- 无标题文档
查看论文信息

论文中文题名:

 偶氮和联苯衍生多脲受体的合成、表征及阴离子结合研究    

姓名:

 乔敏敏    

学号:

 19213105009    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 0703    

学科名称:

 理学 - 化学    

学生类型:

 硕士    

学位级别:

 理学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 化学与化工学院    

专业:

 化学    

研究方向:

 阴离子识别    

第一导师姓名:

 杨再文    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-28    

论文答辩日期:

 2022-05-30    

论文外文题名:

 Study on synthesis, characterization and anion binding of azo- and biphenyl-derived multiurea receptors    

论文中文关键词:

  ; 偶氮 ; 联苯 ; “裸眼”识别 ; 阴离子结合    

论文外文关键词:

 Urea ; Azo ; Biphenyl ; “Naked Eye” Recognition ; Anion binding    

论文中文摘要:

      本论文详述了偶氮和联苯衍生多脲受体的设计、合成、表征及其阴离子结合性能。本论文共包括四章,第一章是绪论部分,概述了阴离子识别的起源、阴离子的性质及其重要性、脲/硫脲类阴离子受体和其他阴离子受体的研究概况、选题目的及意义,最后是研究内容及技术路线。第二章设计并合成了偶氮苯衍生的脲类受体L1−L4,通过阴离子比色法和紫外-可见吸收光谱研究了偶氮衍生的脲类受体对阴离子的结合性质。第三章设计并合成了联苯衍生的四脲受体L5-L7,并通过阴离子比色法和紫外-可见吸收光谱研究了联苯衍生的四脲受体对阴离子的结合性质。最后一章是全文总结。

主要内容如下:

       (1) 偶氮苯功能化的脲类受体的合成、表征及阴离子结合性质

        以4-硝基苯基异氰酸酯和4,4'-偶氮二苯胺为原料,合成了偶氮苯功能化的二脲受体L1;以1,3-苯二异氰酸酯和4-氨基偶氮苯为原料,合成了偶氮苯功能化的二脲受体L2;以4-硝基苯基异氰酸酯和4-氨基偶氮苯为原料,合成了偶氮苯功能化的单脲受体L3;以4-氯苯基异氰酸酯和4-氨基偶氮苯为原料,合成了偶氮苯功能化的单脲受体L4;通过熔点、核磁共振氢谱(1H NMR)、核磁共振碳谱(13C NMR)、红外光谱(FT-IR)和元素分析(EA)表征偶氮苯功能化的脲类受体。通过阴离子比色识别和紫外-可见吸收光谱(UV-Vis)研究了偶氮苯功能化的脲类受体的阴离子识别性质。阴离子比色识别表明:受体L1和L2能够选择性识别磷酸根阴离子和氢氧根阴离子;受体L3能够选择性识别磷酸根阴离子、碳酸根阴离子和氟阴离子;受体L4能够选择性识别磷酸根阴离子。紫外-可见吸收光谱研究发现:受体L1和L2能够选择性识别磷酸根阴离子和氢氧根阴离子;受体L3能够选择性识别磷酸根阴离子、碳酸根阴离子和氟阴离子;受体L4能够选择性识别磷酸根阴离子和硫酸根阴离子;受体与磷酸根阴离子结合强弱顺序为:L3>L4

       (2) 联苯功能化的四脲受体的合成、表征及阴离子结合性质

        以4-硝基苯基异氰酸酯和3,3',4,4'-联苯四胺为原料,合成了联苯衍生的四脲受体L5;以4-氯苯基异氰酸酯和3,3',4,4'-联苯四胺为原料,合成了联苯衍生的四脲受体L6;以4-氰基苯基异氰酸酯和3,3',4,4'-联苯四胺为原料,合成了联苯衍生的四脲受体L7;以受体L5和四丁基硫酸铵反应,得到了配合物1;然后,通过熔点、核磁共振氢谱、核磁共振碳谱、红外光谱、元素分析、质谱(MS)及X-射线单晶衍射表征了联苯衍生的四脲受体和配合物1。X-射线单晶衍射分析表明:受体L5、硫酸根阴离子和TBA通过N-H(脲基)···O氢键,C-HTBA···O氢键和C-HTBA···π相互作用形成配合物1,配合物1含有一个受体L5,两个硫酸根离子和4个TBA。配合物1通过受体L5末端硝基的氧原子连接形成大环结构,大环结构又通过受体L5之间的C-H···O型分子间氢键延伸为二维层面结构;阴离子比色识别表明:受体L5能够选择性识别磷酸根阴离子、硫酸根阴离子、碳酸根阴离子和氟阴离子;受体L7能够选择性识别磷酸根阴离子。紫外-可见光谱研究表明:受体L5能够选择性识别磷酸根阴离子、硫酸根阴离子、碳酸根阴离子和氟阴离子;受体L6选择性识别磷酸根阴离子和硫酸根阴离子;受体L7能够选择性识别磷酸根阴离子和硫酸根阴离子。受体与硫酸根阴离子结合强弱顺序为:L5>L7>L6;受体与磷酸根阴离子结合强弱顺序为:L5>L7>L6>L3>L4

 

论文外文摘要:

        This dissertation details the design, synthesis, characterization and anion-binding properties of azo- and biphenyl-derived multiurea receptors. There are four chapters in this dissertation. The first is the introduction section, including the origin of anion recognition, the properties and significance of anions, the research overview of urea or thiourea anion receptors and other anion receptors, the aim of this dissertation and finally the research content in this dissertation and technology route. In chapter two, azobenzene-derived urea receptors L1-L4 were designed and synthesized, and the binding properties of azo-derived urea receptors to anions were further investigated by anion colorimetry and UV-Vis absorption spectroscopy. In chapter three, biphenyl-derived urea receptors L5-L7 were designed and synthesized, and the binding properties of biphenyl-derived tetraurea receptors to anions were studied by anion colorimetry and UV-Vis absorption spectroscopy. The last chapter is the conclusion of this dissertation.

    The main contents of this dissertation are as follows:

     (1) Synthesis, characterization and anion-binding properties of azobenzene-function-alized urea receptors

     Azobenzene-derived diurea receptor L1 was synthesized by using 4-nitrophenyl isocyanate and 4,4'-azodiphenylamine as raw materials; Azobenzene-derived diurea receptor L2 was synthesized by using 1,3-phenylenediisocyanate and 4-aminoazobenzene as raw materials; Azobenzene-derived monourea receptor L3 was synthesized by using 4-nitrophenyl isocyanate and 4-aminoazobenzene as raw materials; The azobenzene-derived monourea receptor L4 was synthesized by using 4-nitrophenyl isocyanate and 4-aminoazobenzene as raw materials; Then, the azobenzene-derived receptors were characterized by melting point, 1H NMR, 13C NMR, FT-IR and elemental analysis. The anion recognition properties of azobenzene-functionalized urea receptors were investigated by anion colorimetric recognition and UV-Vis absorption spectroscopy. Anion colorimetric recognition showed that: Receptors L1 and L2 can selectively recognize phosphate anion and hydroxide anion; Receptor L3 can selectively recognize phosphate anion, carbonate anion and fluoride anion; Receptor L4 can selectively recognize phosphate anion. UV-Vis absorption spectroscopy studies found that receptors L1 and L2 could selectively recognize phosphate anion and hydroxide anion; Receptor L3 can selectively recognize phosphate anion, carbonate anion and fluoride anion; Receptor L4 can selectively recognize of phosphate anion and sulfate anion; The order of binding strength between receptors and phosphate anion is L3>L4.

     (2) Synthesis, characterization and anion-binding properties of biphenyl- functionali-zed tetraurea receptors

     Biphenyl-derived tetraurea receptor L5 was synthesized by using 4-nitrophenyl isocyanate and 3,3',4,4'-biphenyltetramine as raw materials; Biphenyl-derived tetraurea receptor L6 was synthesized by using 4-chlorophenyl isocyanate and 3,3',4,4'-biphenyltetramine as raw material; Biphenyl-derived tetraurea receptor L7 was synthesized by using 3,3',4,4'-biphenyltetramine and 4-cyanophenyl isocyanate as raw material; Complex 1 was obtained by the reaction of receptor L5 with tetrabutylammonium sulfate; Then, the biphenyl-derived urea receptors and complex 1 were characterized by melting point, 1H NMR, 13C NMR, MS, FT-IR, EA and X-ray single crystal diffractometer. X-ray single-crystal diffraction analysis showed that complex 1 was formed through the receptor L5 with sulfate anion and TBA through N-H(urea)···O hydrogen bond, C-H(TBA)···O hydrogen bond and C-H(TBA)···π interactions. In complex 1, there is one receptor L5, two sulfate ions and four TBA. The complex 1 is connected by the oxygen atom of the nitro group at the end of the receptor L5 to form macrocyclic structure. Then the macrocyclic structure is extended into a two-dimensional level structure through the C-H···O type intermolecular hydrogen bond between the receptor L5. Anion colorimetric recognition shows that: Receptor L5 can selectively recognize phosphate anion, sulfate anion, carbonate anion and fluoride anion; Receptor L7 can selectively recognize phosphate ion and sulfate ion. UV-Vis spectroscopy studies show that: Receptor L5 can selectively recognize phosphate anion, sulfate anion, carbonate anion and fluoride anion; Receptor L6 can selectively recognize phosphate anion and sulfate anion; Receptor L7 can selectively recognize phosphate anion and sulfate anion. The order of the binding strength of the receptor and the sulfate anion is L5>L7>L6; The order of the binding strength of the receptor and the phosphate anion is L5>L7>L6>L3>L4.

参考文献:

1] Alipanahpour Dil E, Ghaedi M, Asfaram A, et al. A ferrofluidic hydrophobic deep eutectic solvent for the extraction of doxycycline from urine, blood plasma and milk samples prior to its determination by high-performance liquid chromatography-ultraviolet [J]. Journal of Chromatography A, 2020, 1613: 460695.

[2] Park C H, Simmons H E. Macrobicyclic amines. III. encapsulation of halide ions by in, in-1, (k + 2)-diazabicyclo [k.l.m] alkaneammonium ions [J]. Journal of the American Chemical Society, 1968, 90: 2431-2432.

[3] Yang D, Zhao J, Yu L, et al. Air- and light-stable P4 and As4 within an anion-coordination-based tetrahedral cage [J]. Journal of the American Chemical Society, 2017, 139(16) : 5946-5951.

[4] Lehn J M. Cryptates: the chemistry of macropolycyclic inclusion complexes [J]. Accounts of Chemical Research, 1978, 11(2) : 49–57.

[5] Zhao J, Yang D, Yang X J, et al. Anion coordination chemistry: From recognition to supramolecular assembly [J]. Coordination Chemistry Reviews, 2019, 378: 415-444.

[6] 张艳磊. 三联硫脲配体的合成及与阴离子结合性质研究 [D]. 西安: 西北大学, 2013.

[7] 吴金风. 硫脲衍生物和多羧酸芳香化合物为主体的氢键包合物的合成及晶体结构研究 [D]. 兰州: 西北师范大学, 2016.

[8] Zhang L X, Chen Q. Flourishing development in supramolecular chemistry [J]. Synthetic Materials Aging and Application, 2015, 44(6) : 111-114.

[9] Rouzi K, Abulikemu A, Zhao J, et al. A study on the synthesis and anion recognition of a chitosan-urea receptor [J]. RSC Advances, 2017, 7(80) : 50920-50927.

[10] Jia C D, Zuo W, Zhang D, et al. Anion recognition by oligo-(thio)urea-based receptors [J]. Chemical Communications, 2016, 52(62) : 9614-9627.

[11] Cao C, Liu C, Y, Ji X, D, et al. Preparation and anion recognition properties of imine derivatives colorimetric probe [J]. Chinese Journal of Analysis Laboratory, 2021, 40(2) : 150-155.

[12] Han D L, Ge G T N, Du Y Q, et al. Research progress of fluorescent probes for identifying dihydrogen phosphate ions [J]. Chemical Research and Application, 2020, 32(6) : 905-917.

[13] Hu S L, Zhang L X. Flourishing developments and applications in supramolecular chemistry [J]. Synthetic Materials Aging and Application, 2021, 50(5) : 137-139.

[14] Zhang S L, Jun P X. Research progress on fluorescent probes for fluoride ions [J]. CIESC Journal, 2016, 67(1) : 191-201.

[15] Udnan Y, Mckelvie I D, Grace M R, et al. Evaluation of on-line preconcentration and flow-injection amperometry for phosphate determination in fresh and marine waters [J]. Talanta, 2005, 66(2) : 461-466.

[16] Jia X, Chen D, Bin L, et al. Highly selective and sensitive phosphate anion sensors based on AlGaN/GaN high electron mobility transistors functionalized by ion imprinted polymer [J]. Scientific Reports, 2016, 6: 27728.

[17] H K, T. U. Spectrophotometric determination of phosphate anion based on the formation of molybdophosphate in ethylene glycol–water mixed solution [J]. Analytical Sciences, 2011, 27(10) : 1043-1047.

[18] Zhao J, Yang D, Zhao Y, et al. Phosphate-induced fluorescence of a tetraphenylethene-substituted tripodal tris(urea) receptor [J]. Dalton Transactions, 2016, 45(17) : 7360-7365.

[19] Huang Z, Jia C, Wu B, et al. Selective binding of (thio)sulfate and phosphate in water by quaternary ammonium functionalized oligo-ureas [J]. Chemical Communications, 2019, 55(12) : 1714-1717.

[20] 潘冠军. 选择性识别磷酸根离子和碘离子的化学传感器的制备和性能 [D]. 吉林: 吉林大学, 2021.

[21] Zhao H X, Liu L Q, Liu Z D, et al. Highly selective detection of phosphate in very complicated matrixes with an off-on fluorescent probe of europium-adjusted carbon dots [J]. Chemical Communications, 2011, 47(9) : 2604-2606.

[22] Yang Z W, Lu S S, Lan L, et al. Twelve-coordinated sulfate hydrogen bonding interactions in water-containing Fe(II) system [J]. Molecular Crystals and Liquid Crystals, 2019, 680(1) : 96-104.

[23] Wei M, Wu B, Zhao L, et al. A bis-bisurea receptor with the R, R-cyclohexane-1,2-diamino spacer for phosphate and sulfate ions [J]. Organic anf Biomolecular Chemistry, 2012, 10(44) : 8758-8761.

[24] Fu J F. Technical progress of sulfate removing by nano filtration membrane method [J]. Chlor-Alkali Industry, 2009, 45(1) : 7-10.

[25] Zou J Y, Zhang Y, Chen D. Sulfate ion diffusion in mortar exposed to sulfate-chloride coexistence environment [J]. Concrete, 2020, (11) : 12-15.

[26] Yu L Y, Lu Y Q, Bo A S. Research progress of bicarbonate and carbonate determination [J]. Westleather, 2010, 32(19) : 48-52.

[27] Cui W Y, Zhao P, Rao Y L, et al. Research progress of nitrite and nitrate analysis in biological samples [J]. Chinese Journal of Analysis Laboratory, 2021, 41(3) : 1-9.

[28] Yin T J, Wang H M, Qin W. Construction and research progress of the nitrate-selective electrodes [J]. Chemical Research and Application, 2021, 33(10) : 1849-1858.

[29] Ji X D, Li S B, Peng L P, et al. Synthesis and anion recognition property of 2-hydroxy-1-naphthaldehyde 2-amino-4-nitrophenol imine [J]. Chinese Journal of Synthetic Chemistry, 2021, 29(2) : 111-116.

[30] Suriguga, Gegentana, Du Y Q, et al. Research progress in fluorine ion sensor [J]. Chemical World, 2020, 61(9) : 594-603.

[31] Wang H R, Liang F Y, Du Y Q, et al. Recent progress in recognition receiver of chloride ion [J]. Chemical World, 2019, 60(8) : 485-492.

[32] Zhang H, Wu Y, You J, et al. New progress in the design, synthesis and application of fluorescent probes for fluoride ion detection [J]. Chinese Journal of Organic Chemistry, 2016, (36) : 2559-2582.

[33] Zhang W, Yang D, Zhao J, et al. Controlling the recognition and reactivity of alkyl ammonium guests using an anion coordination-based tetrahedral cage [J]. Journal of the American Chemical Society, 2018, 140(15) : 5248-5256.

[34] Smith P J, Reddington M V, Wilcox C S. Ion pair binding by a urea in chloroform solution [J]. Tetrahedron Letters, 1992, 33(41) : 6085-6088.

[35] Fan E, Van Arman S A, S K, et al. Molecular recognition hydrogen-bonding receptors that function in higJdy competitive solvents [J]. Journal of the American Chemical Society, 1993, 115: 369-370.

[36] Bondy C R, Gale P A, Loeb S J. Metal-organic anion receptors: Arranging urea hydrogen-bond donors to encapsulate sulfate ions [J]. Journal of the American Chemical Society, 2003, 126: 5030-5031.

[37] Zhang D, Hou L K, Zhang Q, et al. Anion-coordination-assisted assembly of supramolecular charge-transfer complexes based on tris(urea) ligands [J]. Chemistry-A European Journal, 2020, 26(6) : 1414-1421.

[38] Shu X, Fan Y, Li S, et al. Anion binding and fluoride ion induced conformational changes in bisurea receptors [J]. New Journal of Chemistry, 2020, 44(5) : 2033-2045.

[39] Manna U, Das G. Linear bis-urea anion receptors with halo-methylphenyl mixed substitution: Evidences of F− induced atmospheric CO2 capture [J]. Journal of Molecular Structure, 2020, 1202.

[40] Fu J, Zheng B, Zhang H, et al. Chirality transcription in the anion-coordination-driven assembly of tetrahedral cages [J]. Chemical Communications, 2020, 56(16) : 2475-2478.

[41] Osawa K, Tagaya H, Kondo S-i. Naked eye detection of anions by 2,2’-bianthracene derivative bearing urea groups in various organic solvents [J]. Chemistry Letters, 2020, 49(3) : 290-294.

[42] Das A, Nayak B, Das G. Effect of substitution on halide/hydrated halide binding: a case study of neutral bis-urea receptors [J]. CrystEngComm, 2020, 22(12) : 2197-2207.

[43] Niedbala P, Majdecki M, Dabrowa K, et al. Selective carboxylate recognition using urea-functionalized unclosed cryptands: Mild synthesis and complexation studies [J]. The Journal of Organic Chemistry, 2020, 85(7) : 5058-5064.

[44] Delecluse M, Colomban C, Chatelet B, et al. Highly selective fluoride recognition by a small tris-urea covalent cage [J]. The Journal of Organic Chemistry 2020, 85(7) : 4706-4711.

[45] Sharafizadeh M, Mokhtari J, Saeidian H, et al. Anion recognition by urea metal-organic frameworks: remarkable sensitivity for arsenate and fluoride ions [J]. Environmental Science and Pollution Research, 2020, 27(20) : 25132-25139.

[46] Liang L, Li B, Zhang W, et al. Fine-tuning the spring-like motion of an anion-based triple helicate by tetraalkylammonium guests [J]. Angewandte Chemie-International Edition 2021, 60(17) : 9389-9394.

[47] Takahashi M, Ito N, Haruta N, et al. Environment-sensitive emission of anionic hydrogen-bonded urea-derivative–acetate-ion complexes and their aggregation-induced emission enhancement [J]. Communications Chemistry, 2021, 4(1).

[48] Siddig L A, Khasawneh M A, Samadi A, et al. Synthesis of novel thiourea-/urea-benzimidazole derivatives as anticancer agents [J]. Open Chemistry, 2021, 19(1) : 1062-1073.

[49] Hou L, Gao L, Zhang W, et al. Quaternary cocrystals based on halide-binding foldamers through both hydrogen and halogen bonding [J]. Crystal Growth and Design, 2021, 21(5) : 2837-2843.

[50] Chatterjee C, Sethi S, Mukherjee V, et al. Triazole derived azo-azomethine dye as a new colorimetric anion chemosensor [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 226: 117566.

[51] Rani P, Lal K, Aruna, et al. Synthesis and characterization of 1,2,3-triazoles-linked urea hybrid sensor for selective sensing of fluoride ion [J]. Journal of Molecular Structure, 2020, 1203.

[52] Yahaya I, Keleş E, Putra A U, et al. Microwave-enhanced and conventional procedures for the synthesis of coumarin-thiophene amides, sulfonamide, and urea derivatives: Synthesis, photophysical activities, and multiple anions signalling via different mechanisms [J]. Journal of Molecular Structure, 2020, 1204.

[53] Plais R, Gouarin G, Gaucher A, et al. Intertwined detection and recognition roles of tetrazine in synergistic anion-π and H-bond based anion receptor [J]. Chemphyschem, 2020, 21(12) : 1249-1257.

[54] Zalmi G A, Nadimetla D N, Kotharkar P, et al. Aggregation-induced emission-based material for selective and sensitive recognition of cyanide anions in solution and biological assays [J]. ACS Omega, 2021, 6(26) : 16704-16713.

[55] Docker A, Shang X, Yuan D, et al. Halogen bonding tetraphenylethene anion receptors: Anion-induced emissive aggregates and photoswitchable recognition [J]. Angewandte Chemie International Edition, 2021, 60(35) : 19442-19450.

[56] Piekarski D G, Steinforth P, Gomez-Martinez M, et al. Insight into the folding and cooperative multi-recognition mechanism in supramolecular anion-binding catalysis [J]. Chemistry-A European Journal 2020, 26(72) : 17598-17603.

[57] Lin S, He Q, Zhou J, et al. Colorimetric sensors for anion recognition based on benzeneazophenol [J]. Chinese Journal of Applied Chemistry, 2019, 36(12) : 1447-1455.

[58] Chen Y. Synthes of new supramolecular compounds with applications of in medicine and material science [J]. Synthetic Materials Aging and Application, 2020, 49(4) : 140-143.

[59] Yi X, Deng Y, Huang C, et al. Syntheses and structures of macrocycles containing 2, 6-diamidopyridine unit and their complex properties for tetrahedral anions [J]. Chemistry, 2020, 83(9) : 821-827.

[60] Wang Y, Pengmin H, Jiahong Q, et al. Visible and electronic study on the anion binding properties based on ferrocene and azo derivitives [J]. Journal of Hebei Normal University (Natural Science), 2021, 45(4) : 370-376.

[61] Yang Z W, Sun S S, Liu Y L, et al. Crystal structure, thermal analyses, and acetate binding properties in Zinc(II) complex of a urea-functionalized pyridyl ligand [J]. Indian Journal of Chemistry, 2020, 58(12) : 1302-1310.

[62] Yang Z W, Wang Y L, Liu X R, et al. Hierarchical self-assembly of a pyrene-based discrete organoplatinum(II) double-metallacycle with triflate anions via hydrogen bonding and its tunable fluorescence emission [J]. Journal of the American Chemical Society 2020, 142(32) : 13689-13694.

[63] Bai X, Jia C, Zhao Y, et al. Peripheral templation-modulated interconversion between an A4L6 tetrahedral anion cage and A2L3 triple helicate with guest capture/release [J]. Angewandte Chemie International Edition, 2018, 57(7) : 1851-1855.

[64] Yao J, Yan Z, Ji J, et al. Ammonia-driven chirality inversion and enhancement in enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate mediated by diguanidino-gamma-cyclodextrin [J]. Journal of the American Chemical Society, 2014, 136(19) : 6916-6919.

[65] Yang D, Zhao J, Yang X J, et al. Anion-coordination-directed self-assemblies [J]. Organic Chemistry Frontiers, 2018, 5(4) : 662-690.

[66] Cao L, Wang P, Miao X, et al. Diamondoid frameworks via supramolecular coordination: Structural characterization, metallogel formation, and adsorption study [J]. Inorganic Chemistry, 2019, 58(9) : 6268-6275.

[67] Zou L, Pan D, Yan B, et al. Synthesis and recognition properties of tweezer-shaped anion receptors based on acylhydrazone units [J]. Chemistry, 2015, 78(8) : 728-732.

[68] 吴元勇. 脒基硫脲和芳香有机酸为主体的氢键包合物的合成及晶体结构研究 [D]. 贵阳: 贵州师范大学, 2018.

[69] Yang Z W, Li C, Liu X R, et al. Copper(II) complex of a urea‐functionalized pyridyl ligand: Synthesis, crystal structure, and acetate binding properties [J]. Zeitschrift für anorganische und allgemeine Chemie, 2020, 646(15) : 1324-1330.

[70] 张杨. 三唑类硫脲化合物及其金属配合物的合成、晶体结构、热分析和生物活性的研究 [D]. 西安: 西北大学, 2008.

[71] Zhang W L, Chen D M, Liu X L, et al. Synthesis, structure and anion recognition of urea-functionalized schiff base macrocyclic compound [J]. Chinese Journal of Organic Chemistry, 2017, 37(2).

[72] Gomez D E, Fabbrizzi L, Licchelli M, et al. Urea vs. thiourea in anion recognition [J]. Organic and Biomolecular Chemistry, 2005, 3(8) : 1495-1500.

[73] Tuğrul Zeyrek C, Ünver H, Boyacioglu B, et al. Synthesis, quantum chemical calculations and molecular docking studies, biological and anion sensor properties of (E)-4-[(4-ethoxy-phenylimino) methyl]-2-methoxyphenol [J]. Croatica Chemica Acta, 2018, 91(3).

[74] Steed J W, Atwood J L. Supramolecular chemistry [J]. Applied Organometallic Chemistry, 2001, 15(3) : 236-236.

[75] Kim J S, Shon O J, Yang S H, et al. Chromogenic indoaniline armed-calix [4] azacrowns [J]. The Journal of Organic Chemistry 2002, 67(18) : 6514-6518.

[76] Li H, Wang Y. Data processing in determination of stability constants of complexes with equamolar series method [J]. Journal of Shenyang University (Natural Science), 2014, 26(4).

[77] Bourson J, Pouget J, Valeur B. Ion-responsive fluorescent compounds 4. effect of cation binding on the photophysical properties of a coumarin linked to monoaza- and diaza-crown ethers [J]. The Journal of Physical Chemistry 1993, 97(17) : 457-470.

[78] Han B, Liu Y, Chen R. Determination of the host-guest complex stability constant by curve-fitting method [J]. Chinese Journal of Analytical Chemistry, 2000, 28(11) : 1355-1358.

[79] Valeur B, Pouget J, Bouson J, et al. Tuning of photoinduced energy transfer in a bichromophoric coumarin supermolecule by cation binding [J]. The Journal of Physical Chemistry, 1992, 96(16) : 6545-6654.

[80] Oshovsky G V, Reinhoudt D N, Verboom W. Supramolecular chemistry in water [J]. Angewandte Chemie International Edition, 2007, 46(14) : 2366-2393.

[81] Aletti A B, Blasco S, Aramballi S J, et al. Sulfate-templated 2D anion-layered supramolecular self-assemblies [J]. Chem, 2019, 5(10) : 2617-2629.

[82] Khansari M E, Johnson C R, Basaran I, et al. Synthesis and anion binding studies of tris(3-aminopropyl) amine-based tripodal urea and thiourea receptors: Proton transfer-induced selectivity for hydrogen sulfate over sulfate [J]. RSC Advances, 2015, 5(23) : 17606-17614.

[83] Pramanik A, Thompson B, Hayes T, et al. Seven-coordinate anion complex with a tren-based urea: binding discrepancy of hydrogen sulfate in solid and solution states [J]. Organic and Biomolecular Chemistry, 2011, 9(12) : 4444-4447.

[84] Amouri H, Desmarets C, Moussa J. Confined nanospaces in metallocages: guest molecules, weakly encapsulated anions, and catalyst sequestration [J]. Chemical Reviews, 2012, 112(4) : 2015-2041.

[85] Manna U, Nayak B, Das G. Dual guest [(chloride)3-DMSO] encapsulated cation-sealed neutral trimeric capsular assembly: Meta-substituent directed halide and oxyanion binding discrepancy of isomeric neutral disubstituted bis-urea receptors [J]. Crystal Growth and Design, 2016, 16(12) : 7163-7174.

中图分类号:

 O641.3    

开放日期:

 2023-06-28    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式