- 无标题文档
查看论文信息

论文中文题名:

 光电跟瞄测试系统图像生成算法研究与实现    

姓名:

 张龙星    

学号:

 20310226002    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘工程    

研究方向:

 光电跟瞄设备仿真测试    

第一导师姓名:

 邱春霞    

第一导师单位:

 西安科技大学    

第二导师姓名:

 周校东    

论文提交日期:

 2023-12-14    

论文答辩日期:

 2023-11-24    

论文外文题名:

 Research and Implementation of Image Generation Algorithm for Optoelectronic Tracking and Aiming Testing System    

论文中文关键词:

 太空目标 ; 模拟仿真 ; 目标星 ; 光电跟瞄 ; 图像生成    

论文外文关键词:

 Space targets ; Simulation ; Target Star ; Optoelectronic tracking and aiming ; Image Generation    

论文中文摘要:

在地面实验环境下,“球幕”型光电跟瞄测试系统是星敏感器标定和测试的一套装置。完善可靠的球幕型光电跟瞄测试系统对于保证星敏感器可靠性具有重要意义,系统能有效检验星敏感器的各项参数,保证星敏感器标定参数的准确性。因此,保证球幕型光电跟瞄测试系统的完善性和可靠性十分重要。在星敏感器标定和测试过程中,存在两项问题:一是由于球幕及投影仪制造工艺和安装的原因,导致屏幕存在无规律畸变,致使星点显示位置畸变;二是虽然太空场景复杂且干扰因素多,但是现有星敏感器抗干扰性测试未充分考虑干扰项,致使星敏感器抗干扰项测试不足。针对星敏感器标定和测试过程研究,不仅能够解决星点显示位置畸变问题,而且还能强化星敏感器抗干扰性测试。

本研究以星敏感器标定和测试过程中星点显示位置畸变现象和抗干扰性测试不足为研究对象,基于误差分析技术分析星点显示畸变的误差正畸方法,基于模拟增量技术模拟生成干扰目标方法。选取实验室“球幕”大屏,使用基于图像二次生成的屏幕显示正畸技术和基于增量全要素的干扰模拟技术进行实验分析。研究主要得出以下结论:

(1)使用基于图像二次生成的屏幕显示正畸技术后,能够有效降低星点位置误差,最大限度保证了星敏感器的标定和测试有效性;

(2)球幕大屏中间区域畸变值最小,离球幕大屏中间越远的区域,畸变值越大;

(3)基于增量全要素的干扰模拟技术能够进行全要素的干扰目标模拟仿真,以充分模拟星敏感器在太空中可能面临的各种干扰源,完善抗干扰性测试的充分性,仿真干扰目标包含:干扰星点、规则目标、图像目标、散点噪声、条带噪声;

(4)与已有研究成果相比,本文增加干扰星点、规则目标、图像目标、条带噪声的模拟仿真。

论文外文摘要:

In the ground experimental environment, the "ball screen" type photoelectric tracki-ng and aiming test system is a set of devices for calibrating and testing star sensors. A complete and reliable ball screen photoelectric tracking and aiming testing system is of great significance for ensuring the reliability of star sensors. The system can effectively test the various parameters of star sensors and ensure the accuracy of star sen-sor calibration parameters. Therefore, it is crucial to ensure the completeness and reliability of the ball screen type photoelectric tracking and aiming testing system. During the calibration and testing process of the star sensor, there are two problems: firstly, due to the manufacturing process and installation of the ball screen and projector, there is irregular distortion on the screen, resulting in distortion of the star point display position; Secondly, although the space scene is complex and there are many interference factors, the existing antiinterference testing of star sensors has not fully considered the interference term, resulting in insufficient anti-interference testing of star sensors. Research on the calibration and testing process of star sensors can not only solve the problem of star point display position distortion, but also strengthen the anti-interference testing of star sensors.

This study focuses on the phenomenon of star point display position distortion and insufficient antiinterference testing during the calibration and testing process of star sensors. Based on error analysis technology, the error correction method for star point display distortion is analyzed, and the interference target generation method is simul-ated using simulation increment technology. Select the laboratory's "ball screen" large screen and conduct experimental analysis using screen display orthodontic technology based on image secondary generation and interference simulation technology based on incremental full elements. The research mainly draws the following conclusions:

(1) After using screen display orthodontic technology based on image secondary generation, it can effectively reduce star position errors and ensure the calibration and testing effectiveness of star sensors to the maximum extent;

(2) The distortion value is the smallest in the middle area of the ball screen, and the further away from the middle of the ball screen, the greater the distortion value;

(3) The interference simulation technology based on incremental all elements can simulate all elements of interference targets to fully simulate various interference sources that star sensors may face in space, improve the adequacy of antiinterference testing, and simulate interference targets including interference stars, rule targets, image targets, scatter noise, and stripe noise;

(4) Compared with existing research results, this article adds simulation of interference stars, regular targets, image targets, and stripe noise.

参考文献:

[1] 屠善澄.卫星姿态动力学与控制[M].北京: 宇航出版社,2009.56-78.

[2] 武奕楠,江洁,张广军.动态CCD星敏感器驱动成像系统设计与实现[J].电子测量技术,2009.32(12):17-20.

[3] Roberto Lupo,Carlo Albanese,Daniele Bettinelli,et.Lighthouse:A spacebased mission concept for the surveillance of geosynchronous space debris from low earth orbit[J].Advances in Space Research,2018,62(12):3305-3317.

[4] D.Cutajar,A.Magro,J.Borg,et.Track detection of high-velocity resident space objects in Low Earth Orbit[J].Advances in Space Research,2022,71(3):1670-1681.

[5] 李亚珍,曲安京.中国古代的天球投影方法[J].自然科技史研究,2021,40(4):447-456.

[6] 朱永兴,张超,李帅,等.动态等角星图模拟技术[J].测绘科学技术学报,2011,28(5):329-332.

[7] JU G,KIM H Y,POLLOCK T,et al.DIGISTAR - Alow cost micro star tracker[C].Space Technology Con⁃ference and Exposition,Albuquerque:AIAA,1999:28-30.

[8] 李星,王凌云.高刷新率星图显示算法设计[J].长春理工大学学报(自然科学版),2020,43(1):13-19.

[9] 陈元枝,郝志航.适用于星敏感器的星图识别方法[J].光电工程,2000(5):5-10.

[10] BONE J W.On-orbit star processing using multi-star star trackers[J].Proceedings of SPIE - The Interna⁃tional Society for Optical Engineering,1994(2221):6-14.

[11] 胡宜宁,巩岩.动态星图显示算法的设计与实现[J].宇航学报,2008(3):849-853.

[12] 凌翔,郑宏亮,何元驹.数字星图生成算法的设计与仿真[J].实验室研究与探索,2018,2(2):121-123.

[13] Guangxi Li,Lingyun Wang,Ru Zheng,et.Research on Partitioning Algorithm Based on Dynamic Star Simulator Guide Star Catalog[J].IEEE Access,2021,9:54663-54670.

[14] 郝冠男,王凌云,李光茜,等.高动态星图显示算法研究[J].长春理工大学学报(自然科学版),2022,45(3):63-69.

[15] 李星.高精度高动态星模拟器星图显示及测试方法研究[D].长春:长春理工大学,2020.

[16] 张超.SINS/CNS仿真平台的星敏感器星图模拟与快速识别星图算法研究[D].哈尔滨:哈尔滨工程大学,2021.

[17] 全伟,房建成.高精度星图模拟及有效性验证新方法[J].光电工程,2005,32(7):22-26.

[18] 付景怡,秦天翔,黄蕴涵,等.星模拟器光学系统视场拼接方法的研究[J].中国光学,2021,14(6):1469-1475.

[19] 李成浩,何煦,姬琪,等.高时空分辨率动态星模拟器设计[J].光学精密工程,2020,28(3):515-525.

[20] 孙高飞,张国玉,姜会林,等.甚高精度星模拟器设计[J].光学精密工程,2011,18(8):1730-1735.

[21] 刘海波,宿德志,谭吉春,等.考虑卫星轨道运动和像移影响的星敏感器星图模拟方法[J].宇航学报,2011,32(5):1190-1194.

[22] 郭敬明,魏仲慧,何昕,等.CCD星图模拟器的设计及验证[J].中国光学与应用光学,2010,10(5):486-493.

[23] 赵明波,刘雨,陶征宇,等.一种机载天文导航星图模拟的实现方法[J].光电子技术,2008,9(3):184-192.

[24] 鹿涛,罗大猛,张文杰,等.动态星图生成方法和设备[P],109269495.2019-01-25.

[25] 支帅,张刘,李欣璐.带噪声模拟仿真星图的实现[J].中国光学,2014,8(4):582-586.

[26] 李德彪.基于惯性平台的小视场星体跟踪器星图模拟技术研究[J].光学与光电技术,2020,18(2):84-91.

[27] Ping Jiang,Chengzhi Liu,Wenbo Yang,et.Space Debris Automation Detection and Extraction Based on a Wide-field Surveillance System[J].The Astrophysical Journal Supplement Series,2022,259(1):1-13.

[28] 闫劲云,刘慧,赵伟强,等.基于卷积曲面的动态实时星图模拟[J].北京航空航天大学学报,2019,4(4):681-685.

[29] Weina Zhang,Wei Quan,Lei Guo.Blurred star image processing for star sensors under dynamic conditions[J].Sensors,2012,12(5):6712-6726.

[30] 杨永兴,王鑫蕊,朱韵至,等.基于高精度抖动补偿系统的星模拟技术[J].光学学报,2022,42(18):1812005-1-1812005-8.

[31] Hongyuan Wang, Zhiqiang Yan, Xiaonan Mao,et.A new high-precision star map simulation model and experimental verification[J].Journal of Modern Optics,2021,68(16):856-867.

[32] 孙高飞,张国玉,刘石,等.高精度背景可控星图模拟器设计[J].红外与激光工程,2015(7):2195-2199.

[33] 徐达,张国玉,孙高飞.空间背景光星模拟器系统设计[J].空间科学学报,2018,38(4):575-582.

[34] 代雨.大视场高动态星模拟器光学系统的设计与研究[D].北京:中国科学院大学,2020.

[35] 李津淞,刘爽,李东,等.基于导星电子星图模拟的卫星控制系统半物理试验方法[J].科学技术与工程,2021,21(17):7369-7376.

[36] 陈启梦,张国玉,王哲,等.甚高精度星敏感器测试用静态星模拟器设计[J].红外与激光工程,2014(6):1830-1835.

[37] 孙高飞,张国玉,刘石,等.静态星模拟器设计与精度分析[J].长春理工大学学报(自然科学版),2015,38(5):26-29.

[38] 刘欢,王春艳,庞广宁,等.高精度静态星模拟器光学系统设计[J].长春理工大学学报(自然科学版),2018,41(1):26-29.

[39] 陈娜,王凌云,李光茜,等.静态星模拟器准直光学系统设计[J].长春理工大学学报(自然科学版),2019,42(5):23-26.

[40] 鹿瑞,武延鹏.动态拖尾星图模拟算法研究[J].空间控制技术与应用,2016,42(4):57-62.

[41] 孙铭坤,张宁.动态目标模拟器星图显示系统设计[J].长春理工大学学报,2018,41(5):20-24.

[42] 李光茜,王凌云,郑茹,等.高动态地面星图模拟检测系统算法研究[J].长春理工大学学报(自然科学版),2019,6(3):24-27.

[43] 郝冠男. 大视场高动态星光模拟技术研究[D]. 吉林:长春理工大学,2022.

[44] Rufino G,Accardo D,Grassi M,et al.Real-Time Hardware-in-the-Loop Tests of Star Tracker Algorithms[J].International Journal of Aerospace Engineering,2013,2013:14.1-14.13.

[45] Jeon H,Tu L W,Krames M R,et al.SPIE Proceedings [SPIE SPIE OPTO - San Francisco, California, United States (Saturday 13 February 2016)] Light-Emitting Diodes:Materials,Devices,and Applications for Solid State Lighting XX - Adaptive multi-wavelength LED star simulator for space life studies[J].2016,9768:976815.

[46] 陈维真,张春华,王学伟,等.空间观测序列图像目标运动成像仿真[J].激光与红外,2008,38(3):300-303.

[47] 彭华峰,陈鲸,张彬.空间目标在天基光电望远镜中的光度特征研究[J].光电工程,2006,33(12):9-14.

[48] 彭华峰,陈鲸,张彬.天基光电望远镜空间多目标成像模拟技术研究[J].光学技术,2007,3(2):219-222.

[49] 彭华峰,陈鲸,张彬.天基光电望远镜对空间目标成像的模拟[J].光电工程,2005,10(10):14-17.

[50] 夏胜夫,陈俊宇,雷祥旭,等.空间碎片天基监测图像仿真研究[J].空间科学学报,2020,40(6):1084-1090.

[51] 王兆魁,张育林.面向空间目标监视的星图模拟器设计与实现[J].系统仿真学报,2006,18(5):1195-1211.

[52] Billy Edwards,Ian Stotesbury.Terminus:A Versatile Simulator for Space-based Telescopes[J].The Astronomical journal,2021,161(6):1-14.

[53] 中国国家标准化管理委员会[S].GB/T 7408-2005 数据元和交换格式信息交换日期和时间表示法.北京:中国标准出版社,2005.

[54] 孔祥元,郭际明,刘宗泉.大地测量学基础(第二版)[M].武汉:武汉大学出版社,2009.28-29.

[55] HOG E,FABRICIUS C,MAKARoV V V,et.The Tycho-2 catalogue of the 2.5 million brightest stars[J].Astron Astrophys,2000,355(1):27-30.

[56] 潘正凤,程效军,成枢,等.数字测图原理与方法(第二版)[M].武汉:武汉大学出版社,2009.158-159.

[57] 谭维炽,胡金刚.航天器系统工程[M].北京:中国科学技术出版社,2009.54-57.

[58] NORAD Two-Line Element Set Format[EB/OL]. https://celestrak.org/NORAD/documentation/tle-fmt.php,2022-01-01/2023-04-09.

[59] 刘洋,易东云,王正明.地心惯性坐标系到质心轨道坐标系的坐标转换方法[J].航天控制,2007,4(2):4-8.

[60] 窦长勇,岳昔娟.轨道坐标系到地心固定坐标系的直接转换方法[J].航天返回与遥感,2016,10(5):86-94.

中图分类号:

 P171.8    

开放日期:

 2023-12-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式