- 无标题文档
查看论文信息

论文中文题名:

 基于草-畜时空变化分析的蒙古国畜牧承载力预 测研究    

姓名:

 黄静    

学号:

 22210226097    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘工程    

研究方向:

 植被变化    

第一导师姓名:

 李婷    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-10    

论文答辩日期:

 2025-06-04    

论文外文题名:

 Prediction of livestock carrying capacity in Mongolia based on grass-livestock spatio-temporal change analysis    

论文中文关键词:

 放牧密度 ; NPP ; 驱动因素 ; 承载力 ; 气候情景 ; 蒙古国    

论文外文关键词:

 grazing intensity ; npp ; drivers ; carrying capacity ; climate scenarios ; mongolia    

论文中文摘要:

畜牧业是蒙古国国民经济的支柱产业,草地生态系统的稳定对其可持续发展至关重 要。但作为典型的干旱内陆国家,蒙古国草地生态系统十分脆弱,极易受到气候变化和 人类活动的影响,加之草畜矛盾突出等问题存在,使得畜牧业的可持续发展面临严峻挑 战。因此,有必要基于蒙古国草畜系统的时空变化特征开展畜牧承载力的预测研究。基 于上述背景,本研究首先分析了 2000—2020 年蒙古国畜牧业变化规律;并利用世界网 格化牲畜数据集(Gridded Livestock of the World,GLW)和随机森林回归模型模拟了2000、2006、2010、2015 和 2020 年蒙古国牲畜放牧密度空间分布格局。随后,采用一 元线性回归模型分析 2000—2020 年蒙古国植被净初级生产力(Net Primary Productivity,NPP)时空演变规律;并使用地理探测器定量探究 9 项自然和人类活动因素对蒙古国NPP 变化的影响规律。基于上述研究结果,模拟了 2030—2050 年 SSP1-2.6(低排放路 径)和 SSP5-8.5(高排放路径)情下蒙古国 NPP 空间分布格局,并结合灰色预测模型 模拟未来各类牲畜存栏量,对气候情景下蒙古国草地承载力和草畜平衡指数时空演变规 律进行预测分析。研究主要结论如下:

(1)2000—2020 年,蒙古国畜牧业生产指标和牲畜存栏量总体呈增加趋势,各类 省域牲畜存栏量增长趋势具有空间异质性。放牧密度在空间上整体呈现北高南低的空间 分布。研究期间蒙古国放牧密度总体呈增长趋势,其中变化率在0~10%的区域面积占比 最高,占蒙古国国土面积的 83.6%,集中分布于蒙古国东部地区、中部地区和杭爱地区 的北部。检验结果表明,2000—2020 年模拟数据与蒙古国省域牲畜存栏量拟合 R 2 均大 于 0.734,MAE 均小于 5.648,RMSE 均小于 9.514,均通过显著性检验。

(2)2000—2020 年,蒙古国 NPP 呈东增西减、北增南减的空间变化特征;整体上 呈增加趋势,并以非显著增加为主,非显著增加区域占蒙古国国土面积的 62.539%。单 因子分析显示,气候因素是蒙古国 NPP 变化的主要原因,其中下行短波辐射和年均降 水量的解释力最高,其 q 值分别为 0.615、0.602;但人类足迹指数、NO2 排放量与气候 因子间的交互作用大于单因子分析结果。省域尺度分析表明,气候和地形等自然因素仍 是蒙古国东部和西部地区 NPP 变化的主要驱动力,而蒙古国中部和杭爱地区 NPP 变化 更易受到放牧密度、NO2 排放量等人类活动与自然因素的交互作用,这些区域是今后开展草地退化风险防控的重点关注区域。

(3)2030—2050 年,蒙古国草地承载力整体呈东高西低、北高南低的空间分布格 局。截止 2050 年,高排放 SSP5-8.5 气候情景下,蒙古国中北部(如乌兰巴托、中央省 等)承载力表现出显著增加;而低排放SSP1-2.6气候情景下,承载力显著增加地区则主 要位于蒙古国东部(如东方省、苏赫巴托省),以及西北部(如库苏古尔、布尔干省)。

(4)蒙古国草畜平衡指数受牲畜压力与草地生态系统调节能力的共同作用影响。 在 SSP5-8.5 和 SSP1-2.6 情景下,草畜平衡指数整体以无显著变化为主,东部、杭爱和 西部地区均呈不显著增加趋势,但蒙古国中部、杭爱地区的中部以及西部地区的乌布苏 省将是未来草地管理的重点区域。

综上,尽管 2000—2020 年蒙古国 NPP 总体呈改善趋势,但其中部和杭爱地区易受 到人类活动与气候因素的交互影响,是未来草地退化风险防控的重点关注区域。为促进 畜牧业的可持续发展,需根据各区域放牧潜力的差异,合理规划放牧强度,实现草地资 源的科学利用。

论文外文摘要:

Livestock husbandry is the mainstay of Mongolia's national economy, and the stabilization of grassland ecosystems is crucial to its sustainable development. However, as a typical arid and landlocked country, Mongolia's grassland ecosystems are very fragile and vulnerable to the impacts of climate change and human activities, which, coupled with the existence of problems such as prominent conflicts between grasses and livestock, have made the sustainable development of the livestock industry a serious challenge. Therefore, it is necessary to carry out research on the prediction of livestock carrying capacity based on the spatial and temporal characteristics of grass and livestock systems in Mongolia. Based on the above background, this study first analyzed the changing law of livestock husbandry in Mongolia from 2000 to 2020; and simulated the spatial distribution pattern of livestock grazing density in 2000, 2006, 2010, 2015, and 2020 using the Gridded Livestock of the World (GLW) dataset and random forest regression model. Subsequently, a univariate linear regression model was used to analyze the spatiotemporal variations in net primary productivity (NPP) of vegetation in Mongolia from 2000 to 2020; and the geographic detector method was used to quantitatively explore the influence of nine natural and anthropogenic factors on the changes of NPP in Mongolia. Based on the above results, the spatiotemporal distribution patterns of NPP in Mongolia were simulated under the SSP1-2.6 (low emission pathway) and SSP5-8.5 (high emission pathway) scenarios for 2030-2050, and the gray prediction model was used to simulate the future stocking levels of various types of livestock, and to analyze the spatiotemporal evolution patterns of the grassland carrying capacity and the grass-animal balance index in Mongolia under the climate scenarios. The study also analyzed the spatiotemporal evolution of grassland carrying capacity and grasslivestock balance index under climate scenario. The main conclusions of the study are as follows: (1) From 2000 to 2020, Mongolia's livestock production indicators and livestock stock have shown an overall increasing trend, with spatial heterogeneity in the growth trend of livestock stock in all types of provinces and regions. The overall spatial distribution of grazing density in space showed a high north and low south spatial distribution. The overall trend of grazing density in Mongolia has been increasing, with the highest percentage of the area with the rate of change of 0~10%, accounting for 83.6% of the country's land area, and concentrated in the Eastern region, Central region and the northern part of the Khangai region of Mongolia. The test results showed that the data better realized the simulation of spatialization of grazing density in Mongolia, and the R 2 of the simulated data fitted to the livestock stock in Mongolian provinces from 2000 to 2020 were all greater than 0.734, and they all passed the significance test, and the MAE were all less than 5.648, and the RMSE were all less than 9.514. (2) From 2000 to 2020, NPP in Mongolia was characterized by spatial changes of increasing in the east and decreasing in the west, increasing in the north and decreasing in the south; the overall trend was increasing and dominated by non-significant increase, with the nonsignificantly increasing area accounting for 62.539% of the country's land area. The single-factor analysis showed that climatic factors were the main cause of NPP changes in Mongolia, with downward shortwave radiation and average annual precipitation having the highest explanatory power, with q-values of 0.615 and 0.602, respectively; however, the interaction between the human footprint index, NO2 emissions and climate factors was greater than the results of the oneway analysis.. The provincial scale analysis showed that natural factors such as climate and topography are still the main drivers of NPP changes in the Eastern and Western regions of Mongolia, while NPP changes in the Central and Khangai regions of Mongolia are more susceptible to interactions between human activities and natural factors such as grazing density and NO2 emissions, and these regions are the key areas of concern for the prevention and control of grassland degradation risks in the future. (3) In 2030-2050, the overall spatial distribution pattern of grassland carrying capacity in Mongolia is high in the east and low in the west, high in the north and low in the south. As of 2050, under the high-emission SSP5-8.5 climate scenario, the north-central part of Mongolia (such as Ulaanbaatar, Central Province, etc.) shows a significant increase in carrying capacity, while under the low-emission SSP1-2.6 climate scenario, the areas with significant increase in carrying capacity are located mainly in the eastern part of Mongolia (such as Dornod Province, Sukhbaatar Province), and the northwestern part of the country (sunch as Kusughur, Burgan Province).

(4) The grass-animal balance index in Mongolia is influenced by the combined effects of livestock pressure and the regulatory capacity of grassland ecosystems. Under the SSP5-8.5 and SSP1-2.6 scenarios, the overall grass balance index is dominated by no significant change, with a non-significant increasing trend in the Eastern, Khangai and Western regions, but the Central

region, the central part of the Khangai region, and the Uvs Province in the Western region will be the key areas for grassland management in the future. In summary, although the overall trend of NPP in Mongolia is improving from 2000 to 2020, its Central and Khangai regions are susceptible to the interaction of human activities and climatic factors, and are the key areas of concern for the prevention and control of the risk of grassland degradation in the future. In order to promote the sustainable development of animal husbandry, it is necessary to rationally plan the grazing intensity according to the differences in grazing potential of each region and realize the scientific utilization of grassland resources.

 

参考文献:

[1] 张艳珍, 王钊齐, 杨悦, 等. 蒙古高原草地退化程度时空分布定量研究 [J]. 草业科学, 2018, 35(2): 233-243.

[2] Ren X, Zhang D, Yu H, et al. Assessment of relative effects of climate change and human activities on grassland dynamic in Ningxia [J]. Acta Ecol Sin, 2022, 42(19): 7989-8001.

[3] Fan Z M, Li S B, Fang H Y. Explicitly identifying the desertification change in CMREC area based on multisource remote data [J]. Remote Sensing, 2020, 12(19): 3170.

[4] Kust G, Andreeva O, Cowie A. Land Degradation Neutrality: Concept development, practical applications and assessment [J]. Journal of environmental management, 2017, 195: 16-24.

[5] 刘永杰, 杨琴. 青藏高原退化草地修复研究进展及展望 [J]. 中国草地学报, 2023, 45(10): 131-143.

[6] 张赟鑫, 郝海超, 范连连, 等. 中亚草地 NPP 时空动态及其驱动因素研究 [J]. 干旱区研究, 2022, 39(03): 698-707.

[7] 何国兴, 柳小妮, 张德罡, 等. 甘肃省草地 NPP时空变化及对气候因子的响应 [J]. 草地学报, 2021, 29(04): 788-797.

[8] Wu J S, Li Y P, Sun J, et al. Identifying the runoff variation in the Naryn River Basin under multiple climate and land-use change scenarios [J]. Journal of Water and Climate Change, 2022, 13(2): 574-592.

[9] 张伟萍, 胡云云, 李智华, 等. 气候变化情景下祁连圆柏在青海省的适宜分布区预测 [J]. 应用生态学报, 2021, 32(7): 2514-2524.

[10] 董世魁, 张宇豪, 王冠聪. 草地健康与退化评价:概念、原理及方法 [J]. 草业科学, 2023, 40(12): 2971-2981.

[11] Meng X Y, Gao X, Li S, et al. Monitoring desertification in Mongolia based on Landsat images and Google Earth Engine from 1990 to 2020 [J]. Ecological indicators, 2021, 129: 107908.

[12] Li M, Zhang X Z, Wu J S. Declining human activity intensity on alpine grasslands of the Tibetan Plateau [J]. Journal of Environmental Management, 2021, 296: 113198.

[13] 布仁高娃. 蒙古国荒漠化现状、成因及草原畜牧业前景研究 [D]. 呼和浩特: 内蒙古大学,2011.

[14] Wei Y J, Zhen L. The dynamics of livestock and its influencing factors on the Mongolian Plateau [J]. Environmental Development, 2020, 34: 100518.

[15] 彩虹. 蒙古国肉类出口的影响因素分析 [D]. 天津: 天津科技大学,2020.

[16] 孟小玉, 齐晓明, 佟宝全. 蒙古国矿产资源开发对经济发展的影响研究 [J]. 干旱区资源与环境, 2021, 35(12): 100-105.

[17] 吕振涛, 李生宇, 彭中敏, 等. 蒙古国植被对干旱响应的敏感性研究 [J]. 地理研究, 2021, 40(11): 3016-3028.

[18] Clements F E. Plant succession: an analysis of the development of vegetation [M]. Washington: Carnegie institution of Washington, 1916: 242.

[19] Balensiefer M, Rossi R, Ardinghi N, et al. SER international primer on ecological restoration [J]. Society for Ecological Restoration, 2004, 2(2): 1-13.

[20] 王宗松, 姜丽丽, 汪诗平, 等. 草地退化恢复评估方法述评 [J]. 生态学报, 2022, 42(16): 6464-6473.

[21] 姜立鹏, 覃志豪, 谢雯. 基于单时相 MODIS 数据的草地退化遥感监测研究 [J]. 中国草地学报, 2007, (1): 39-43.

[22] 陈春波, 李刚勇, 彭建. 近 20 a 新疆天然草地 NPP 时空分析 [J]. 干旱区地理, 2022, 45(2): 522-534.

[23] 王亚晖, 唐文家, 李森, 等. 青海省草地生产力变化及其驱动因素 [J]. 草业学报, 2022, 31(2): 1-13.

[24] 张颖, 章超斌, 王钊齐, 等. 气候变化与人为活动对三江源草地生产力影响的定量研究 [J]. 草业学报, 2017, 26(5): 1-14.

[25] Wang Q, Chen Y, Ruan X R, et al. The changes of NDVI in China from 1982 to 2012 and its relationship with climatic factors [J]. Acta Agrestia Sinica, 2017, 25(4): 691.

[26] 马梅, 张圣微, 魏宝成. 锡林郭勒草原近 30 年草地退化的变化特征及其驱动因素分析 [J]. 中国草地学报, 2017, 39(4): 86-93.

[27] Jiang C, Zhang L B. Ecosystem change assessment in the Three-river Headwater Region, China: Patterns, causes, and implications [J]. Ecological Engineering, 2016, 93: 24-36.

[28] 朱思佳, 冯徽徽, 邹滨, 等. 2000—2019 年洞庭湖流域植被 NPP 时空特征及驱动因素分析 [J]. 自然资源遥感, 2022, 34(3): 196-206.

[29] 邵嘉豪, 李晶, 闫星光. 基于地理探测器的山西省 2000~2020 年 NPP 时空变化特征及驱动力分析 [J]. 环境科学, 2023, 44(1): 312-322.

[30] 王川, 王丽莎, 张勇勇. 2000—2020 年祁连山植被净初级生产力时空变化及其驱动因素 [J]. 生态学报, 2023, 43(23): 9710-9720.

[31] 张宇飞, 杨文府, 张文凯, 等. 2001—2021 年汾河流域 NPP 时空分异特征及影响因素分析 [J]. 测绘科学, 2024, 49(5): 30-43.

[32] Nyamaa T. 蒙古国植被净初级生产力变化及其驱动因素和反馈研究 [D]. 呼和浩特: 内蒙古大学, 2024.

[33] 王立景, 肖燚, 孔令桥, 等. 青藏高原草地承载力空间演变特征及其预警 [J]. 生态学报, 2022, 42(16): 6684-6694.

[34] Sun J, Ma B, Lu X Y. Grazing enhances soil nutrient effects: Trade‐offs between aboveground and belowground biomass in alpine grasslands of the Tibetan Plateau [J]. Land Degradation & Development, 2018, 29(2): 337-348.

[35] Chen Y, Guo D B, Cao W J, et al. Changes in net primary productivity and factor detection in China’s Yellow River Basin from 2000 to 2019 [J]. Remote Sensing, 2023, 15(11): 2798.

[36] Zhou Y Q, Shao M, Li X. Temporal and Spatial Evolution, Prediction, and Driving-Factor Analysis of Net Primary Productivity of Vegetation at City Scale: A Case Study from Yangzhou City, China [J]. Sustainability, 2023, 15(19): 14518.

[37] Nanzad L, Zhang J H, Tuvdendorj B, et al. Assessment of drought impact on net primary productivity in the terrestrial ecosystems of Mongolia from 2003 to 2018 [J]. Remote Sensing, 2021, 13(13): 2522.

[38] Lin N, Li J X, Jiang R Z, et al. Quantifying the Spatiotemporal Variation of NPP of Different Land Cover Types and the Contribution of Its Associated Factors in the Songnen Plain [J]. Forests, 2023, 14(9): 1841.

[39] 陈长成. 青海省高寒草地退化综合评价研究 [D]. 广州: 华南农业大学, 2018.

[40] Fassnacht S R, Allegretti A M, Venable N B H, et al. Merging indigenous knowledge systems and station observations to estimate the uncertainty of precipitation change in central Mongolia [J]. Hydrology, 2018, 5(3): 46.

[41] John R, Chen J Q, Ou-Yang Z T, et al. Vegetation response to extreme climate events on the Mongolian Plateau from 2000 to 2010 [J]. Environmental Research Letters, 2013, 8(3): 035033.

[42] Munkhdelger B T. The meat processing industry in Mongolia [J].International Journal of Scientific and Research Publications (IJSRP), 2020, 10: 99-103.

[43] Volodya E J, Yeo M J, Kim Y P. Trends of ecological footprints and policy direction for sustainable development in Mongolia: a case study [J]. Sustainability, 2018, 10(11): 4026.

[44] Gradel A D, Sukhbaatar G, Karthe D, et al. Forest management in Mongolia–A review of challenges and lessons learned with special reference to degradation and deforestation [J]. Geography, Environment,Sustainability, 2019, 12(3): 133-166.

[45] Wu J S, Feng Y F, Zhang X Z, et al. Grazing exclusion by fencing non-linearly restored the degraded alpine grasslands on the Tibetan Plateau [J]. Scientific Reports, 2017, 7(1): 15202.

[46] 魏建洲. 黄土高原草地植被变化及其驱动力分析 [D]. 兰州: 兰州大学, 2020.

[47] 燕丹妮, 武心悦, 王博恒, 等. 1982—2015 年黄土高原植被变化特征及归因 [J]. 生态学报, 2023, 43(23): 9794-9804.

[48] 杜佳梦, 包刚, 佟斯琴, 等. 1982-2015 年蒙古国植被覆盖变化及其与气候变化和人类活动的关系 [J]. 草业学报, 2021, 30(2): 1-13.

[49] 董昱, 闫慧敏, 杜文鹏, 等. 基于供给—消耗关系的蒙古高原草地承载力时空变化分析 [J]. 自然资源学报, 2019, 34(5): 1093-1107.

[50] 韩蕾, 齐晓明, 郝军. 基于资源环境承载力约束的蒙古国资源开发水平研究 [J]. 干旱区资源与环境, 2021, 35(12): 93-99.

[51] Li S C, Wu J S, Gong J, et al. Human footprint in Tibet: Assessing the spatial layout and effectiveness of nature reserves [J]. Science of the Total Environment, 2018, 621: 18-29.

[52] Mariano D, Dos Santos C, Wardlow B, et al. Use of remote sensing indicators to assess effects of drought and human-induced land degradation on ecosystem health in Northeastern Brazil [J]. Remote Sensing of Environment, 2018, 213: 129-143.

[53] Fan Z M, Li S, Fang H Y. Explicitly identifying the desertification change in CMREC area based on multisource remote data [J]. Remote Sensing, 2020, 12(19): 3170.

[54] Luo Y Q, Jiang L, Niu S L, et al. Nonlinear responses of land ecosystems to variation in precipitation [J]. New Phytologist, 2017, 214(1): 5-7.

[55] Zhang Y Z, Wang Q, Wang Z Q, et al. Impact of human activities and climate change on the grassland dynamics under different regime policies in the Mongolian Plateau [J]. Science of the Total Environment, 2020, 698: 134304.

[56] Wang Z Q, Zhang Y Z, Yang Y, et al. Quantitative assess the driving forces on the grassland degradation in the Qinghai–Tibet Plateau, in China [J]. Ecological Informatics, 2016, 33: 32-44.

[57] Wang J L, Wei H S, Cheng K, et al. Spatio-temporal pattern of land degradation from 1990 to 2015 in Mongolia [J]. Environmental Development, 2020, 34: 100497.

[58] Sun Y F, Guan Q Y, Wang Q Z, et al. Quantitative assessment of the impact of climatic factors on phenological changes in the Qilian Mountains, China [J]. Forest Ecology and Management, 2021, 499: 119594.

[59] Wang J F, Zhang T L, Fu B J. A measure of spatial stratified heterogeneity [J]. Ecological indicators, 2016, 67: 250-256.

[60] 曹丹. 全球陆地生态系统气候生产潜力及干旱驱动作用分析研究 [D]. 北京: 中国科学院, 2022.

[61] 祝萍, 黄麟, 翟俊, 等. 农牧交错带重点生态功能区草地载畜压力演变特征 [J]. 草业科学, 2022, 39(6): 1269-1279.

[62] 阿卜杜热合曼·吾斯曼, 玉素甫江·如素力, 张发, 等. 基于遥感监测的天山新疆段草地退化时空特征及其与气候因子的关系 [J]. 草业科学, 2023, 40(7): 1779-1792.

[63] 张文娟. 气候变化与放牧管理对三江源草地生物量和土壤有机碳的影响 [D]. 兰州: 兰州大学, 2018.

[64] 顾高铨, 万小铭, 曾伟斌, 等. 焦化场地内外土壤重金属空间分布及驱动因子差异分析 [J]. 环境科学, 2021, 42(3): 1081-1092.

[65] 黄小刚, 赵景波, 曹军骥, 等. 中国城市 O3 浓度时空变化特征及驱动因素 [J]. 环境科学, 2019, 40(3): 1120-1131.

[66] 丁永康, 叶婷, 陈康. 基于地理探测器的滹沱河流域植被覆盖时空变化与驱动力分析 [J]. 中国生态农业学报(中英文), 2022, 30(11): 1737-1749.

[67] 韦钰, 胡颖, 李小珍, 等. 全球草地生态系统净初级生产力的空间格局及降水非对称响应 [J]. 生态环境学报, 2024, 33(12): 1827-1836.

[68] 杨霞, 乌吉木吉, 朝力格尔. 半干旱区草原生态环境质量时空变化及其驱动因素研究——以锡林郭勒为例 [J]. 水土保持研究, 2025, 32(03): 231-240.

[69] 布和朝鲁. 东亚季风气候未来变化的情景分析——基于 IPCC SRES A2 和 B2 方案的模拟结果 [J]. 科学通报, 2003, (7): 737-742.

[70] Halik G F, Putra V S, Wiyono R U A. Assessment of climate change impact on drought disaster in Sampean Baru watershed, East Java, Indonesia based on IPCC-AR5 [J]. Natural Hazards, 2022, 112(2): 1705-1726.

[71] 杜佳梦, 包刚, 佟斯琴, 等. 1982-2015 年蒙古国植被覆盖变化及其与气候变化和人类活动的关系 [J]. 草业学报, 2021, 30(2): 1-13.

[72] 李一凡, 王卷乐, 祝俊祥. 基于地理分区的蒙古国景观格局分析 [J]. 干旱区地理, 2016, 39(4): 817-827.

[73] 吕振涛, 李生宇, 范敬龙, 等. 蒙古国植被自然恢复潜力 [J]. 中国沙漠, 2021, 41(5): 192-201.

[74] Gang C C, Zhou W, Chen Y Z, et al. Quantitative assessment of the contributions of climate change and human activities on global grassland degradation [J]. Environmental Earth Sciences, 2014, 72: 4273-4282.

[75] Wang Q X, Okadera T, Nakayama T, et al. Estimation of the Carrying Capacity and Relative Stocking Density of Mongolian grasslands under various adaptation scenarios [J]. Science of the Total Environment, 2024, 913: 169772.

[76] Yan N N, Zhu W W, Wu B F, et al. Assessment of the grassland carrying capacity for winter-spring period in Mongolia [J]. Ecological Indicators, 2023, 146: 109868.

[77] 张庭康. 未来土地利用情景下三江源地区高寒草地承载力及可持续研究 [D]. 荆州: 长江大学, 2024.

[78] 黄治鹏, 黄毅, 杨全俊, 等. 蒙古国草地农业及对我国的启示 [J]. 草业学报, 2023, 32(6): 1-15.

[79] 张晓彤. 基于 MODIS 卫星数据的中亚及蒙古国地区生态承载力评价 [D]. 北京: 北京交通大学, 2018.

[80] 尼玛苏仁. 蒙古国草原畜牧业发展与牧民生计研究 [D]. 内蒙古: 内蒙古大学, 2018.

[81] 王风兰, 佟斯琴, 包刚. 蒙古国西部地区植被物候变化特征及其对气候因子的响应 [J]. 中国草地学报, 2024, 46(1): 25-36.

[82] Ermakova A, Oznobihina L, Avilova T. Analysis of the current state and features of natural resource

potential management [J]. InE3S Web of Conferences , 2020 , 157: 03005.

[83] 纳兰. 中国与蒙古国采矿业发展比较研究 [D]. 吉林: 吉林大学, 2019.

[84] Myeruyert Y. 蒙古国草原畜牧业经营风险评价与管理实证研究 [D]. 吉林: 吉林大学, 2022.

[85] 王富强. 蒙古国草原畜牧业可持续发展研究 [D]. 呼和浩特: 内蒙古大学, 2010.

[86] Tony J V W, Alasdair N, Nicholas H, et al. Ammonia and nitrous oxide emission factors for excreta deposited by livestock and land‐applied manure [J]. Journal of Environmental Quality, 2021, 50(5): 1005-1023.

[87] 张宇, 吴计生, 刘洪超, 等. 西辽河流域典型河流径流变化趋势及突变分析 [J]. 中国水土保持, 2023, (8): 43-47.

[88] 李兰晖, 黄聪聪, 张镱锂, 等. 基于地理加权随机森林的青藏地区放牧强度时空格局模拟 [J]. 地理科学, 2023, 43(3): 398-410.

[89] Zhu Z P, Zhang X M, Dong H M, et al. Integrated livestock sector nitrogen pollution abatement measures could generate net benefits for human and ecosystem health in China [J]. Nature Food, 2022,

3(2): 161-168.

[90] 任小玢, 张东海, 俞鸿千, 等. 气候变化和人为活动在宁夏草地变化中的相对作用 [J]. 生态学报, 2022, 42(19): 7989-8001.

[91] 李紫荆, 胥辉. 基于遥感技术的宜良县云南松蓄积量反演 [J]. 绿色科技, 2022, 24(2): 1-6.

[92] 乌达巴拉, 何亭漪, 李秀男, 等. 蒙古国畜牧业发展现状 [J]. 当代畜禽养殖业, 2022, (1): 28-29+37.

[93] Otte J, Costales, Dijkman J, et al. Livestock Sector Development for Poverty Reduction: An Economic and Policy Perspective Livestock Many Virtues [M]. Rome: Food and Agriculture Organization of the United Nations Rome, 2012, 161.

[94] 李婷, 乔志宏, 冯玮含, 等. 放牧强度约束下黄土高原生态系统服务时空变化特征 [J]. 生态与农村环境学报, 2024, 40(3): 313-324.

[95] Zhang Y X, Wang G G, Zhang Y, et al. Climate Change is Likely to Alter Sheep and Goat Distributions in Mainland China [J]. Frontiers in Environmental Science, 2021, 9: 748734.

[96] 菅永峰, 韩泽民, 黄光体, 等. 基于高分辨率遥感影像的北亚热带森林生物量反演 [J]. 生态学报, 2021, 41(6): 2161-2169.

[97] 德德. 蒙古国畜牧业可持续发展问题研究 [D]. 重庆: 西南大学, 2020.

[98] 尼玛苏仁. 蒙古国草原畜牧业发展与牧民生计研究 [D]. 呼和浩特市: 内蒙古大学, 2018.

[99] 吴恩岐. 蒙古高原中蒙典型草原放牧生态学比较研究 [D]. 呼和浩特市: 内蒙古农业大学, 2017.

[100] 冈其米格, 周妍. 蒙古国牛羊肉出口问题及其发展对策研究 [J]. 农村经济与科技, 2018, 29(11): 86-88.

[101] 额尔登其木格. 蒙古国后杭爱省草地退化风险评估 [D]. 呼和浩特: 内蒙古大学, 2021.

[102] 马增光. 蒙古国经济转轨问题探究 [D]. 通辽: 内蒙古民族大学, 2022.

[103] Ba W R, Qiu H T, Cao Y G. Spatiotemporal Characteristics Prediction and Driving Factors Analysis of NPP in Shanxi Province Covering the Period 2001–2020 [J]. Sustainability, 2023, 15(15): 12070.

[104] 张皓哲, 薛亚永, 马圆圆, 等. 新疆绿洲生态系统固碳潜力研究 [J]. 干旱区研究, 2024, 41(6): 998-1009.

[105] He X Y, Zhang F P, Li L, et al. Quantitative analysis of the impact of climate changes and human activities on the NPP of vegetation in the inland river basins of Northwest China [J]. Journal of Lanzhou University (Natural Sciences), 2022, 58(5): 650-659.

[106] Nanzad L, Zhang J H, Batdelger G, et al. Analyzing NPP Response of Different Rangeland Types to Climatic Parameters over Mongolia [J]. Agronomy, 2021, 11(4): 647.

[107] 梁顺林, 白瑞, 陈晓娜, 等. 2019 年中国陆表定量遥感发展综述 [J]. 遥感学报, 2020, 24(6): 618-671.

[108] Chen J Q, John R J, Zhang Y Q, et al. Divergences of Two Coupled Human and Natural Systems on the Mongolian Plateau [J]. BioScience, 2015, 65(6): 559-570.

[109] 叶中华. 中蒙两国交通运输领域合作成果丰硕 [N]. 中国城市报, 2023-10-23 (A07).

[110] Yang Z S, Liu Y, Su H M, et al. Exploring complex place-based coevolution of ecosystem and human activities: A case study of Qilian Mountain area in China [J]. International Journal of Applied Earth

Observation and Geoinformation, 2022, 115: 103091.

[111] 王劲峰, 徐成东. 地理探测器:原理与展望 [J]. 地理学报, 2017, 72(1): 116-134.

[112] 夏婷婷, 薛璇, 王灏伟, 等. 昆仑山北坡陆地水储量变化及其驱动因素分析 [J]. 干旱区地理, 2024, 47(8): 1292-1303.

[113] 朱磊, 李燕楠, 徐佳慧, 等. 中国冰雪旅游地空间分布格局及成因 [J]. 干旱区地理, 2024, 47(8): 1399-1410.

[114] 齐小天, 张质明, 赵鑫, 等. 降雨径流污染风险等级识别与优化方法 [J]. 环境科学, 2022, 43(3): 1500-1511.

[115] 邵嘉豪, 李晶, 闫星光, 等. 基于地理探测器的山西省 2000~2020 年 NPP 时空变化特征及驱动力分析 [J]. 环境科学, 2023, 44(1): 312-322.

[116] Yin C H, Chen X Q, Luo M. Quantifying the contribution of driving factors on distribution and change of net primary productivity of vegetation in the Mongolian Plateau [J]. Remote Sensing, 2023, 15(8): 1986.

[117] 甘南, 宝音都仍, 闫晶晶. 蒙古国经济增长构成、动力及其影响因素 [J]. 内蒙古农业大学学报(社会科学版), 2015, 17(1): 26-31.

[118] Wang, J., Wei, H., Cheng, K., Ochir, A., Davaasuren, D. Spatio-temporal pattern of land degradation from 1990 to 2015 in Mongolia. Environmental Development [J]. Environment Development, 2020, 34, 100497.

[119] 吴雪晴, 张乐乐, 高黎明, 等. 青海湖流域 NPP 动态变化及驱动力 [J]. 干旱区研究, 2023, 40(11): 1824-1832.

[120] 尹超华, 罗敏, 孟凡浩. 蒙古高原植被碳水利用效率时空变化特征及其影响因素 [J]. 生态学杂志, 2022, 41(6): 1079-1089.

[121] 王川, 王丽莎, 张勇勇, 等. 2000—2020 年祁连山植被净初级生产力时空变化及其驱动因素 [J]. 生态学报, 2023, 43(23): 9710-9720.

[122] 黄纤玉, 郝新, 陈静, 等. 基于博弈论的蒙古国经济社会-生态环境耦合协调度驱动因素及其特征研究 [J]. 北京师范大学学报(自然科学版), 2024, 60(4): 499-508.

[123] Dedkov V P, Danzhalova E V, Tkachenko S N. The Influence Of Vegetation On Reflected Solar Radiation In Arid And Extra-Arid Zone Of Mongolian Gobi [J]. Geography, Environment, Sustainability, 2020, 13(4): 72-80.

[124] O’neill B C, Kriegler E, Ebi K L, et al. The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century [J]. Global environmental change, 2017, 42: 169-180.

[125] 刘智天, 胡贤群, 朱艳霞, 等. 基于 CMIP6 模式的云南省六大流域气候变化趋势预测 [J]. 水电能源科学, 2023, 41(8): 10-14.

[126] Masson-Delmotte V, Zhai P M, Pörtner H O, et al. Global warming of 1.5 C [J]. An IPCC Special Report on the impacts of global warming of, 2019, 1: 93-174.

[127] 张庭康. 未来土地利用情景下三江源地区高寒草地承载力及可持续研究 [D]. 荆州: 长江大学, 2024.

[128] 徐士博, 张美玲, 宿茂鑫. 未来气候情景下青藏高原草地净初级生产力时空演变特征 [J]. 水土保持研究, 2024, 31(2): 190-201.

[129] 巴亚思. 蒙古国畜牧业可持续发展分析 [D]. 哈尔滨: 哈尔滨工业大学, 2020.

[130] 王笛, 彭思汗. 基于灰色模型的运城市果品冷链物流需求预测研究 [J]. 运城学院学报, 2024,

42(6): 38-44.

[131] 杨淑霞. 三江源地区高寒草地生物量和草畜平衡的时空变化动态及其影响因素研究 [D]. 兰州: 兰州大学, 2017.

[132] 熊凤琴, 张建立, 郭靖, 等. 2000-2022 年温宿县草畜平衡时空演变分析 [J]. 草业科学, 2025, 42(1): 247-259.

[133] Alashan S. Combination of modified Mann‐Kendall method and Şen innovative trend analysis [J]. Engineering Reports, 2020, 2(3): e12131.

[134] 范蒙恩, 王佩尧, 陈宇, 等. 未来不同气候情景下全球草地生态系统及净初级生产力时空动态分析 [J]. 草地学报, 2023, 31(12): 3597-3607.

中图分类号:

 S812    

开放日期:

 2025-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式