- 无标题文档
查看论文信息

论文中文题名:

 铁钼催化剂合成与应用研究    

姓名:

 张杰    

学号:

 21311225001    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085600    

学科名称:

 工学 - 材料与化工    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料科学与工程    

研究方向:

 催化材料    

第一导师姓名:

 刘向春    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-17    

论文答辩日期:

 2024-06-06    

论文外文题名:

 Synthesis and Application of Iron Molybdenum Catalysts    

论文中文关键词:

 钼酸铁 ; 三氧化钼 ; 甲醇 ; 甲醛 ; 选择性氧化 ; 催化剂成型    

论文外文关键词:

 Iron molybdate ; molybdenum trioxide ; methanol ; formaldehyde ; selective oxidation ; catalyst molding    

论文中文摘要:

摘  要

甲醛(CH2O)是化工行业中具有重要地位的大宗化学品,是化工工业的基础原料之一,通过选择性氧化甲醇(CH3OH)来制备甲醛是目前生产中常用方法。这其中,催化剂是控制反应效率和最终产物质量的关键因素。铁钼法是以钼酸铁为催化剂选择性氧化甲醇制备甲醛的一种新型方法,具有甲醇进料浓度较低(<10%),反应温度相对较低(~280 ℃),甲醇转化率高达100%、甲醛选择性高(~92%)的优点,在经济上更具优势,因而已经逐渐受到全世界学术界和工业界专家的关注。铁钼法的核心是主要成分为Fe2(MoO4)3和过量MoO3的,具有高活性和高选择性的钼酸铁催化剂(简称铁钼催化剂)。

本文采用共沉淀法制备铁钼催化剂前体,采用SEM、TEM、XRD等表征手段深入研究了各关键工艺参数、MoO3相以及成型手段对催化剂结构、形貌、反应热效应及催化性能的影响规律,获得最佳生产工艺条件和技术路线。主要发现和结论如下。

(1)通过正交实验考察共沉淀法制备铁钼催化剂过程,研究沉淀pH、母液浓度、老化温度、投料钼铁比对催化剂结构、形貌、反应热效应及催化性能的影响,获得上述因素的最优水平,结果表明铁钼催化剂粉体以共沉淀法生产时,控制沉淀温度在90 ℃,pH在2.0,投料钼铁比在2.5时所得催化剂晶体生长良好,粒径均匀,催化性能最好。

(2)对MoO3的作用进行了探究,结果表明,与传统观点不同,催化剂中MoO3不仅对催化剂寿命产生影响,其晶粒尺寸对催化剂活性同样具有重要影响,MoO3尺寸为52.2 nm时,甲醛收率可达89%。

(3)工业用铁钼催化剂通常需要压片成型,成型后的铁钼催化剂需要具有一定的机械强度,以适应工业反应器高温、高空速的工况,本文对铁钼催化剂粉体预处理及成型进行了研究,结果表明,为满足成型要求,需要控制粉体形状、大小及含水量在15%,当添加2%硅溶胶作粘合剂、2%硬脂酸作润滑剂时,制得的催化剂强度>200 N,满足工业用甲醇氧化制甲醛铁钼催化剂要求。

论文外文摘要:

ABSTRACT

Formaldehyde (CH2O) is a major chemical with an important position in the chemical industry. It is one of the basic raw materials in the chemical industry. Selective oxidation of methanol (CH3OH) to prepare formaldehyde is currently a commonly used method in production. Among them, catalysts are key factors in controlling reaction efficiency and final product quality. The iron-molybdenum method is a novel method for the selective oxidation of methanol to formaldehyde using iron molybdate as a catalyst. It has the advantages of low methanol feed concentration (<10%), relatively low reaction temperature (~280 °C), high methanol conversion rate of up to 100%, and high selectivity for formaldehyde (~92%). It has economic advantages and has gradually attracted the attention of experts in academia and industry worldwide. The core of the iron-molybdenum method is a high-activity and high-selectivity iron molybdate catalyst (referred to as iron-molybdenum catalyst) with the main components of Fe2(MoO4)3 and excess MoO3.

In this paper, the preparation of iron-molybdenum catalyst precursor by co-precipitation method was investigated, and the effects of various key process parameters, MoO3 phase, and forming methods on the structure, morphology, reaction heat effect, and catalytic performance of the catalyst were deeply studied using SEM, TEM, XRD, and other characterization methods. The optimal production process conditions and technical route were obtained. The main findings and conclusions are as follows.

(1) Through orthogonal experiments, the preparation process of iron-molybdenum catalysts by co-precipitation was investigated, and the effects of precipitation pH, mother liquor concentration, aging temperature, and feed molybdenum-iron ratio on the structure, morphology, reaction heat effect, and catalytic performance of the catalysts were studied. The optimal levels of the above factors were obtained. The results showed that when the iron-molybdenum catalyst powder was produced by co-precipitation, the precipitation temperature was controlled at 90 °C, the pH was 2.0, and the feed molybdenum-iron ratio was 2.5. The resulting catalyst crystals grew well with uniform particle size and the best catalytic performance.

(1) Through orthogonal experiments, the effects of precipitation pH, mother liquor concentration, aging temperature, and Fe/Mo ratio on the structure, morphology, reaction heat effect, and catalytic performance of the catalyst prepared by co-precipitation were investigated. The optimal levels of the above factors were obtained. The results showed that when the iron-molybdenum catalyst powder was produced by co-precipitation, the crystal growth of the catalyst was good when the precipitation temperature was controlled at 90 °C, the pH was 2.0, and the Fe/Mo ratio was 2.5. The particle size was uniform and the catalytic performance was the best.

(2) The role of MoO3 was explored. The results showed that, contrary to conventional views, MoO3 in the catalyst not only affected the lifetime of the catalyst, but also had a significant impact on the activity of the catalyst. When the size of MoO3 was 52.2 nm, the yield of formaldehyde reached 89%.

(3) Industrial iron-molybdenum catalysts usually require pressing and forming, and the formed iron-molybdenum catalysts need to have certain mechanical strength to adapt to the high temperature and high space velocity conditions of industrial reactors. This article studies the pretreatment of iron-molybdenum catalyst powder and the formation of iron-molybdenum catalyst. The results show that in order to meet the forming requirements, it is necessary to control the shape, size, and moisture content of the powder to 15%. When adding 2% silica sol as a binder and 2% stearic acid as a lubricant, the strength of the catalyst produced is >200 N, meeting the requirements of industrial methanol oxidation to formaldehyde iron-molybdenum catalysts.

参考文献:

参考文献

[1] 程金燮, 黄宏, 王华, 等. 固定床甲醇氧化制甲醛铁钼催化剂的应用与研究进展 [J]. 低碳化学与化工, 2024, 49(01): 12-24.

[2] 郭亚琴, 张粤. 甲醛生产工艺的发展研究 [J]. 化工管理, 2019, 3(34): 160-161.

[3] Heim L E, Konnerth H, Prechtl M H G. Future perspectives for formaldehyde: pathways for reductive synthesis and energy storage [J]. Green Chemistry, 2017, 19(10): 2347-2355.

[4] Mahdi H I, Ramlee N N, Santos D H D S, et al. Formaldehyde production using methanol and heterogeneous solid catalysts: A comprehensive review [J]. Molecular Catalysis, 2023, 537: 112944.

[5] Adkins H, Peterson W R. The oxidation of methanol with air over iron, molybdenum, and iron-molybdenum oxides [J]. Journal of the American Chemical Society, 1931, 53(4): 1512-1520.

[6] 江秀美. 甲醛生产用铁钼催化剂的活性及其影响因素探索 [J]. 化工管理, 2019, (10): 84-85.

[7] Malik M I, Abatzoglou N, Achouri I E. Methanol to formaldehyde: an overview of surface studies and performance of an iron molybdate catalyst [J]. Catalysts, 2021, 11(8):10-12

[8] 李贺, 张利杰, 张凯, 等. 甲醇氧化制甲醛工艺及催化剂研究进展 [J]. 无机盐工业, 2023, 55(11): 12-18.

[9] Kong L, Xu S, Liu X, et al. Effects of iron precursors on the structure and catalytic performance of iron molybdate prepared by mechanochemical route for methanol to formaldehyde [J]. Chinese Journal of Chemical Engineering, 2020, 28(6): 1603-1611.

[10] 储昭华.电解银催化剂在甲醛生产中的应用[J]. 中氮肥,1999,(06):38-41.

[11] 宋昌伦. 50kt/a银法甲醛装置生产问题及改进 [J]. 中氮肥, 2011, (05): 34-36.

[12] Qian M, Liauw M A, Emig G. Formaldehyde synthesis from methanol over silver catalysts [J]. Applied Catalysis A: General, 2003, 238(2): 21-22.

[13] Quaglio M, Bezzo F, Gavriilidis A, et al. Identification of kinetic models of methanol oxidation on silver in the presence of uncertain catalyst behavior [J]. Aiche Journal, 2019, 65(10): 167-170.

[14] Lervold S, Arnesen K, Beck N, et al. Morphology and activity of electrolytic silver catalyst for partial oxidation of methanol to formaldehyde under different exposures and oxidation reactions [J]. Topics in Catalysis, 2019, 62(7): 699-711.

[15] Bao X, Muhler M, Pettinger B, et al. On the nature of the active state of silver during catalytic oxidation of methanol [J]. Catalysis Letters, 1993, 22(3): 215-225.

[16] Yang M, You R, Li D, et al. Methanol partial oxidation over shaped silver nanoparticles derived from cubic and octahedral Ag2O nanocrystals [J]. Catalysis Letters, 2019, 149(9): 2482-2491.

[17] Andersson A, Holmberg J, Häggblad R. Process improvements in methanol oxidation to formaldehyde: application and catalyst development [J]. Topics in Catalysis, 2016, 59(17): 1589-1599.

[18] Gai P L, Labun P A. Electron microscopy studies relating to methanol oxidation over ferric molybdate and molybdenum trioxide catalysts [J]. Journal of Catalysis, 1985, 94(1): 79-96.

[19] 邵青楠, 迟子怡, 李学刚, 等. 铁钼法甲醇制甲醛催化动力学研究及反应器模拟 [J]. 天然气化工(C1化学与化工), 2021, 46(05): 121-128.

[20] Bowker M, House M, Brookes C, et al. Ensemble effects on methanol oxidation to formaldehyde on ferric molybdate catalysts [J]. ChemCatChem, 2024, 16(6): 23-24.

[21] Raun K V, Johannessen J, Mccormack K, et al. Modeling of the molybdenum loss in iron molybdate catalyst pellets for selective oxidation of methanol to formaldehyde [J]. Chemical Engineering Journal, 2019, 361: 1285-1295.

[22] Zhang S, Han M. Effect of synthesis pH on the structure and catalytic properties of FeMo catalysts [J]. RSC Advances, 2019, 9(71): 1720-1728.

[23] Oefner N, Heck F, Dürl M, et al. Activity, selectivity and initial degradation of iron molybdate in the oxidative dehydrogenation of ethanol [J]. Chemcatchem, 2022, 14(4): 12-19.

[24] 和进伟, 徐亮亮, 郭卫平. 甲醇氧化制甲醛铁钼催化剂活性研究 [J]. 当代化工, 2014, 43(03): 457-459.

[25] 张帅, 张一科, 呼日勒朝克图, 等. 甲醇氧化制甲醛铁钼催化剂表面结构与活性 [J]. 化工学报, 2016, 67(09): 3678-3683.

[26] Bowker M. Rules for selective oxidation exemplified by methanol selective oxidation on iron molybdate catalysts [J]. Topics in Catalysis, 2015, 58(10): 606-612.

[27] Pernicone N, Lazzerin F, Liberti G, et al. On the mechanism of CH3OH oxidation to CH2O over MoO3/Fe2(MoO4)3 catalyst [J]. Journal of Catalysis, 1969, 14(4): 293-302.

[28] Bowker M, Holroyd R, House M, et al. The selective oxidation of methanol on iron molybdate catalysts [J]. Topics in Catalysis, 2008, 48(1): 158-165.

[29] O’Brien M G, Beale A M, Jacques S D M, et al. A combined multi-technique in situ approach used to probe the stability of iron molybdate catalysts during redox cycling [J]. Topics in Catalysis, 2009, 52(10): 1400-1409.

[30] Brookes C, Wells P P, Dimitratos N, et al. The nature of the molybdenum surface in iron molybdate. The active phase in selective methanol oxidation [J]. The Journal of Physical Chemistry C, 2014, 118(45): 61-65.

[31] 李高林, 邓少亮, 周振华,等. 高活性铁钼法甲醛催化剂的研究 [J]. 辽宁化工, 2019, 48(08): 60-62.

[32] Bowker M, House M, Brookes C, et al. Ensemble effects on methanol oxidation to formaldehyde on ferric molybdate catalysts [J]. Chemcatchem, 2024, 16(6): 14-16.

[33] Andersson A, Hernelind M, Augustsson O. A study of the ageing and deactivation phenomena occurring during operation of an iron molybdate catalyst in formaldehyde production [J]. Catalysis Today, 2006, 112(1): 40-44.

[34] Bowker M, Brookes C, Carley A F, et al. Evolution of active catalysts for the selective oxidative dehydrogenation of methanol on Fe2O surface doped with Mo oxide [J]. Physical Chemistry Chemical Physics, 2013, 15(29): 56-67.

[35] Burriesci N, Garbassi F, Petrera M, et al. Solid state reactions in Fe-Mo oxide catalysts for methanol oxidation during aging in industrial plants [M]. Studies in Surface Science and Catalysis. Elsevier. 1980: 115-126.

[36] Yeo B R, Pudge G J F, Bugler K G, et al. The surface of iron molybdate catalysts used for the selective oxidation of methanol [J]. Surface Science, 2016, 648: 163-169.

[37] Smith R L, Rohrer G S. The Morphological Evolution of the MoO3(010) Surface during Reactions in Methanol–Air Mixtures [J]. Journal of Catalysis, 1998, 180(2): 270-278.

[38] TRIFIRÒ F. The chemistry of oxidation catalysts based on mixed oxides [J]. Catalysis Today, 1998, 41(1): 21-35.

[39] Alessandrini G, Cairati L, Forzatti P, et al. Chemical, structural and catalytic modifications of pure and doped iron(III) molybdate [J]. Journal of the Less Common Metals, 1977, 54(2): 373-386.

[40] Pernicone N. MoO3/Fe2(MoO4)3 catalysts for methanol oxidation [J]. Journal of the Less Common Metals, 1974, 36(1): 289-297.

[41] 冯萧. 含钼废水处理的研究进展 [J]. 辽宁化工, 2018, 47(11): 1156-1158.

[42] Liu X, Kong L-T, Liu C-F, et al. Study on the formation process of MoO3/Fe2(MoO4)3 by mechanochemical synthesis and their catalytic performance in methanol to formaldehyde [J]. Journal of Thermal Analysis and Calorimetry, 2020, 142(4): 1363-1376.

[43] 刘雪. 机械化学法制备铁钼催化剂及其催化甲醇部分氧化制甲醛性能研究 [D].新疆:新疆大学, 2021.

[44] Ilyin A A, Rumyantsev R N, Zhukov A B, et al. Mechanochemical synthesis of iron-molybdenum catalyst for formaldehyde synthesis [J]. Nanotechnologies in Russia, 2016, 11(9): 569-578.

[45] Pudge G J F, Hutchings G J, Kondrat S A, et al. Iron molybdate catalysts synthesised via dicarboxylate decomposition for the partial oxidation of methanol to formaldehyde [J]. Catalysis Science & Technology, 2022, 12(14): 4552-4560.

[46] Shimoda K, Ishikawa S, Tashiro M, et al. Synthesis of High dimensionally structured Mo–Fe mixed metal oxide and its catalytic activity for selective oxidation of methanol [J]. Inorganic Chemistry, 2020, 59(8): 5252-5255.

[47] Mitchell S, Michels N-L, Pérez-Ramírez J. From powder to technical body: the undervalued science of catalyst scale up [J]. Chemical Society Reviews, 2013, 42(14): 6094-6112.

[48] 刘闪闪, 丁其达, 郭涛,等. 固定床催化剂成型工艺研究进展 [J]. 过程工程学报, 2023, 23(04): 501-511.

[49] 刘瑶瑶, 张迪, 陈杰勋, 等. 二氧化钛催化剂成型技术研究进展 [J]. 浙江化工, 2023, 54(09): 12-15.

[50] Kagyrmanova A P, Zolotarskii I A, Smirnov E I, et al. Optimum dimensions of shaped steam reforming catalysts [J]. Chemical Engineering Journal, 2007, 134(1): 228-234.

[51] Martín Morales E, Alarcón A, Biset-Peiró M, et al. Shaping of porous CeO2 powders into highly active catalyst carriers [J]. ACS Applied Engineering Materials, 2023, 1(4): 1106-1115.

[52] Vajglová Z, Kumar N, Mäki-Arvela P, et al. Effect of binders on the physicochemical and catalytic properties of extrudate-shaped beta zeolite catalysts for cyclization of citronellal [J]. Organic Process Research & Development, 2019, 23(11): 2456-2463.

[53] Devyatkov S Y, Zinnurova A A, Aho A, et al. Shaping of sulfated zirconia catalysts by extrusion: understanding the role of binders [J]. Industrial & Engineering Chemistry Research, 2016, 55(23): 6595-6606.

[54] Baldovino-Medrano V G, Le M T, Van Driessche I, et al. Role of shaping in the preparation of heterogeneous catalysts: Tableting and slip-casting of oxidation catalysts [J]. Catalysis Today, 2015, 246: 81-91.

[55] Nikolopoulos N, Parker L A, Wickramasinghe A, et al. Addition of pore-forming agents and their effect on the pore architecture and catalytic behavior of shaped zeolite-based catalyst bodies [J]. Chemical & Biomedical Imaging, 2023, 1(1): 40-48.

[56] Campanati M, Fornasari G, Vaccari A. Fundamentals in the preparation of heterogeneous catalysts [J]. Catalysis Today, 2003, 77(4): 299-314.

[57] Perego C, Villa P. Catalyst preparation methods [J]. Catalysis Today, 1997, 34(3): 281-305.

[58] 何烨, 李顺新, 张超稳, 等. 加氢裂化催化剂成型工艺条件对堆积密度的影响 [J]. 当代化工, 2022, 51(08): 1854-1857.

[59] Nikolopoulos N, Wickramasinghe A, Whiting G T, et al. Alumina binder effects on the hydrothermal stability of shaped zeolite-based catalyst bodies [J]. Catalysis Science & Technology, 2023, 13(3): 862-873.

[60] Shoinkhorova T, Dikhtiarenko A, Ramirez A, et al. Shaping of ZSM-5-Based Catalysts via Spray Drying: Effect on Methanol-to-Olefins Performance [J]. ACS Applied Materials & Interfaces, 2019, 11(47): 133-143.

[61] FCC工艺和催化剂在炼厂能源转型中的作用 [J]. 石油化工技术与经济, 2022, 38(06): 33-34.

[62] 高明军, 徐荣霞, 谭映临, 等. 不同产地高岭土所制催化裂化催化剂的性能差异 [J]. 石油炼制与化工, 2022, 53(07): 64-69.

[63] 袁程远, 陈强, 赵倩, 等. 炼油FCC废催化剂硅掺杂拟薄水铝石原位构筑改性复活研究 [J]. 山东理工大学学报(自然科学版), 2023, 37(02): 20-23.

[64] 贾睿. 球形氧化铝的制备、表征及性能模拟 [D].沈阳:沈阳工业大学, 2021.

[65] Lefferts L, Van Ommen J G, Ross J R H. The oxidative dehydrogenation of methanol to formaldehyde over silver catalysts in relation to the oxygen-silver interaction [J]. Applied Catalysis, 1986, 23(2): 385-402.

[66] Schubert H, Tegtmeyer U, Herein D, et al. On the relation between catalytic performance and microstructure of polycrystalline silver in the partial oxidation of methanol [J]. Catalysis Letters, 1995, 33(3): 305-319.

[67] 房鼎业. 甲醇的化学加工与工业应用(调研报告) [J]. 中氮肥, 1987, (01): 51-85.

[68] 杨娟. 氨基甲酸甲酯绿色合成 [D].上海:华东理工大学, 2013.

[69] 赵玄熙, 杨清涛, 郑虎. 碱性甲醇法在人造革基布定量分析中的应用探究 [J]. 中国纤检, 2021, (10): 68-73.

[70] 谢勤. 纸浆漂白用二氧化氯制备方法及国产化 [J]. 中国造纸, 2020, 39(01): 66-70.

[71] Sun J, Li H, Song H, et al. Synthesis of methylal from methanol and formaldehyde catalyzed by Brønsted acid ionic liquids with different alkyl groups [J]. RSC Advances, 2015, 5(106): 8720-8725.

[72] Liu H, Gao H, Ma Y, et al. Synthesis of high-purity methylal via extractive catalytic distillation [J]. Chemical Engineering & Technology, 2012, 35(5): 841-846.

[73] 朱琼芳. 我国甲醇及其下游产品市场分析与展望 [J]. 煤化工, 2019, 47(06): 52-57.

[74] 田桂丽, 王宇博. 我国甲醛行业现状与发展趋势 [J]. 化学工业, 2018, 36(05): 19-22.

[75] 齐少宁, 李士雨. 甲醇制甲醛过程的模拟及能效优化 [J]. 现代化工, 2014, 34(03): 143-146.

[76] 毛琳, 尹学功. 银法制甲醛生产中问题及解决措施探讨 [J]. 山东化工, 2020, 49(05): 126-127.

[77] Eichner F, Sauer J, Bender M, et al. The titania-catalyzed oxidative dehydrogenation of methanol to formaldehyde [J]. Applied Catalysis A: General, 2023, 66(3): 119-130.

[78] 宋龙飞. 铁钼法制备甲醛技术的优势分析 [J]. 中国石油和化工标准与质量, 2016, 36(09): 115-116.

[79] 刘自力, 贾太轩, 陈胜洲, 等. 钼铁催化剂上对二甲苯气相选择性氧化合成对苯二甲醛的研究 [J]. 工业催化, 2008, 10(10): 135-138.

[80] 韩双双, 闫真真, 孔令涛, 等. 球磨时间对甲醇氧化制甲醛铁钼催化剂结构及性能的影响 [J]. 现代化工, 2018, 38(10): 114-117.

[81] 张薛诗蕴, 袁善良, 刘照, 等. 焙烧温度对甲醇氧化制甲醛铁钼催化剂结构及性能的影响 [J]. 天然气化工(C1化学与化工), 2021, 46(03): 35-40.

[82] Liu L. Multiscale structural characterization of shaped catalysts [J]. Trends in Chemistry, 2021, 3(11): 898-901.

[83] Baranowska K, Okal J, Tylus W. Microwave-assisted polyol synthesis of bimetallic RuRe nanoparticles stabilized by PVP or oxide supports (γ-alumina and silica) [J]. Applied Catalysis A: General, 2016, 5(11): 117-130.

[84] Schmit F, Bois L, Chiriac R, et al. Porous microspheres of manganese-cerium mixed oxides by a polyvinylpyrrolidone assisted solvothermal method [J]. Journal of Physics and Chemistry of Solids, 2017, 10(3): 22-32.

[85] Liu H, Liu Q, Zhang J, et al. PVP-assisted synthesis of unsupported NiMo catalysts with enhanced hydrodesulfurization activity [J]. Fuel Processing Technology, 2017, 1(6): 93-101.

[86] Nakhaei Pour A, Housaindokht M R. Study of activity, products selectivity and physico-chemical properties of bifunctional Fe/HZSM-5 Fischer–Tropsch catalyst: Effect of catalyst shaping [J]. Journal of Natural Gas Science and Engineering, 2013, 1(4): 29-33.

[87] Wei H, Wang T, Zhang Q, et al. Study of composition and structure of aluminum phosphate binder [J]. Journal of the Chinese Chemical Society, 2020, 67(1): 116-124.

[88] 李建立, 张方, 刘新波,等. 铁钼法甲醛工艺中甲醇转化率低的原因及改进 [J]. 煤化工, 2013, 41(06): 40-42.

[89] Alkahlaway A A, Betiha M A, Aman D, et al. Facial synthesis of ferric molybdate (Fe2(MoO4)3) nanoparticle and its efficiency for biodiesel synthesis via oleic acid esterification [J]. Environmental Technology & Innovation, 2021, 2(2): 101-103.

[90] Raun K V, Lundegaard L F, Chevallier J, et al. Deactivation behavior of an iron-molybdate catalyst during selective oxidation of methanol to formaldehyde [J]. Catalysis Science & Technology, 2018, 8(18): 4626-4637.

[91] House M P, Carley A F, Bowker M. Selective oxidation of methanol on iron molybdate catalysts and the effects of surface reduction [J]. Journal of Catalysis, 2007, 252(1): 88-96.

中图分类号:

 TQ426    

开放日期:

 2024-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式