- 无标题文档
查看论文信息

论文中文题名:

 316不锈钢的塑性硬化对应力腐蚀影响的研究    

姓名:

 刘昌国    

学号:

 G12011    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085500    

学科名称:

 工学 - 机械    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 机械工程学院    

专业:

 机械工程    

研究方向:

 矿山机电工程    

第一导师姓名:

 任中全    

第一导师单位:

  西安科技大学    

论文提交日期:

 2022-05-25    

论文答辩日期:

 2021-12-01    

论文外文题名:

 Effect of Plastic Hardening of 316 Stainless Steel on Stress Corrosion    

论文中文关键词:

 应力腐蚀 ; 塑性硬化 ; 力学性能 ; 裂纹扩展驱动力 ; 316不锈钢    

论文外文关键词:

 stress corrosion cracking ; plastic hardening ; mechanical property ; driving force of crack growth ; 316 stainless steel    

论文中文摘要:

316不锈钢管道和压力容器在制造、焊接和装配等过程中不可避免的会产生塑性变形导致的塑性硬化,塑性硬化不仅影响材料的力学性能,而且影响材料服役过程中应力腐蚀裂纹尖端应力应变场及裂纹扩展驱动力变化规律,为了研究316不锈钢塑性硬化对应力腐蚀规律的影响,采用实验、理论和有限元相结合的方法分析了塑性硬化对316不锈钢应力腐蚀裂纹扩展驱动力的影响,主要研究内容如下:

(1) 利用实验获得316不锈钢的应力应变曲线,并分析不同塑性硬化程度的316不锈钢的屈服强度和硬化指数的分布规律;研究316不锈钢的塑性硬化和维氏硬度的变化规律,在分析材料力学性能的基础上,建立材料屈服强度和维氏硬度的关系;利用扫面电镜观察不同预拉伸量316不锈钢的断口形貌,对断口进行对比分析。

(2) 建立有限元模型,在实验数据的基础上,分析316不锈钢的不同力学参量和材料的塑性硬化对裂纹尖端应力应变场的影响规律,分析材料屈服强度和硬化指数对应力腐蚀裂纹尖端Mises应力场、拉伸应力场、等效塑性应变场和拉伸应变场的影响,进一步研究了材料塑性硬化对应力腐蚀裂纹尖端力学场的影响规律。

(3) 研究应力腐蚀裂纹扩展驱动力的力学参量,分析316不锈钢的屈服强度和硬化指数对应力腐蚀裂纹尖端应力三轴度、裂纹尖端应变率、裂纹尖端的蠕变率的影响及裂尖应力三轴度、应变率和蠕变率对材料力学参量的敏感性;研究了316不锈钢塑性硬化对裂纹尖端应力三轴度、应变率和蠕变率的影响;并比较分析出合理的裂纹扩展驱动力力学参量。

(4) 结合实验研究管道焊接接头热影响区的塑性硬化规律,并分析了热影响区的塑性硬化对融合线上应力腐蚀裂纹尖端应力应变场的影响,研究了对热影响区的塑性硬化对融合线上应力腐蚀裂纹尖端裂纹扩展驱动力的影响。

论文外文摘要:

316 stainless steel pipes and pressure vessels will inevitably produce plastic hardening caused by plastic deformation during the manufacturing, welding and assembly processes. Plastic hardening not only affects the mechanical properties of the material, but also affects the stress-strain field at the tip of the stress corrosion crack and the law of the driving force of crack propagation during the service process of the material. In order to study the effect of plastic hardening of 316 stainless steel on the stress corrosion law, the influence of plastic hardening on the driving force of stress corrosion crack growth of 316 stainless steel was analyzed by a combination of experiment, theory and finite element method. The main research contents are as follows:

(1) Use experiments to obtain the stress-strain curve of 316 stainless steel, and analyze the distribution law of yield strength and hardening index of 316 stainless steel with different degrees of plastic hardening. Study the change law of plastic hardening and Vickers hardness of 316 stainless steel, and establish the relationship between material yield strength and Vickers hardness based on the analysis of material mechanical properties. Scanning electron microscope was used to observe the fracture morphology of 316 stainless steel with different pre-stretching amount, and the fracture was compared and analyzed.

(2) Establish a finite element model, and analyze the influence of different mechanical parameters of 316 stainless steel and the plastic hardening of the material on the stress and strain field at the crack tip based on the experimental data. Analyze the influence of material yield strength and hardening index on the stress corrosion crack tip Mises stress field, tensile stress field, equivalent plastic strain field and tensile strain field, and further study the influence of material plastic hardening on the stress corrosion crack tip mechanical field .

(3) Study the mechanical parameters of stress corrosion crack growth driving force, analyze the influence of the yield strength and hardening index of 316 stainless steel on the stress triaxiality of the stress corrosion crack tip, the strain rate of the crack tip, and the creep rate of the crack tip. The sensitivity of crack tip stress triaxiality, strain rate and creep rate to material mechanical parameters is analyzed. It also compares and analyzes the reasonable mechanical parameters of the crack propagation driving force.

(4) Combining experiments to study the law of plastic hardening in the heat-affected zone of pipe welded joints, and analyze the influence of the plastic hardening of the heat-affected zone on the stress-strain field at the tip of the stress corrosion crack on the fusion line. The effect of plastic hardening of the heat-affected zone on the driving force of stress corrosion crack tip crack propagation on the fusion line is studied.

参考文献:

[1]吴永忠, 卢金斌. 服役环境对X70管线钢应力腐蚀开裂敏感性研究[J]. 材料科学与工艺(网络首发版). 2019.

[2]班慧勇, 杨凯华, 梅镱潇. 不锈钢复合钢材及其焊接接头耐腐蚀性能试验研究[J]. 天津大学学报(自然科学与工程技术版). 2021, 54(2): 111-121.

[3]戴哲峰. 316L 不锈钢在复杂介质环境中的应力腐蚀试验研究[D]. 浙江工业大学, 2009.

[4]肖纪美. 不锈钢中的金属学问题[M]. 冶金工业出版社, 1983.

[5]J.A.Collins, M.L.Monaek. Stress corrosion cracking in the chemical proeess industry. Materials Proteetion and Performance[J]. 1973, 12(6): 11-15.

[6]赵密锋, 付安庆, 秦宏德, 谢俊峰, 谢刚, 龙岩, 李岩, 王华. 高温高压气井管柱腐蚀现状及未来研究展望[J]. 表面技术, 2018, 47(6): 44-50.

[7]贾玉杰. 冷变形316L奥氏体不锈钢在H2S环境中的应力腐蚀敏感性研究[D]. 中国石油大学, 2019.

[8]姜云禄, 杨亮, 韩晓辉, 徐野, 陈怀宁, 蔡桂喜. 运行条件对不锈钢点焊疲劳性能影响及开裂分析[J]. 中国机械工程, 2021, 32(14): 1726-1731.

[9]刘传森, 李壮壮, 陈长风. 不锈钢应力腐蚀开裂综述[J]. 表面技术, 2020, 49(3):1-13.

[10]薛艳, 赵密锋, 吕祥鸿, 谢俊峰, 赵国仙, 李丹平. 不锈钢管应力腐蚀开裂的评价方法[J]. 腐蚀与防护, 2018, 39(5): 340-343.

[11]D.H.Du, M.Song, K.Chen, L.F.Zhang, P.L.Andresen. Effect of deformation level and orientation on SCC of 316L stainlesssteel in simulated light water environments[J]. Journal of Nuclear Materials, 2020, 531: 152038.

[12]P.L.Andresen. Resolving environmental cracking in nuclear power[R].Shenyang: China Nuclear Energy Association Institute of Metal Research, 2017.

[13]Z.Lu, T.Shoji, F.Meng. Effects of water chemistry and loading conditions on stress corrosion cracking of cold-rolled 316NG stainless steel in high temperature water[J]. Corrosion Science, 2011, 53(1): 247-262.

[14]S.Yamazaki, Z.P.Lu, Y.Ito, Y.Takeda, T.Shoji. The effect of prior deformation on stress corrosion cracking growth rates of Alloy 600 materials in a simulated pressurized water reactor primary water[J]. Corrosion Science, 2008, 50(3): 835-846.

[15]史坤. 石油管道的应力腐蚀与防护[J].石化技术,2019,10:238-234.

[16]孙成, 韦博鑫, 覃清钰, 付琦, 吴堂清, 许进, 高立群, 于长坤. 土壤环境中X80 管线钢应力腐蚀关键影响因素研究进展[J]. 油气储运(网络首发论文), 2021.

[17]诸武扬, 谷飚, 高克玮. 应力腐蚀机理研究的新进展[J]. 腐蚀科学与防护技术, 1995,7(2):97-101.

[18]W.F.Flanagan, P.Bastias, B.D.Lichter. A theory of transgranular stress-corrosion cracking[J]. Acta metal mater, 1991, 39: 695-705.

[19]E.I Meletis. A review of present mechanisms of transgranular stress corrosion cracking[J]. J mech behav mater, 1996, 7: 1-14.

[20]N.S.Zadorozne, M.C.Giordano, A.E.Ares, et al. Anodic characteristics and stress corrosion cracking behavior of nickel rich alloys in bicarbonate and buffer solutions[J]. Corros sci, 2016, 108: 1-10.

[21]Y.H.Lu, Q.J.Peng, T.Sato, et al. An ATEM study of oxidation behavior of SCC crack tips in 304L stainless steel in high temperature oxygenated water[J]. Journal of nuclear materials, 2005, 347(1-2): 52-68.

[22]P.L.Andresen, F.P.Ford. Fundamental modeling of environmental cracking for improved design and lifetime evaluation in BWRs [J]. International Journal of Pressure Vessels and Piping,1994,59: 61-70.

[23]M.Hall. Film rupture model for aqueous stress corrosion cracking under constant and variable stress intensity factor [J]. Corrosion Science, 2009, 51: 225-233.

[24]F.P.Ford. Quantitative prediction of environmentally assisted cracking [J]. Corrosion, 1996,52: 375-395.

[25]D.A.Yermilyea. A theory for the propagation of stress corrosion cracks in metals [J]. J. Electrochem. Soc,1972,119: 405-407.

[26]F.P.Ford. Mechanisms of environmentally-assisted cracking [J]. International Journal of Pressure Vessels and Piping, 1989,40(55):343 -362.

[27]P.L.Andresen, F.P. Ford. Life prediction by mechanistic modeling and system monitoring of environmental cracking of iron and nickel alloys in aqueous systems [J]. Materials Science and Engineering, 1988, A103: 167-184.

[28]张新生, 许淳淳, 胡钢. 亚稳态 304不锈钢应力腐蚀影响因素探讨[J]. 电化学, 2003, 9(03): 320-326.

[29]Miller A, Estrin Y, Hu X Z. Magnetic force microscopy of fatigue crack tip region in a 316L austenitic stainless steel[J]. Scripta Materialia, 2002, 47(7): 441-446.

[30]H.L.Yang, H.Xue. Effect of cold working on crack growth rate of environmentally assisted cracking of 316L SS[J]. Structures, 2020, 28: 446-455.

[31]王国珍, 轩福贞, 涂善东.高温结构蠕变裂尖拘束效应[J].力学进展, 2017, 47: 201704.

[32]A.P.Zakharov, V.N.Shlyannikov, A.M.Tartygasheva, D.V.Fedotova. Couple effects of mixed mode biaxial loading and crack tip configuration on plastic stress intensity factor behavior at small and large scale yielding[J]. Procedia Structural Integrity, 2019, 18: 749-756.

[33]L.Peguet, B.Malki, B.Baroux. Effect of austenite stability on the pitting corrosion resistance of cold worked stainless steels[J]. Corrosion Science, 2009, 51(3): 493-498.

[34]廖柯熹, 方芳, 姚安林. 天然气管线应力腐蚀开裂机理[J]. 国外石油工程, 2000,∙12: 37-39.

[35]刘虎, 何雄坤, 赵松柏, 聂领, 杨志博. 超深储层改造液对完井管柱的腐蚀与缓蚀[J]. 油田化学, 2021, 38(1): 157-161.

[36]孙福洋, 侯斌, 丁勇, 鲁元. X100管线钢在库尔勒土壤模拟溶液中应力腐蚀开裂行为的研究[J]. 管道技术与设备, 2021, (1): 9-14.

[37]张克乾, 张华, 胡石林, 唐占梅. 温度、水化学环境及冷加工程度对321不锈钢应力腐蚀裂纹扩展速率的影响[J].原子能科学技术, 2021, 55: 129-135.

[38]宋洋, 赵国仙, 王映超, 张思琦, 郭梦龙, 杨梅. Q245R 钢抗H2S 应力腐蚀开裂分析[J]. 焊管, 2021,∙44(5): 38-44.

[39]Chung H M, Ruther W E, Sanecki J E, et al. Irradiation-assisted stress corrosion cracking of austenitic stainless steels: recent progress and new approaches[J]. Nucl Mater, 1996, 239:61.

[40]Masayuki Kamaya. Elastic-plastic failure assessment of cold worked stainless steel pipes. International Journal of Pressure Vessels and Piping 131 (2015) 45-51.

[41]R.S. Dutta, Jagannath, G.K. Dey et al. Characterization of microstructure and corrosion properties of cold worked Alloy 800. Corrosion Science 48 (2006) 2711-2726.

[42]R.K. Zhu, B.T. Lu, J.L. Luo a, Y.C. Lu. Effect of cold work on surface reactivity and nano-hardness of alloy 800 in corroding environments. Applied Surface Science 270 (2013) 755-762.

[43]Q. Auzoux, L. Allais, C. Caes et al. Effect of pre-strain on creep of three AISI 316 austenitic stainless steels in relation to reheat cracking of weld-affected zones. Journal of Nuclear Materials 400 (2010) 127-137.

[44]M.D. Roach, S.I. Wright, J.E. Lemons et al. An EBSD based comparison of the fatigue crack initiation mechanisms of nickel and nitrogen-stabilized cold-worked austenitic stainless steels. Materials Science & Engineering A 586 (2013) 382-391.

[45]Seiya Yamazaki, Zhanpeng Lu, Yuzuru Ito, Yoichi Takeda, Tetsuo Shoji. The effect of prior deformation on stress corrosion cracking growth rates of Alloy 600 materials in a simulated pressurized water reactor primary water. Corrosion Science 50 (2008) 835-846.

[46]张凯丽, 谢飞, 吴明, 王丹, 盖左松, 刘晋. 腐蚀产物膜对X70 管线钢焊缝海底腐蚀行为的影响[J]. 机械工程材料, 2021, 45(7): 12-16.

[47]Yang Hongliang, Xue He, Yang Fuqiang, Zhao Lingyan. Effect of Film-Induced Stress on Mechanical Properties at Stress Corrosion Cracking Tip[J]. Rare Metal Materials and Engineering, 2017, 46(12): 3595-3600.

[48][48] 郭献忠, 高克玮, 乔利杰, 褚武扬. 不锈钢应力腐蚀敏感性和钝化膜引起的应力随电位变化的一致性[J]. 金属学报, 2002, 38(2): 181-184.

[49]贾松波. 腐蚀监控技术在炼油装置中的应用[J]. 全面腐蚀控制, 2021, 35(2): 124-127.

[50]吴文博, 张志明, 王俭秋, 韩恩厚, 柯伟. 热老化 316L 不锈钢在模拟核电溶解氧/ 氢高温高压水中应力腐蚀裂纹扩展行为[J]. 材料导报, 2020, 34(3): 06144-06150.

[51]徐连勇, 王浩, 赵雷, 荆洪阳, 韩永典. 国产锻造态316L不锈钢在高温高压水环境中的应力腐蚀行为研究[J]. 机械工程学报, 2018, 54(10): 53-58.

[52]GHOSH S, RANA V P S, KAIN V, et al. Role of residual stresses induced by industrial fabrication on stress corrosion cracking susceptibility of Austenitic stainless steel[J]. Materials & design, 2011, 32(7): 3823-3831.

[53]RHOUMA A B, SIDHOM H, BRAHAM C, et al. Effects of surface preparation on pitting resistance, residual stress and stress corrosion cracking in Austenitic stainless steels[J]. Journal of materials engineering performance, 2001, 10(5): 507-514.

[54]李嘉栋, 陈超, 张世贵, 林冰, 王莹莹, 朱元强, 唐鋆磊. 不同应力条件下不锈钢局部腐蚀行为的研究进展[J]. 表面技术, 50(3): 101-115.

[55]杜东海, 赖平, 陈凯, 张乐福. 焊接残余应力对 316LN 不锈钢应力腐蚀裂纹扩展速率的影响[J]. 原子能科学技术, 2017, 51(4): 721-726.

[56]Z.Lu, T.Shoji, F.Meng. Effects of water chemistry and loading conditions on stress corrosion cracking of cold-rolled 316NG stainless steel in high temperature water[J]. Corrosion Science, 2011, 53(1): 247-262.

[57]张国庆. 海洋油气开发工程316L不锈钢的腐蚀及防护[J]. 涂料工业, 2020, 50(9): 56-61.

[58]Donghai Du, Kai Chen, Hui Lu, et al. Effects of chloride and oxygen on stress corrosion cracking of cold worked 316/316L austenitic stainless steel in high temperature water[J]. Corrosion Science, 2016, 110: 134-142.

[59]黄六一, 钟丰平, 王学斌, 高红刚, 张宏亮, 卢志明. 高能喷丸304不锈钢应力腐蚀敏感性试验研究[J]. 浙江工业大学学报, 2020, 48(6): 670-674.

[60]李东, 陈怀宁, 刘刚, 等. SS400钢焊接接头表层组织纳米均一化及硬度均一化处理[J]. 金属学报, 2001, 37(9):980-984.

[61]李东, 陈怀宁, 林泉洪. 高能喷丸表面纳米化技术提高接头疲劳强度的可行性研究[C]//第十次全国焊接会议论文集. 哈尔滨: 黑龙江人民出版社, 2001, 234-237.

[62]许淳淳, 张新生, 胡钢. 拉伸变形对304不锈钢应力腐蚀的影响[J]. 材料研究学报, 2003, 17(3): 310-314.

[63]Y.C.Gao, K.C.Hwang. Elastic-plastic fields in steady crack growth in a strain hardening material[J]. Geochemistry International, 1981, 50(50):330-343.

[64]J.H.Gong, J.Wu, Z.Guan. Examination of the indentation size effect in low-load vickers hardness testing of ceramics[J]. Journal of the European Ceramic Society, 1999, 19(15):2625-2631.

[65]Kim J.R. Rasmussen. Full-range stress-strain curves for stainless steel alloys[J]. Journal of Constructional Steel Research, 2003, 59: 47-61.

[66]饶德林, S.Paddea, 李荣锋, 侯晓东, 张 放, 张书彦. 20 号管道钢力学性能的微压痕法检测探讨[J]. 物理测试, 2019, 37(6): 6-9.

[67]P.Jiang, T.H.Zhang, Y.H.Feng, et al. Determination of plastic properties by instrumented spherical indentation: Expanding cavity model and similarity solution approach[J]. Journal of Materials Research, 2009, 24(3): 1045-1053.

[68]P.L.Andresen, F.P.Ford. Life prediction by mechanistic modeling and system monitoring of environmental cracking of iron and nickel alloys in aqueous systems[J], Material Science Engineering A. 1988, 103: 167-184.

[69]P.L.Andresen, R.Reid, J.Wilson. SCC mitigration of Ni alloys and weld metals by op-timizing dissolved hydrogen[C]// Proceedings of the 14th International Conference on Environmental Degradation of Materials in Nuclear Power Systems Water Reactors. Warrendale, PA: TMS, 2009: 345-372.

[70]H.Xue, Y.Sato, T.Shoji. Quantitative estimation of the growth of environmentally assisted cracks at flaws in light water reactor components[J]. J. Press. Vess.-T. ASME, 2009, 131(1): 61-70.

[71]F.P.Ford. Quantitative prediction of environmentally assisted cracking[J]. Corrosion, 1996, 52: 375-395.

[72]V.D.Vijayanand, M.Nandagopal, P.Parameswaran, K.Laha, M.D.Mathew. Effect of prior cold work on creep rupture and tensile properties of 14Cr-15Ni-Ti stainless steel[J]. Procedia Engineering, 2013, 55(12): 78 -81.

[73]R.Sandström. The role of cell structure during creep of cold worked copper[J]. Materials Science & Engineering A, 2016, 674: 318-327.

[74]Ueda Yukio; Shi Yaowu; Sun Siying; Murakawa Hidekazu. Effect of Crack Depth and Strength Mis-Matching on the Relation between J-integral and CTOD for Welded Tensile Specimens(Mechanics, Strength & Structure Design. Transactions of JWRI. 26(1): 133-140.

[75]M.Meisnar, M.Moody, L.P.Sergio. Atom probe tomography of stress corrosion crack tips in SUS316 stainless steels[J]. Corrosion Science, 2015, 98: 661-671.

[76]K.Chen, J.M.Wang, D.H.Du, P.L.Andresen, L.F.Zhang. dK/da effects on the SCC growth rates of nickel base alloys in high-temperature water[J]. Journal of Nuclear Materials, 2018, 502: 13-21.

[77]K.Zhao, H.Xue, L.Y.Zhao. Research on the Micro-Mechanical State at Tip of Environmentally Assisted Cracking Based on Latin Hypercube Sampling Method[J]. Key Engineering Materials, 2019, 795: 74-78.

中图分类号:

 TG142.71    

开放日期:

 2022-05-26    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式