Through calculating the transport of various chemical substances within the crevice as well as the chemical and electrochemical reactions, a high-precision numerical simulation of various ions in the solution is successfully carried out. As a result, the distributions of various ions such as O2, Cl-, Fe2+, and H+ within the crevice are obtained. (2) Based on the electrochemical model of crack crevice corrosion, the formation of the corrosion product film is quantitatively characterized. Based on the hygroscopic expansion theory, the growth process of the corrosion product film is simulated by the expansion of the corrosion product film. The stress induced by the corrosion product film under different oxygen concentrations without displacement load is calculated. The influence of the corrosion product film on the crack - tip mechanics under different loads and different crack widths is studied. (3) Establish a calculation model of solid mechanics and substance diffusion according to Fick's law, and analyze the stress and strain at the crack tip before and after the formation of the corrosion product film. Analyze the influence of different crack widths and different thicknesses of the corrosion product film on the stress and strain at the crack tip after the formation of the corrosion product film. Based on the slip dissolution theory and the Ford-Andresen model, adopt the analysis method of replacing the crack tip strain rate with the crack tip strain gradient, and conduct research to obtain the variation law of the mechanical properties at the crack tip caused by the change of the crack tip strain gradient with the crack propagation rate.

参考文献:

[1] IAEA. Climate change and nuclear power 2015. Vienna, Austria, Sep, 2015.

[2] IAEA. PRIS Power Reactor Information System. 2021.02.21.

[3] 新华社.“十三五”体现中国国家战略的百大工程项目. 2016.03.05.

[4] Zinkle S, Was G. Materials challenges in nuclear energy[J]. Acta Materialia, 2013, 61(3): 735-758.

[5] IAEA. Nuclear Safety Review 2015. Vienna, Austria, Jun, 2015.

[6] Majumdar S. Assessment of current understanding of mechanismsof initiation, arrest, and reinitiation of stress corrosion cracks in PWR steam generator tubing, NUREG/CR-5752, Jan.2000.

[7] Lu Z, Shoji T, Xue H, Fu C. Mechanistic Formulation of PWSCC Growth Rates of Ni-Base Alloys and Weld Metals[C]//Pressure Vessels and Piping Conference. 2011, 44519: 883-891.

[8] Udagawa M, Katsuyama J, Onizawa K, Li Y. Failure probability analyses for PWSCC in Ni-based alloy welds[J]. International Journal of Pressure Vessels and Piping, 2015, 131: 85-95.

[9] Hall J. Critique of the Ford–Andresen film rupture model for aqueous stress corrosion cracking[J]. Corrosion science, 2009, 51(5): 1103-1106.

[10] 杨宏亮, 薛河, 杨帆. 膜致应力促氧化膜破裂行为研究[J]. 铸造技术, 2017, 38(06): 1274-1277.

[11] Wu X, Liu Y, Sun Y, Dai Y, Jiang M. A discussion on evaluation criteria for crevice corrosion of various stainless steels[J]. Journal of Materials Science & Technology, 2021, 64: 29-37.

[12] Cai B, Liu Y, Tian X, Wang F, Li H, Ji R. An experimental study of crevice corrosion behaviour of 316L stainless steel in artificial seawater[J]. Corrosion Science, 2010, 52(10): 3235-3242.

[13] 陈东旭, 吴欣强, 韩恩厚. 缝隙腐蚀研究进展及核电材料的缝隙腐蚀问题[J]. 中国腐蚀与防护学报, 2014, 34 (04): 295-300.

[14] Pickering H. Whitney award lecture—1985: on the roles of corrosion products in local cell processes[J]. Corrosion, 1986, 42(3): 125-140.

[15] Pickering H, Frankenthal R. On the mechanism of localized corrosion of iron and stainless steel: I. Electrochemical studies[J]. journal of the Electrochemical Society, 1972, 119(10): 1297.

[16] Pickering H. The significance of the local electrode potential within pits, crevices and cracks[J]. Corrosion Science, 1989, 29(2-3): 325-341.

[17] Klassen R, Roberge P, Hyatt C. A novel approach to characterizing localized corrosion within a crevice[J]. Electrochimica acta, 2001, 46(24-25): 3705-3713.

[18] 许志昱, 胡骞, 黄峰, 刘静, 卢献忠. 缝隙几何尺寸对闭塞区化学环境及腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1581-1588.

[19] Abdulsalam M. Behaviour of crevice corrosion in iron[J]. Corrosion Science, 2005, 47(6): 1336-1351.

[20] Chang H, Park Y, Hwang W. Initiation modeling of crevice corrosion in 316L stainless steels[J]. Journal of Materials Processing Technology, 2000, 103(2): 206-217.

[21] Yashiro H, Tanno K, Hanayama H, Miura A. Effect of temperature on the crevice corrosion of type 304 stainless steel in chloride solution up to 250 C[J]. Corrosion, 1990, 46(9): 727-733.

[22] Lu B, Luo J, Lu Y. Effects of pH on lead-induced passivity degradation of nuclear steam generator tubing alloy in high temperature crevice chemistries[J]. Electrochimica Acta, 2013, 87: 824-838.

[23] Lu Y, Ives M. Chemical treatment with cerium to improve the crevice corrosion resistance of austenitic stainless steels[J]. Corrosion Science, 1995, 37(1): 145-155.

[24] Abellà J, Balachov I, Macdonald D, Millet P. Transport processes in steam generator crevices: III. Experimental results[J]. Corrosion science, 2002, 44(1): 191-205.

[25] Tan J, Lu Y C, Xu J H, Luo G. Mass transfer characteristic in the formation stage of gas–liquid segmented flow in microchannel[J]. Chemical Engineering Journal, 2012, 185: 314-320.

[26] Kumar K, Mohanty A, Lingappa M, Panigrahi, S. Enhancement of surface properties of austenitic stainless steel by nickel based alloy cladding developed using microwave energy technique[J]. Materials Chemistry and Physics, 2020, 256: 123657.

[27] Kim J, Bahn B, Baek H, Song G. Crevice chemistry and corrosion in high temperature water: A review[J]. Nuclear Engineering and Technology, 2024, 56(8): 3112-3122.

[28] 韩恩厚. 核电关键材料结构的腐蚀安全与服役寿命评估[J]. 2019: 1057-1057.

[29] 刘长勇. 核电厂缝隙结构的腐蚀与防护[J]. 腐蚀与防护, 2019, 40(07): 513-518.

[30] 徐玉明. 核电发展与核电材料的腐蚀防护[J]. 腐蚀与防护, 2016, 37(07): 523-526.

[31] Lima M, Lima L, Moreira R, Bandeira M, Guedes F, Lázaro A, Gomes A. Study of Localized Crevice Corrosion of Super Martensitic and Duplex Stainless Steels Exposed to Typical Environments of Reinjection Water for Injection Wells[C]//AMPP CORROSION. AMPP, 2024: AMPP-2024-20957.

[32] Walton J. Mathematical modeling of mass transport and chemical reaction in crevice and pitting corrosion[J]. Corrosion Science, 1990, 30(8-9): 915-928.

[33] Nash B, Kelly R. Characterization of the crevice solution chemistry of 316L stainless steel[J]. Corrosion science, 1993, 35(1-4): 817-825.

[34] Kim S, Kim J, Kim W. Effect of crevice former on the corrosion behavior of 316L stainless steel in chloride-containing synthetic tap water[C]//NACE CORROSION. NACE, 2017: NACE-2017-9412.

[35] Li Z. Advanced numerical analysis tool of corrosion and protection: COMSOL Multiphysics®[J]. Corrosion Engineering, 2013, 62(10): 294-294.

[36] Nagaoka A, Yakuwa H, Yamamoto R, Amaya K. Numerical Analysis of Stainless Steel of Crevice Corrosion Initiation Behavior with Varying External Potentials and Initial Crevice Gaps[J]. Journal of The Electrochemical Society, 2024, 171(7): 071502.

[37] Hu M, Dai K, Zhang W, Xu K, Shi J, Fu X, Ji Y, Dong C. Numerical simulation for investigating crevice corrosion of carbon steel in neutral/alkaline concrete construction[J]. Anti-Corrosion Methods and Materials, 2024, 71(6): 847-854.

[38] Hu P, Cai G, Li Y. Effect of Crevice Size on Crevice Corrosion of N80 Carbon Steel in CO2-Saturated NaCl-HAc Solution[J]. Materials, 2024, 17(16): 4078-4078.

[39] 周治舜, 石勤敏, 吕庆云. D6AC钢在水介质中的应力腐蚀性能研究[J]. 宇航材料工艺, 1982(5): 33-37.

[40] 高希龙, 景福庭, 刘嘉嘉. 富集硼酸对压水堆一回路腐蚀产物沉积的影响研究[J]. 中国核电, 2020, 13(04): 428-432.

[41] 孙丹丹. 基于白光干涉的B10铜镍合金管腐蚀行为原位表征评价方法研究[C]//中国腐蚀与防护学会.第十届海洋材料与腐蚀防护大会暨第四届钢筋混凝土耐久性与设施服役安全大会论文集, 2024:87.

[42] 乔铁良, 杨帆, 张文娟, 孙剑伟. 恒外载和膜致应力共同作用对焊接接头裂纹尖端应力场的影响[J]. 焊接技术, 2024, 53(02): 21-25.

[43] 杨富强, 张越. 钝化膜对304不锈钢裂纹尖端应力腐蚀的影响[J]. 塑性工程学报, 2024, 31(2): 218-225.

[44] 赵俊, 史万学. B30在海洋环境中的腐蚀产物膜分析[J]. 中国腐蚀与防护学报, 1984(3): 245.

[45] Liu R, Xie Y, Jin Y, Cui Y, Liu L, Wang F. Stress corrosion cracking of the titanium alloys under hydrostatic pressure resulting from the degradation of passive films[J]. Acta Materialia, 2023, 252: 118946.

[46] 崔英浩, 薛河, 郭瑞, 杨帆, 杨宏亮. 膜致应力对应力腐蚀裂尖力学特性的影响[J]. 中国科技论文, 2016, 11(10): 1188-1190.

[47] 杨宏亮, 薛河, 杨帆. 膜致应力促氧化膜破裂行为研究[J]. 铸造技术, 2017, 38(06): 1274-1277.

[48] 常福春, 董凯辉, 宋影伟. EW75稀土镁合金在NaCl和Na2SO4溶液中形成致密腐蚀产物膜的对比研究[J]. 2023: 21.

[49] 蔡勇, 陈翌鹏, 闫宏, 陈荣石. 时效态WE43合金表面腐蚀产物膜的显微组织[J]. 中国有色金属学报, 2024, 34(5): 1487-1495.

[50] 王小红,李子硕,唐御峰, 谭浩, 蒋焰罡. CO2-H2S-Cl-共存的地层水环境中Cr含量对钢的腐蚀产物膜特性的影响[J]. 中国腐蚀与防护学报, 2022, 42(06): 1043-1050.

[51] 叶帆, 葛鹏莉, 许艳艳, 陈晓华, 高多龙, 陈浩. H2S/CO2环境中pH值对腐蚀产物膜以及腐蚀速率的影响[J]. 材料保护, 2020, 53(07): 55-60.

[52] 伍丽娟, 楼一珊, 史宝成, 张兴凯, 张引弟. 阴离子对P110钢表面富铁相硫化亚铁腐蚀产物膜保护性的影响[J]. 腐蚀与防护, 2022, 43(01): 50-55.

[53] 张凯丽, 谢飞, 吴明, 王丹, 盖左松, 刘晋. 腐蚀产物膜对X70管线钢焊缝海底腐蚀行为的影响[J]. 机械工程材料, 2021, 45(07): 12-16, 40.

[54] 王财林. 基于显微CT的X65管线钢CO2腐蚀产物膜形成演化机理及保护性能研究[D]. 中国石油大学(华东), 2022.

[55] 王虎, 任燮东, 王平. 高温高压CO2腐蚀产物膜生长的原位电化学研究[C]//中国腐蚀与防护学会. 第十一届全国腐蚀与防护大会论文摘要集. 西南石油大学新能源与材料学院, 2021:51-52.

[56] 董宝军. 热带海洋大气环境中Cr对低合金钢腐蚀产物膜影响机理研究[D]. 北京科技大学, 2022.

[57] 曾磊. 组织类型对油气田环境下CO2腐蚀产物膜演变与台地腐蚀发展规律的影响[D]. 中国石油大学(华东), 2021.

[58] 高富国, 薛河, 王耀宇, 张昭, 李永强. 多层氧化膜应力腐蚀开裂裂尖的微观力学特性[J]. 腐蚀与防护, 2017, 38(08): 578-582.

[59] Song Y, Yan L, Pang X, Su Y, Qiao L, Gao K. High-throughput technique for stress corrosion cracking susceptibility measurements based on film-induced stress[J]. Vacuum, 2022, 203: 111275.

[60] Yang H, Xue H, Yang F, Zhao L. Effect of film-induced stress on mechanical properties at stress corrosion cracking tip[J]. Rare Metal Materials and Engineering, 2017, 46(12): 3595-3600.

[61] 王竹. 奥氏体不锈钢在H2S环境下的腐蚀行为与钝化膜演化研究[D]. 北京科技大学, 2018.

[62] 崔英浩, 薛河, 郭瑞, 杨帆, 杨宏亮. 膜致应力对应力腐蚀裂尖力学特性的影响[J]. 中国科技论文, 2016, 11(10): 1188-1190.

[63] Wang W, Zhang Z, Ren X, Guan Y, Su Y. Corrosion product film-induced stress facilitates stress corrosion cracking[J]. Scientific reports, 2015, 5(1): 10579.

[64] Qi X, Song R, Qi W, Jin J, Wang C, Li H, Xiong Y. Consistent variation of stress corrosion cracking susceptibility and passive film-induced stress for 7050 aluminum alloy with polarization potential[J]. Rare Metal Materials and Engineering, 2016, 45(8): 1943-1948.

[65] Merson E, Poluyanov V, Myagkikh P, Merson D, Vinogradov A. Inhibiting stress corrosion cracking by removing corrosion products from the Mg-Zn-Zr alloy pre-exposed to corrosion solutions[J]. Acta Materialia, 2021, 205: 116570.

[66] Brackman M D, Clemons C B, Golovaty D, Kreider K L, Wilder J, Young G W, Lillard R S. Modeling and simulation of damage evolution during crevice corrosion[J]. Journal of the electrochemical society, 2014, 161(5): C237.

[67] Oldfield J, Sutton W. Crevice corrosion of stainless steels: I. A mathematical model[J]. British corrosion journal, 1978, 13(1): 13-22.

[68] Pickering H, Frankenthal R. On the mechanism of localized corrosion of iron and stainless steel: I. Electrochemical studies[J]. journal of the Electrochemical Society, 1972, 119(10): 1297.

[69] Lott S, Alkire R. The variation of solution composition during the initiation of crevice corrosion on stainless steel[J]. Corrosion science, 1988, 28(5): 479-484.

[70] Nash B, Kelly R. Characterization of the crevice solution chemistry of 304 stainless steel[J]. Corrosion science, 1993, 35(1-4): 817-825.

[71] Sridhar N, Dunn D. Effect of applied potential on changes in solution chemistry inside crevices on type 304L stainless steel and alloy 825[J]. Corrosion, 1994, 50(11).

[72] Stockert L, Böhni H. Susceptibility to crevice corrosion and metastable pitting of stainless steels[C]//Materials Science Forum. Trans Tech Publications Ltd, 1989, 44: 313-328.

[73] Razali M. Modelling of Crevice Corrosion Kinetics in Stainless Steel[D]. The University of Manchester (United Kingdom), 2022.

[74] Sharland S, Tasker P. A mathematical model of crevice and pitting corrosion—I. The physical model[J]. Corrosion Science, 1988, 28(6): 603-620.

[75] Walton J. Mathematical modeling of mass transport and chemical reaction in crevice and pitting corrosion[J]. Corrosion Science, 1990, 30(8-9): 915-928.

[76] Watson M, Postlethwaite J. Numerical simulation of crevice corrosion of stainless steels and nickel alloys in chloride solutions[J]. Corrosion, 1990, 46(7): 522-530.

[77] 韩恩厚, 陈建敏, 宿彦京, 刘敏. 海洋工程结构与船舶的腐蚀防护——现状与趋势[J]. 中国材料进展, 2014, 33(02): 65-76+113.

[78] Newman J, Balsara N. Electrochemical systems[M]. John Wiley & Sons, 2021.

[79] 崔轩伟, 王帅, 都兴红, 刘玉东. 316L不锈钢在NaCl盐膜下的热腐蚀行为研究[J]. 热加工工艺, 2024, 53(21): 137-143.

[80] Wang M, Sun H, Zhou X, Wang P, Zhang Y, Wang X, Wang M. Atomistic insights into the deposition of corrosion products on the surfaces of steels and passivation films[J]. Langmuir, 2023, 39(19): 6812-6822.

[81] 聂宇, 冯巧波, 王春亮, 王杰. 316L不锈钢薄板激光焊接接头微观组织及力学性能研究[J]. 热加工工艺, 2024, 53 (24): 80-84.

[82] 林建生, 易茂中. 氧在钢中扩散系数的研究[C]. 1990: 134-142.

中图分类号:

 TG171    

开放日期:

 2025-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式