- 无标题文档
查看论文信息

论文中文题名:

 无机纳米颗粒强化的环保泡沫灭火性能研究    

姓名:

 彭云川    

学号:

 20220089046    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 消防科学与工程    

第一导师姓名:

 盛友杰    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-19    

论文答辩日期:

 2023-06-03    

论文外文题名:

 Study on Fire Extinguishing Performance of Environmental Protection Foam Strengthened by Inorganic Nanoparticles    

论文中文关键词:

 纳米颗粒 ; 环保泡沫灭火剂 ; 表面活性剂 ; 泡沫稳定性 ; 灭火性能    

论文外文关键词:

 Nanoparticles ; Environmentally friendly foam extinguishing agent ; Surfactant ; Foam stability ; Fire extinguishing performance    

论文中文摘要:

       液体燃料火灾事故频繁发生,造成了巨大的损失和严重的环境污染。水成膜泡沫(Aqueous film-forming foam,AFFF)是目前公认最有效的液体火灾灭火剂。然而AFFF中的长链氟碳表面活性剂被证明对生态环境有重大危害。因此,为了研制高效的环保泡沫灭火剂,本文将纳米颗粒与环保泡沫活性组分进行复配,研究了无机纳米颗粒强化的环保泡沫灭火性能。

       首先,研究了纳米颗粒的种类、浓度、比表面积对环保泡沫表面活性、电导率和粘性的影响规律,分析了纳米颗粒与环保泡沫活性组分在气/液界面上的相互作用。结果表明,四种纳米颗粒的加入均会降低泡沫溶液的表面活性,增加溶液的粘性。随着SiO2纳米颗粒浓度的增加,混合液的电导率逐渐降低,表面活性和粘度逐渐增大;随着SiO2纳米颗粒比表面积的增加,混合液的表面活性逐渐降低,粘度和电导率逐渐增加。相较于Al(OH)3、Mg(OH)2和CaCO3纳米颗粒,SiO2与环保泡沫活性组分之间存在更强烈的相互作用。这些相互作用会使得纳米颗粒与活性组分形成疏水聚集体,这些疏水聚集体会集聚在气/液界面处。

       其次,研究了纳米颗粒的种类、浓度、比表面积对环保泡沫起泡性、泡沫析液和泡沫粗化的影响规律,分析了纳米颗粒对环保泡沫稳定性的强化机理。结果表明四种纳米颗粒均能显著强化环保泡沫的稳定性,但会导致起泡性有轻微的下降,相较于CaCO3和Mg(OH)2纳米颗粒,SiO2和Al(OH)3强化泡沫稳定性的能力更为卓越。随着SiO2纳米颗粒浓度的增加,环保泡沫的析液和粗化速率降低,但起泡性能也随之减弱。随SiO2纳米颗粒比表面积的增加,环保泡沫的起泡性能逐渐增强,泡沫稳定性先增强后减弱。SiO2纳米颗粒添加浓度为3%,比表面积为300 m2/g时,环保泡沫具有最优的泡沫性能。大量纳米颗粒与活性组分聚集体集聚在泡沫液膜和Plateau边界,在气泡周围形成了网络结构,强化了泡沫液膜,有效的减缓了泡沫析液和粗化。

       最后,研究了纳米颗粒对环保泡沫灭火性能的影响规律,分析了纳米颗粒对环保泡沫灭火性能的影响机理。结果表明,含纳米颗粒的环保泡沫能够高效灭火,灭火时间与抗烧时间远超传统的商业水成膜泡沫灭火剂与国标要求,灭火时间可达到20秒,抗烧时间可达到30分钟。纳米颗粒的加入会使得环保泡沫的灭火时间略微增加,但相较商用AFFF的灭火时间缩短了一半。高浓度纳米颗粒的加入会导致环保泡沫粘度增加,不利于灭火。纳米颗粒极大程度的增加了环保泡沫的抗烧时间,含纳米颗粒的环保泡沫能够在抗烧过程中保持较高的含水量,有效的抑制燃料蒸汽并阻碍高温的传导,显著增强了抗烧能力,抗烧时间接近商用AFFF的3倍。添加浓度为3%的SiO2和5%的Al(OH)3纳米颗粒对环保泡沫抗烧能力的强化作用最为显著。本研究结果能够为纳米颗粒在环保型泡沫灭火剂中的应用提供理论参考。

论文外文摘要:

       Liquid fuel fire accidents happen frequently, causing great losses and serious environmental pollution. Aqueous film-forming foam (AFFF) is the most effective fire extinguishing agent. However, long-chain fluorocarbon surfactants in AFFF have proved to be a major threat to the ecological environment. Therefore, in order to study efficient environmentally friendly foam extinguishing agent, this paper mixed nanoparticles with active components of environmental protection foam to study the fire extinguishing performance of environmental protection foam strengthened by inorganic nanoparticles.

       Firstly, the effects of the type, concentration and specific surface area of nanoparticles on the surface activity, conductivity and viscosity of environmentally friendly foam were studied. The interaction between nanoparticles and active components of environmentally friendly foam in gas/liquid interface was analyzed. The results show that the addition of four kinds of nanoparticles can reduce the surface activity of the foam solution and increase the viscosity of the foam solution. With the increase of the concentration of SiO2 nanoparticles, the conductivity of the mixture decreases gradually, and the surface activity and viscosity increase gradually. With the increase of the specific surface area of SiO2 nanoparticles, the surface activity of the mixture decreases gradually, and the viscosity and conductivity increase gradually. Compared with Al(OH)3, Mg(OH)2 and CaCO3 nanoparticles, SiO2 nanoparticles have stronger interaction with the active components of environmentally friendly foam. These interactions cause the nanoparticles to form hydrophobic aggregates with the active component, which accumulate at the gas-liquid interface.

       Secondly, the effects of the type, concentration and specific surface area of nanoparticles on the foam foaming performance, foam drainage and coarsing was studied, and the strengthening mechanism of nanoparticles on the stability of environmental protection foams was analyzed. The results show that the four nanoparticles can significantly enhance the stability of environmental protection foam, but lead to a slight decrease in foaming performance. Compared with CaCO3 and Mg(OH)2 nanoparticles, SiO2 and Al(OH)3 have better ability to enhance the stability of foam. With the increase of the concentration of SiO2 nanoparticles, the drainage and coarsening rate of environmentally friendly foam decreased, but the foaming performance also weakened. With the increase of the specific surface area of SiO2 nanoparticles, the foaming performance of environmental protection foam is gradually enhanced, and the foam stability is first enhanced and then weakened. When the concentration of nanoparticles is 3% and the specific surface area is 300 m2/g, the environmentally friendly foam foam has the best foam performance. A large number of nanoparticles and active components aggregate at the boundary of the foam liquid film and Plateau, forming a network structure around the bubbles, strengthening the foam liquid film, and effectively slowing down the foam liquid drainage and coarsening.

       Finally, the effect of nanoparticles on the fire extinguishing performance of environmental protection foam was studied, and the effect mechanism was analyzed. The results show that the environmentally friendly foam containing nanoparticles can effectively extinguish fire, and the fire extinguishing time and burn-back time are much higher than the traditional commercial water film foam fire extinguishing agent and the national standard requirements, the fire extinguishing time can reach 20 seconds, and the burn-back time can reach 30 minutes. The addition of nanoparticles slightly increased the extinguishing time of the environmentally friendly foam, but the nanoparticle reinforced foam had half the extinguishing time of commercial AFFF. The addition of high concentration of nanoparticles will cause the viscosity of environmentally friendly foam to increase, which is not conducive to fire suppression. The nanoparticles greatly increased the burn-back time of the environmentally friendly foam. The environmentally friendly foam containing nanoparticles can maintain a high water content during the anti-burning process, effectively inhibit the fuel steam and hinder the conduction of high temperature, and significantly enhanced the burn-back ability, and the burn-back time was nearly 3 times that of commercial AFFF. The addition of 3% SiO2 and 5% Al(OH)3 nanoparticles has the most significant effect on the burn-back of the environmentally friendly foam. The results of this study can provide theoretical reference for the application of nanoparticles in environmentally friendly foam fire extinguishing agent.

参考文献:

[1] 范维澄, 刘乃安. 中国火灾科学基础研究进展与展望[J]. 中国科学技术大学学报, 2006, 36(1): 8.

[2] 盛友杰. 碳氢和有机硅表面活性剂复配体系为基剂的泡沫灭火剂研究[D]. 中国科学技术大学, 2018.

[3] Hagenaars A, Meyer I J, Herzke D, et al. The search for alternative aqueous film forming foams (AFFF) with a low environmental impact: Physiological and transcriptomic effects of two Forafac (R) fluorosurfactants in turbot[J]. Aquatic toxicology (Amsterdam, Netherlands), 2011, 104(3-4): 168-176.

[4] 叶洪烈, 傅学成, 胡英年. SD-AFFF型水成膜泡沫灭火剂的研究[J]. 消防科学与技术, 2001, 04: 40-42.

[5] 赵兴艺. 泡沫灭火剂应用及其发展现状[J]. 河北省科学院学报, 2012, 29(3): 4.

[6] 徐志胜, 郭星, 颜龙,等. 水成膜泡沫灭火剂在柴油池火中的灭火效能试验[J]. 安全与环境学报, 2020, 20(2): 6.

[7] Kannan K, Corsolini S, Falandysz J, et al. Perfluorooctanesulfonate and related fluorochemicals in human blood from several countries[J]. Environmental science & technology, 2004, 38(17): 4489-4495.

[8] 胡彪, 刘付永, 张荣, 等. 泡沫灭火剂环保性能评价及研究进展[J]. 化工环保, 2020, 40(6): 573-578.

[9] Veen I V D, Fiedler H, Boer J D. Assessment of the per-and polyfluoroalkyl substances analysis under the Stockholm Convention-2018/2019[J]. Chemosphere, 2023, 313: 137549.

[10] 姜宁. 基于短链碳氟-碳氢复配体系的耐海水型水成膜泡沫灭火剂研究[D]. 中国科学技术大学, 2021.

[11] 杨百勤, 陈凯, 邢航,等. 以全氟丁基为基础的具有高表面活性的氟表面活性剂[J]. 物理化学学报, 2009.

[12] 李远翔. 氟碳-碳氢表面活性剂复配及其灭火性能[J]. 华东理工大学学报:自然科学版, 2015, 41(4): 502-507.

[13] Giles S L, Snow A W, Hinnant K M, et al. Modulation of fluorocarbon surfactant diffusion with diethylene glycol butyl ether for improved foam characteristics and fire suppression[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 579: 123660.

[14] Yang Y W, Fang J Q, Sha M, et al. Study on foam extinguishing agents based on hydrocarbon and perfluorinated branched short-chain fluorocarbon surfactants mixed system[J]. Chemical Papers, 2021, 75(12): 6241-6255.

[15] Krafft M P, Riess J G. Selected physicochemical aspects of poly-and perfluoroalkylated substances relevant to performance, environment and sustainability-Part one[J]. Chemosphere, 2015, 129: 4-19.

[16] Xi X, Shi Q. Study of the preparation and extinguishment characteristic of the novel high-water-retaining foam for controlling spontaneous combustion of coal[J]. Fuel, 2021, 288(20): 119354.

[17] Lyubimov V, Skushnikova A. Improving stability of fire fighting foams by water-soluble polymer[J]. Safety in Technosphere, 2014, 3(4): 55-59.

[18] Sheng Y, Jiang N, Sun X, et al.. Experimental study on effect of foam stabilizers on aqueous film-forming foam[J]. Fire Technol, 2018, 54(1): 211-228.

[19] Sheng Y, Yan C, Li Y, et al. Thermal stability of gel foams stabilized by xanthan gum, silica nanoparticles and surfactants[J]. Gels, 2021, 7: 179.

[20] Zhao G , Dai C , Zhang Y , et al. Enhanced foam stability by adding comb polymer gel for in-depth profile control in high temperature reservoirs[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2015, 482(3): 115-124.

[21] Sheng Y, Xue M, Zhang S, et al. Effect of xanthan gum and silica nanoparticles on improving foam properties of mixed solutions of short-chain fluorocarbon and hydrocarbon surfactants[J]. Chemical Engineering Science, 2021(4): 116952.

[22] Dickinson E, Ettelaie R, Kostakis T, et al. Factors controlling the formation and stability of air bubbles stabilized by partially hydrophobic silica nanoparticles[J]. Langmuir, 2004, 20(20): 8517-8525.

[23] Nguyen A V, Schulze H J. Colloidal science of flotation[M]. Marcel Dekker Inc, 2004: 39-45.

[24] Zitha P J, 戚倩. 疏水型SiO2纳米颗粒的稳泡性研究[J]. 能源化工, 2018, 39(1): 1-6.

[25] Z Xue, A Worthen, A Qajar, et al. Viscosity and stability of ultra-high internal phase CO2-in-water foams stabilized with surfactants and nanoparticles with or without polyelectrolytes[J]. Journal of Colloid and Interface Science, 2016, 461: 383-395.

[26] Emrani A S, Nasr-El-Din H A. An Experimental study of nanoparticle-polymer-stabilized CO2 foam[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 524: 17-27.

[27] Fujii S, Ryan A, Armes S. Long-range structural order, moiré patterns, and iridescence in latex-stabilized foams.[J]. Journal of the American Chemical Society, 2006, 128(24): 7882.

[28] Singh R, Mohanty K K. Synergy between nanoparticles and surfactants in stabilizing foams for oil recovery[J]. Energy & Fuels, 2015, 29(2): 467-479.

[29] Yu W, Kanj M Y. Review of foam stability in porous media: The effect of coarsening[J]. Journal of Petroleum Science & Engineering, 2022, 208: 109698.

[30] Yuan Z, Menghua Qin, Xiushan Chen, et al. Phase behavior, rheological property, and transmutation of vesicles in fluorocarbon and hydrocarbon surfactant mixtures[J]. Langmuir, 2012, 28(25): 9355-9364.

[31] Achinta, Bera, Keka, et al. Synergistic effect of mixed surfactant systems on foam behavior and surface tension[J]. Journal of Surfactants and Detergents, 2013, 16(4): 621-630.

[32] Rosen M J, Hua X Y. Surface concentrations and molecular interactions in binary mixtures of surfactants[J]. Journal of Colloid & Interface Science, 1982, 86(1): 164-172.

[33] 王鹏. 环保型泡沫灭火剂[J]. 消防科学与技术, 2014, 33(5): 561-563.

[34] Wang P. Application of green surfactants developing environment friendly foam extinguishing agent[J]. Fire Technology, 2015, 51(3): 503-511.

[35] Sheng Y, Xue M, Ma L, et al. Environmentally friendly firefighting foams used to fight flammable liquid fire[J]. Fire Technology, 2021, 57: 2079-2096.

[36] Ananth R, Snow A W, Hinnant K M, et al. Synergisms between siloxane-polyoxyethylene and alkyl polyglycoside surfactants in foam stability and pool fire extinction[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 579: 123686.

[37] Hetzer R, Kümmerlen F, Wirz K, et al. Fire testing a new fluorine-free AFFF based on a novel class of environmentally sound high performance siloxane surfactants[J]. Fire Safety Science, 2014, 11: 1261-1270.

[38] Yu X, Jiang N, Miao X, et al. Comparative studies on foam stability, oil-film interaction and fire extinguishing performance for fluorine-free and fluorinated foams[J]. Process Safety and Environmental Protection, 2020, 133: 201-215.

[39] Schaefer T H, Dlugogorski B Z, Kennedy E M. Sealability properties of fluorine-free fire-fighting foams (FfreeF)[J]. Fire Technology, 2008, 44(3): 297-309.

[40] Kennedy M J, Conroy M W, Dougherty J A, et al. Bubble coarsening dynamics in fluorinated and non-fluorinated firefighting foams[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 470: 268-279.

[41] Williams B, Murray T, Butterworth C, et al. Extinguishment and burnback tests of fluorinated and fluorine-free firefighting foams with and without film formation[C]. Suppression, Detection and Signaling Research and Applications-A Technical Working Conference (SUPDET 2011), 2011.

[42] Hinnant K M, Conroy M W, Ananth R. Influence of fuel on foam degradation for fluorinated and fluorine-free foams[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 522: 1-17.

[43] Hagenaars A, Meyer I J, Herzke D, et al. The search for alternative aqueous film forming foams (AFFF) with a low environmental impact: Physiological and transcriptomic effects of two Forafac® fluorosurfactants in turbot[J]. Aquatic Toxicology, 2011, 104(3-4): 168-176.

[44] Jiang N, Sheng Y, Li C, et al. Surface activity, foam properties and aggregation behavior of mixtures of short-chain fluorocarbon and hydrocarbon surfactants[J]. Journal of Molecular Liquids, 2018, 268: 249-255.

[45] 肖舒. 可替代PFOS的含氟表面活性剂的制备及应用[D]. 华中师范大学, 2013.

[46] Jia X, Bo H, He, Y. Synthesis and characterization of a novel surfactant used for aqueous film-forming foam extinguishing agent[J]. Chemical Papers, 2019, 73(7): 1777-1784.

[47] He Y H, Sun Q, Xing H, et al. Cationic-anionic fluorinated surfactant mixtures based on short fluorocarbon chains as potential aqueous film-forming foam[J]. Journal of Dispersion Science and Technology, 2019, 40(3): 319-331.

[48] Binks B P. Particles as surfactants-similarities and differences[J]. Current Opinion in Colloid & Interface Science, 2002, 7(1): 21-41.

[49] Binks B P, Kirkland M, Rodrigues J A. Origin of stabilisation of aqueous foams in nanoparticle-surfactant mixtures[J]. Soft Matter, 2008, 4 (12): 2373-2382.

[50] Sun Q, Li Z, Wang J, et al. Aqueous foam stabilized by partially hydrophobic nanoparticles in the presence of surfactant[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 471(8): 54-64.

[51] Kim D W, Lee J Y, Lee S M, et al. Surface modification of calcium carbonate nanoparticles by fluorosurfactant[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 536: 213-223.

[52] 崔燕贞. 纳米碳酸钙-表面活性剂混合体系的泡沫性能研究[D]. 江南大学, 2009.

[53] 李兆敏, 王鹏, 李松岩, 等. SiO2纳米颗粒与SDS对CO2泡沫的协同稳定作用[J].东北石油大学学报, 2014, 38(3): 6.

[54] 王腾飞, 王杰祥, 韩蕾, 等. 纳米氢氧化铝稳定泡沫性能研究[J]. 西安石油大学学报(自然科学版), 2012, 27(5): 78-81.

[55] 边云朋, 张雷林. 纳米氢氧化铝三相泡沫制备研究[J]. 中国安全生产科学技术, 2021, 17(09): 59-65.

[56] 孙乾. 改性SiO2纳米颗粒稳泡机理及渗流特征研究[D]. 中国石油大学(华东), 2015.

[57] 张阳, 燕永利, 奚琪, 等. SiO2纳米颗粒对水相泡沫稳定性的影响[J]. 日用化学工业, 2020, 50(01): 26-31.

[58] 李兆敏, 侯大炜, 鹿腾, 等. 疏水型SiO2纳米颗粒稳定泡沫机理与泡沫耐温性能评价[J]. 油田化学, 2019, 36(03): 494-500.

[59] 曲海莹, 刘琦, 彭勃, 等. 纳米颗粒对CO2泡沫体系稳定性的影响[J]. 油气地质与采收率, 2019, 26(05): 120-126.

[60] Tang F Q, Xiao Z, Tang J A, et al. The effect of SiO2 particles upon stabilization of foam[J]. Journal of Colloid and Interface Science, 1989, 131(2): 498-502.

[61] Arriaga L R, Drenckhan W, Salonen A, et al. On the long-term stability of foams stabilised by mixtures of nano-particles and oppositely charged short chain surfactants[J]. Soft Matter, 2012, 8(43): 11085-11097.

[62] AlYousef Z A, Almobarky M A, Schechter D S. The effect of nanoparticle aggregation on surfactant foam stability[J]. Journal of Colloid and Interface Science, 2018, 511: 365-373.

[63] Stocco A, Drenckhan W, Rio E, et al. Particle-stabilised foams: An interfacial study[J]. Soft Matter, 2009, 5(11): 2215-2222.

[64] 李兆敏, 孙乾, 李松岩, 等. 纳米颗粒提高泡沫稳定性机理研究[J]. 油田化学, 2013, 30(4): 625-634.

[65] 刘多容, 杨兵, 黄贵存, 等. 驱油三相泡沫体系稳定性研究[J]. 油田化学, 2011, 28(1): 78-82.

[66] 张旭. 纳米颗粒稳定CO2泡沫静力学及流变学特性的实验研究[D]. 青岛科技大学, 2020.

[67] 杨伟鹏. 纳米颗粒与两亲分子协同稳定泡沫及驱油性能研究[D]. 中国石油大学(华东), 2018.

[68] 李小刚, 谢诗意, 杨兆中, 等. 含纳米颗粒的泡沫体系及其在水力压裂中的研究进展[J]. 现代化工, 2020, 40(11): 34-38.

[69] 张旋, 张天赐, 蒋平, 等. 改性二氧化硅纳米颗粒提高二氧化碳泡沫稳定性的研究[J].高等学校化学报, 2020, 41(05): 1076-1082.

[70] 郭轩, 李成良, 戴志鹏, 等. 纳米颗粒CO2泡沫体系稳定性机理研究[J]. 当代化工, 2019, 48(07): 1408-1411.

[71] 陈彦名. SiO2颗粒对泡沫体系稳定性研究[D]. 中国石油大学(北京), 2019.

[72] 王鹏. SiO2纳米颗粒提高CO2泡沫稳定性实验研究与应用[D]. 中国石油大学(华东), 2015

[73] 吕其超, 李兆敏, 李宾飞. 等. 纳米颗粒与黏弹性表面活性剂稳定的泡沫体系滤失性实验研究[J]. 中国科技论文, 2017, 12(03): 241-248.

[74] 范宏伟, 张雯. 纳米颗粒在泡沫排水采气中的研究进展[J]. 石油化工应用, 2021, 40(6): 4.

[75] 傅柄棋, 唐宝华. 不同粒径二氧化硅对抗醇泡沫灭火剂性能影响实验研究[J]. 消防科学与技术, 2016, 35(3): 407-410.

[76] Zhou R, Dou X, Lang X, et al. Foaming ability and stability of silica nanoparticle-based triple-phase foam for oil fire extinguishing: Experimental[J]. Soft Materials, 2018, 16(4): 327-338.

[77] Zhou R, Lang X, Zhang X, et al. Thermal stability and insulation characteristics of three-phase fire-fighting foam exposed to radiant heating[J]. Process Safety and Environmental Protection. 2021, 146: 360-368.

[78] 唐宝华. 强化油品抗烧三相泡沫灭火剂开发及性能研究[D]. 河北工业大学, 2016.

[79] Fu G, Jiang J, Wei D, et al. The study of the stability of aqueous three-phase fire-resistant foam in typical liquidus hydrocarbons[J]. Journal of Dispersion Science and Technology, 2019, 40(8): 1075-1084.

[80] Vinogradov A V, Kuprin D, Abduragimov I, et al. Silica foams for fire prevention and firefighting[J]. ACS Applied Materials & Interfaces, 2016, 8(1): 294-301.

[81] Sheng Y, Peng Y, Yan C, et al. Influence of nanoparticles on rheological properties and foam properties of mixed solutions of fluorocarbon and hydrocarbon surfactants[J]. Powder technology, 2022, 398: 117067.

[82] Wang Q, Zhang Y, Li Y, et al. Study on the effect of nanoparticles combined with silicone surfactant and cationic surfactant on foam and fire extinguishing performance[J]. Environmental Science and Pollution Research, 2023, 30: 11065-11080.

[83] Binks B P. Particles as surfactants-similarities and differences[J]. Current Opinion in Colloid & Interface Science, 2002, 7(1): 21-41.

[84] Maestro A, Rio E, Drenckhan W, et al. Foams stabilised by mixtures of nanoparticles and oppositely charged surfactants: relationship between bubble shrinkage and foam coarsening[J]. Soft Matter, 2014, 10(36): 6975-6983.

[85] Kostakis T, Ettelaie R, Murray B S. Effect of high salt concentrations on the stabilization of bubbles by silica particles[J]. Langmuir, 2006, 22(3): 1273-1280.

[86] Sheng Y, Peng Y, Zhang S, et al. Thermal stability of foams stabilized by fluorocarbon and hydrocarbon surfactants in presence of nanoparticles with different specific surface areas[J]. Journal of Molecular Liquids, 2022, 365: 120187.

[87] Sheng Y, Yan C, Peng Y, et al. Influence of nano-aluminum hydroxide on foam properties of the mixtures of hydrocarbon and fluorocarbon surfactants[J]. Journal of Molecular Liquids, 2022, 357: 119158.

[88] Kennedy J R M, Kent K E, Brown J R. Rheology of dispersions of xanthan gum, locust bean gum and mixed biopolymer gel with silicon dioxide nanoparticles[J]. Materials Science and Engineering: C, 2015, 48: 347-353.

[89] Cellesi F, Tirelli N. Sol-gel synthesis at neutral pH in W/O microemulsion: A method for enzyme nanoencapsulation in silica gel nanoparticles[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2006, 288(1-3): 52-61.

[90] Yuan Q, Williams R A. CO-stabilisation mechanisms of nanoparticles and surfactants in Pickering Emulsions produced by membrane emulsification[J]. Journal of Membrane Science, 2016, 497: 221-228.

[91] Singh A, Chaturvedi K R, Sharma T. Natural surfactant for sustainable carbon utilization in cleaner production of fossil fuels: Extraction, characterization and application studies[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106231.

[92] Li S, Yang K, Li Z, et al. Properties of CO2 foam stabilized by hydrophilic nanoparticle and nonionic surfactant[J]. Energy & Fuels, 2019, 33(6).

[93] Cho H, Waters M A, Hogg R. Investigation of the grind limit in stirred-media milling[J]. International Journal of Mineral Processing, 1996, 44: 607-615.

[94] 吕科宗, 蒋新生, 徐建楠,等. 防灭火三相泡沫发泡稳定及流动性能研究[J]. 工业安全与环保, 2017, 43(11): 5.

[95] Kim I, Worthen A J, Johnston K P, et al. Size-dependent properties of silica nanoparticles for Pickering stabilization of emulsions and foams[J]. Journal of Nanoparticle Research, 2016, 18: 82.

[96] Denkov N D, Ivanov I B, Kralchevsky P A, et al. A possible mechanism of stabilization of emulsions by solid particles[J]. Journal of Colloid and Interface Science, 1992, 150(2): 589-593.

[97] Sheng Y, Xue M, Wang Y, et al. Aggregation behavior and foam properties of the mixture of hydrocarbon and fluorocarbon surfactants with addition of nanoparticles[J]. Journal of Molecular Liquids, 2020, 323(3): 115070.

[98] Petkova R, Tcholakova S, Denkov N D. Role of polymer-surfactant interactions in foams: Effects of pH and surfactant head group for cationic polyvinylamine and anionic surfactants[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2013, 438: 174-185.

[99] Petkova B, Tcholakova S, Chenkova M, et al. Foamability of aqueous solutions: Role of surfactant type and concentration[J]. Advances in Colloid and Interface Science, 2020, 276:102084.

[100] Binks B P, Campbell S, Mashinchi S, et al. Dispersion behavior and aqueous foams in mixtures of a vesicle-forming surfactant and edible nanoparticles[J]. Langmuir, 2015, 31(10): 2967-2978.

[101] Chao Z, Li Z, Qian S, et al. CO2 foam properties and the stabilizing mechanism of sodium bis(2-ethylhexyl)sulfosuccinate and hydrophobic nanoparticle mixtures[J]. Soft Matter, 2015, 12(3): 946.

[102] Magrabi S A, Dlugogorski B Z, Jameson G J. A comparative study of drainage characteristics in AFFF and FFFP compressed-air fire-fighting foams[J]. Fire Safety Journal, 2002, 37(1): 21-52.

[103] Hu N, Li Y, Wu Z, et al. Foams stabilization by silica nanoparticle with cationic and anionic surfactants in column flotation: Effects of particle size[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 88: 62-69.

[104] Arriaga L R, Drenckhan W, Salonen A, et al. On the long-term stability of foams stabilised by mixtures of nanoparticles and oppositely charged short chain surfactants[J]. Soft Matter, 2012, 8(43): 11085-11097.

[105] Singh R, Mohanty K. Synergy between nanoparticles and surfactants in stabilizing foams for oil recovery[J]. Energy & Fuels, 2015, 29(2): 467-479.

[106] Wang J, Xue G, Tian B, et al. Interaction between surfactants and SiO2 nanoparticles in multiphase foam and its plugging ability[J]. Energy & Fuels, 2017, 31(1): 408-417.

[107] Kaptay G. On the equation of the maximum capillary pressure induced by solid particles to stabilize emulsions and foams and on the emulsion stability diagrams. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2006, 282: 387-401.

[108] Horozov T S. Foams and foam films stabilised by solid particles[J]. Current Opinion in Colloid & Interface Science, 2008, 13(3): 134-140.

[109] Lattimer B Y, Trelles J. Foam spread over a liquid pool[J]. Fire Safety Journal, 2007, 42(4): 249-264.

[110] Sethumadhavan G, Nikolov A, Wasan D. Stability of films with nanoparticles[J]. Journal of Colloid & Interface Science, 2004, 272(1): 167-171.

[111] Farrokhpay S. The significance of froth stability in mineral flotation-A review[J]. Advances in Colloid and Interface Science. 2011, 166(1-2): 1-7.

[112] Sheng Y, Jiang N, Lu S, et al. Study of environmental-friendly firefighting foam based on the mixture of hydrocarbon and silicone surfactants[J]. Fire Technology, 2019, 56(4): 1-17.

[113] Tran T, Elena M, Perdomo G, et al. Study of the synergistic effects between different surfactant types and silica nanoparticles on the stability of liquid foams at elevated temperature[J]. Fuel, 2021, 315: 122818.

[114] Tang B, Wu Z, Chen W H. Effect of nanosilica on foam and thermal stability of a foam extinguishing agent[J]. Nanomaterials & Energy, 2017, 6(2): 67-73.

中图分类号:

 TD753    

开放日期:

 2024-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式