论文中文题名: | 铁钼催化剂合成与应用研究 |
姓名: | |
学号: | 21311225001 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085600 |
学科名称: | 工学 - 材料与化工 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2024 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 催化材料 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2024-06-17 |
论文答辩日期: | 2024-06-06 |
论文外文题名: | Synthesis and Application of Iron Molybdenum Catalysts |
论文中文关键词: | |
论文外文关键词: | Iron molybdate ; molybdenum trioxide ; methanol ; formaldehyde ; selective oxidation ; catalyst molding |
论文中文摘要: |
摘 要 甲醛(CH2O)是化工行业中具有重要地位的大宗化学品,是化工工业的基础原料之一,通过选择性氧化甲醇(CH3OH)来制备甲醛是目前生产中常用方法。这其中,催化剂是控制反应效率和最终产物质量的关键因素。铁钼法是以钼酸铁为催化剂选择性氧化甲醇制备甲醛的一种新型方法,具有甲醇进料浓度较低(<10%),反应温度相对较低(~280 ℃),甲醇转化率高达100%、甲醛选择性高(~92%)的优点,在经济上更具优势,因而已经逐渐受到全世界学术界和工业界专家的关注。铁钼法的核心是主要成分为Fe2(MoO4)3和过量MoO3的,具有高活性和高选择性的钼酸铁催化剂(简称铁钼催化剂)。 本文采用共沉淀法制备铁钼催化剂前体,采用SEM、TEM、XRD等表征手段深入研究了各关键工艺参数、MoO3相以及成型手段对催化剂结构、形貌、反应热效应及催化性能的影响规律,获得最佳生产工艺条件和技术路线。主要发现和结论如下。 (1)通过正交实验考察共沉淀法制备铁钼催化剂过程,研究沉淀pH、母液浓度、老化温度、投料钼铁比对催化剂结构、形貌、反应热效应及催化性能的影响,获得上述因素的最优水平,结果表明铁钼催化剂粉体以共沉淀法生产时,控制沉淀温度在90 ℃,pH在2.0,投料钼铁比在2.5时所得催化剂晶体生长良好,粒径均匀,催化性能最好。 (2)对MoO3的作用进行了探究,结果表明,与传统观点不同,催化剂中MoO3不仅对催化剂寿命产生影响,其晶粒尺寸对催化剂活性同样具有重要影响,MoO3尺寸为52.2 nm时,甲醛收率可达89%。 (3)工业用铁钼催化剂通常需要压片成型,成型后的铁钼催化剂需要具有一定的机械强度,以适应工业反应器高温、高空速的工况,本文对铁钼催化剂粉体预处理及成型进行了研究,结果表明,为满足成型要求,需要控制粉体形状、大小及含水量在15%,当添加2%硅溶胶作粘合剂、2%硬脂酸作润滑剂时,制得的催化剂强度>200 N,满足工业用甲醇氧化制甲醛铁钼催化剂要求。 |
论文外文摘要: |
ABSTRACT Formaldehyde (CH2O) is a major chemical with an important position in the chemical industry. It is one of the basic raw materials in the chemical industry. Selective oxidation of methanol (CH3OH) to prepare formaldehyde is currently a commonly used method in production. Among them, catalysts are key factors in controlling reaction efficiency and final product quality. The iron-molybdenum method is a novel method for the selective oxidation of methanol to formaldehyde using iron molybdate as a catalyst. It has the advantages of low methanol feed concentration (<10%), relatively low reaction temperature (~280 °C), high methanol conversion rate of up to 100%, and high selectivity for formaldehyde (~92%). It has economic advantages and has gradually attracted the attention of experts in academia and industry worldwide. The core of the iron-molybdenum method is a high-activity and high-selectivity iron molybdate catalyst (referred to as iron-molybdenum catalyst) with the main components of Fe2(MoO4)3 and excess MoO3. In this paper, the preparation of iron-molybdenum catalyst precursor by co-precipitation method was investigated, and the effects of various key process parameters, MoO3 phase, and forming methods on the structure, morphology, reaction heat effect, and catalytic performance of the catalyst were deeply studied using SEM, TEM, XRD, and other characterization methods. The optimal production process conditions and technical route were obtained. The main findings and conclusions are as follows. (1) Through orthogonal experiments, the preparation process of iron-molybdenum catalysts by co-precipitation was investigated, and the effects of precipitation pH, mother liquor concentration, aging temperature, and feed molybdenum-iron ratio on the structure, morphology, reaction heat effect, and catalytic performance of the catalysts were studied. The optimal levels of the above factors were obtained. The results showed that when the iron-molybdenum catalyst powder was produced by co-precipitation, the precipitation temperature was controlled at 90 °C, the pH was 2.0, and the feed molybdenum-iron ratio was 2.5. The resulting catalyst crystals grew well with uniform particle size and the best catalytic performance. (1) Through orthogonal experiments, the effects of precipitation pH, mother liquor concentration, aging temperature, and Fe/Mo ratio on the structure, morphology, reaction heat effect, and catalytic performance of the catalyst prepared by co-precipitation were investigated. The optimal levels of the above factors were obtained. The results showed that when the iron-molybdenum catalyst powder was produced by co-precipitation, the crystal growth of the catalyst was good when the precipitation temperature was controlled at 90 °C, the pH was 2.0, and the Fe/Mo ratio was 2.5. The particle size was uniform and the catalytic performance was the best. (2) The role of MoO3 was explored. The results showed that, contrary to conventional views, MoO3 in the catalyst not only affected the lifetime of the catalyst, but also had a significant impact on the activity of the catalyst. When the size of MoO3 was 52.2 nm, the yield of formaldehyde reached 89%. (3) Industrial iron-molybdenum catalysts usually require pressing and forming, and the formed iron-molybdenum catalysts need to have certain mechanical strength to adapt to the high temperature and high space velocity conditions of industrial reactors. This article studies the pretreatment of iron-molybdenum catalyst powder and the formation of iron-molybdenum catalyst. The results show that in order to meet the forming requirements, it is necessary to control the shape, size, and moisture content of the powder to 15%. When adding 2% silica sol as a binder and 2% stearic acid as a lubricant, the strength of the catalyst produced is >200 N, meeting the requirements of industrial methanol oxidation to formaldehyde iron-molybdenum catalysts. |
参考文献: |
[1] 程金燮, 黄宏, 王华, 等. 固定床甲醇氧化制甲醛铁钼催化剂的应用与研究进展 [J]. 低碳化学与化工, 2024, 49(01): 12-24. [2] 郭亚琴, 张粤. 甲醛生产工艺的发展研究 [J]. 化工管理, 2019, 3(34): 160-161. [6] 江秀美. 甲醛生产用铁钼催化剂的活性及其影响因素探索 [J]. 化工管理, 2019, (10): 84-85. [8] 李贺, 张利杰, 张凯, 等. 甲醇氧化制甲醛工艺及催化剂研究进展 [J]. 无机盐工业, 2023, 55(11): 12-18. [10] 储昭华.电解银催化剂在甲醛生产中的应用[J]. 中氮肥,1999,(06):38-41. [11] 宋昌伦. 50kt/a银法甲醛装置生产问题及改进 [J]. 中氮肥, 2011, (05): 34-36. [19] 邵青楠, 迟子怡, 李学刚, 等. 铁钼法甲醇制甲醛催化动力学研究及反应器模拟 [J]. 天然气化工(C1化学与化工), 2021, 46(05): 121-128. [24] 和进伟, 徐亮亮, 郭卫平. 甲醇氧化制甲醛铁钼催化剂活性研究 [J]. 当代化工, 2014, 43(03): 457-459. [25] 张帅, 张一科, 呼日勒朝克图, 等. 甲醇氧化制甲醛铁钼催化剂表面结构与活性 [J]. 化工学报, 2016, 67(09): 3678-3683. [31] 李高林, 邓少亮, 周振华,等. 高活性铁钼法甲醛催化剂的研究 [J]. 辽宁化工, 2019, 48(08): 60-62. [41] 冯萧. 含钼废水处理的研究进展 [J]. 辽宁化工, 2018, 47(11): 1156-1158. [43] 刘雪. 机械化学法制备铁钼催化剂及其催化甲醇部分氧化制甲醛性能研究 [D].新疆:新疆大学, 2021. [48] 刘闪闪, 丁其达, 郭涛,等. 固定床催化剂成型工艺研究进展 [J]. 过程工程学报, 2023, 23(04): 501-511. [49] 刘瑶瑶, 张迪, 陈杰勋, 等. 二氧化钛催化剂成型技术研究进展 [J]. 浙江化工, 2023, 54(09): 12-15. [57] Perego C, Villa P. Catalyst preparation methods [J]. Catalysis Today, 1997, 34(3): 281-305. [58] 何烨, 李顺新, 张超稳, 等. 加氢裂化催化剂成型工艺条件对堆积密度的影响 [J]. 当代化工, 2022, 51(08): 1854-1857. [61] FCC工艺和催化剂在炼厂能源转型中的作用 [J]. 石油化工技术与经济, 2022, 38(06): 33-34. [62] 高明军, 徐荣霞, 谭映临, 等. 不同产地高岭土所制催化裂化催化剂的性能差异 [J]. 石油炼制与化工, 2022, 53(07): 64-69. [63] 袁程远, 陈强, 赵倩, 等. 炼油FCC废催化剂硅掺杂拟薄水铝石原位构筑改性复活研究 [J]. 山东理工大学学报(自然科学版), 2023, 37(02): 20-23. [64] 贾睿. 球形氧化铝的制备、表征及性能模拟 [D].沈阳:沈阳工业大学, 2021. [67] 房鼎业. 甲醇的化学加工与工业应用(调研报告) [J]. 中氮肥, 1987, (01): 51-85. [68] 杨娟. 氨基甲酸甲酯绿色合成 [D].上海:华东理工大学, 2013. [69] 赵玄熙, 杨清涛, 郑虎. 碱性甲醇法在人造革基布定量分析中的应用探究 [J]. 中国纤检, 2021, (10): 68-73. [70] 谢勤. 纸浆漂白用二氧化氯制备方法及国产化 [J]. 中国造纸, 2020, 39(01): 66-70. [73] 朱琼芳. 我国甲醇及其下游产品市场分析与展望 [J]. 煤化工, 2019, 47(06): 52-57. [74] 田桂丽, 王宇博. 我国甲醛行业现状与发展趋势 [J]. 化学工业, 2018, 36(05): 19-22. [75] 齐少宁, 李士雨. 甲醇制甲醛过程的模拟及能效优化 [J]. 现代化工, 2014, 34(03): 143-146. [76] 毛琳, 尹学功. 银法制甲醛生产中问题及解决措施探讨 [J]. 山东化工, 2020, 49(05): 126-127. [78] 宋龙飞. 铁钼法制备甲醛技术的优势分析 [J]. 中国石油和化工标准与质量, 2016, 36(09): 115-116. [79] 刘自力, 贾太轩, 陈胜洲, 等. 钼铁催化剂上对二甲苯气相选择性氧化合成对苯二甲醛的研究 [J]. 工业催化, 2008, 10(10): 135-138. [80] 韩双双, 闫真真, 孔令涛, 等. 球磨时间对甲醇氧化制甲醛铁钼催化剂结构及性能的影响 [J]. 现代化工, 2018, 38(10): 114-117. [81] 张薛诗蕴, 袁善良, 刘照, 等. 焙烧温度对甲醇氧化制甲醛铁钼催化剂结构及性能的影响 [J]. 天然气化工(C1化学与化工), 2021, 46(03): 35-40. [88] 李建立, 张方, 刘新波,等. 铁钼法甲醛工艺中甲醇转化率低的原因及改进 [J]. 煤化工, 2013, 41(06): 40-42. |
中图分类号: | TQ426 |
开放日期: | 2024-06-19 |