- 无标题文档
查看论文信息

论文中文题名:

 气象因素对黄河流域地区居民电力需求的影响研究    

姓名:

 刘丽丽    

学号:

 19202097045    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 120100    

学科名称:

 管理学 - 管理科学与工程(可授管理学、工学学位) - 管理科学与工程    

学生类型:

 硕士    

学位级别:

 管理学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 管理学院    

专业:

 管理科学与工程    

研究方向:

 能源经济与管理    

第一导师姓名:

 张金锁    

第一导师单位:

  西安科技大学    

论文提交日期:

 2023-03-01    

论文答辩日期:

 2022-12-02    

论文外文题名:

 Research on the impact of Meteorological Factors on Residents' Power Demand in the Yellow River Basin    

论文中文关键词:

 气象因素 ; 电力需求 ; 黄河流域 ; 空间差异 ; 空间溢出效应    

论文外文关键词:

 Climate change ; Power demand ; Yellow River Basin ; Spatial differences ; Spatial spillovereffect    

论文中文摘要:

黄河流域具有温差悬殊、日照强、湿度小、降水集中且年际变化大等特点,科学测算气象因素对黄河流域地区居民电力需求的影响,可有效规避能源转型背景下由于可再生能源的波动性造成的电力不稳定现象,优化地区电力空间布局、保障居民用电。当前研究侧重于工商业领域,较少考虑空间差异影响,对黄河流域居民电力需求研究不足。为此,本文基于2006-2019年黄河流域61个城市的面板数据,采用计量经济学方法与模型,考虑空间差异和空间溢出效应,研究气象因素对黄河流域地区居民电力需求的影响,主要工作和研究结论如下:

(1)梳理了气象因素对电力需求的影响因素、表现及方法,界定相关概念和理论基础,分析黄河流域气候特征和居民电力需求现状,确定影响居民电力需求的因素。

(2)构建气象因素非线性趋势项和气象因素交互项的面板固定效应模型。结果显示气象因素对上中下游居民用电的非线性关系,气象因素的交互作用对不同地区居民电力需求具有协同或抑制作用;构建气象因素与居民电力需求影响的空间杜宾模型。验证了气象因素对黄河流域居民电力需求的显著空间相关性,在不同气象因素影响下,上中下游地区居民用电的空间溢出效应不同。

(3)提出充分利用气象资源分布优势和电力分布空间集聚效应,制定差异化措施、完善区域电力联动机制,优化电力空间布局、推动居民形成节能意识和行为等对策建议。

上述研究补充和完善了气象因素对黄河流域居民电力需求影响的空间效应视角,对适应和缓解气候对电力需求的影响具有一定的参考价值,为加强黄河流域地区的居民电力规划和缩小区域差异提供了依据。

论文外文摘要:

The Yellow River Basin is characterized by wide temperature difference, strong sunshine, low humidity, concentrated precipitation with large interannual changes. Measuring the impact of meteorological factors on residential power consumption can effectively avoid the power instability, optimize the spatial layout of power, and ensure the power consumption of residents. The current research mainly focuses on the industrial and commercial field, less considering the impact of spatial differences, especially in the Yellow River Basin. Therefore, based on the panel data of 61 cities from 2006 to 2019, adopted econometric methods and models, considered spatial differences and spatial spillover effects,studied the effects of meteorological factors on Residents' power demand in the Yellow River basin.The main work and research conclusions are as follows:

Comb the influencing factors and main manifestations of meteorological factors on power demand, define the relevant concepts and theoretical, analyze the climate characteristics and the current situation of residential power consumption, determine the factors affecting the power demand of residents in the Yellow River Basin.

Construct the panel fixed effect model, introduced nonlinear trend term and interaction term of meteorological factors. The results show the non-linear relationship between meteorological factors and residential power consumption, and the interaction between meteorological factors can promote or inhibit residential power consumption in different areas; Construct the spatial Durbin model, verified the significant spatial correlation between meteorological factors and residential power demand, and the spatial spillover effects of residential power consumption are different under the influence of different meteorological factors in the upper, middle and lower reaches.

Propose to make full use of the distribution advantages of meteorological resources and the spatial agglomeration effect of power, formulate differentiation measures, improve the regional power linkage mechanism, optimize the spatial layout of power, and promote residents' awareness and behavior of energy conservation.

The above research complements and perfects the research perspective of the spatial effect of meteorological factors on the residents' power demand. It has certain reference value for adapting and mitigating the impact of climate on power demand, and provides a basis for strengthening the residents' power planning and reducing regional differences.

参考文献:

[1]IPCC. Climate Change 2021: ThePhysical Science Basis[R]. 2021.

[2]肖风劲,徐雨晴,黄大鹏,等.气候变化对黄河流域生态安全影响及适应对策[J].人民黄河,2021,43(01):10-14+52.

[3]Andrea D, Judith K L, Franz P, et al.Impacts of +2°C global warming on electricity demand in Europe[J]. Climate Services, 2017, 7(C): 12-30.

[4]马诗萍,张文忠.黄河流域电力产业时空发展格局及绿色化发展路径[J].中国科学院院刊,2020,35(01):86-98.

[5]Cronin J, Anandarajah G, Dessens O. Climate change impacts on the energy system: a review of trends and gaps[J]. Climatic change, 2018, 151(02):79-93.

[6]Dryar HA. The effect of weather on the system load[J]. Electrical Engineering, 1944, 63(12): 1006-1013.

[7]Hyndman RJ, Fan S. Density forecasting for long-term peak electricity demand[J]. IEEE Transactions on Power Systems, 2010, 25(02):1142-1153.

[8]Trotter IM, Bolkesjø TF, Feres JG, et al. Climate change and electricity demand in Brazil: a stochasticapproach[J]. Energy, 2016, 102(02):596–604.

[9]Steinbuks J. Assessing the accuracy of electricity production forecasts in developing countries[J]. Internarional Journal of Forecasting, 2021, 37(03):1305-1313.

[10]Zhang M Y, et al. Exploring the climatic impacts on residential electricity consumption in Jiangsu, China[J]. Energy Policy, 2020, 140(C): 111398-111398.

[11]Condori J, Lora G A and Camargo S D. The Impact of climate change on electricity demand in the city of Huancayo[J]. IOP Conference Series: Earth and Environmental Science, 2022, 1008(01).

[12]Hu L, Tan J, Han J, et al. Sensitivity analysis and forecast of power load characteristics based on meteorological feature information[J]. IOP Conference Series:Eart-hand Environmental Science, 2020, 558(05): 052060-052069.

[13]Kraft J, Kraft A. On the relationship between energy and GNP[J]. Journal ofEnergy and Development, 1978, 3(02):401-403.

[14]鄢琼伟,陈浩.GDP与能源消费之间的关系研究[J].中国人口•资源与环境,2011,21(07):13-19.

[15]Omri A, Kahouli B. Causal relationships between energy consumption, foreigndirect investment and economic growth: Fresh evidence from dynamic simultaneous-equations models [J]. Energy Policy, 2014, 67(11):913-922.

[16]林伯强.碳中和进程中的中国经济高质量增长[J].经济研究,2022,57(01):56-71.

[17]林伯强.结构变化、效率改进与能源需求预测——以中国电力行业为例[J].经济研究,2003,(05):57-65+93.

[18]何晓萍,刘希颖,林艳苹.中国城市化进程中的电力需求预测[J].经济研究,2009,44(01):118-130.

[19]谢品杰,朱文昊,谭忠富.产业结构、电价水平对我国电力强度的非线性作用机制[J]. 现代财经(天津财经大学学报),2016,36(01):56-69.

[20]王韶华.低碳经济视阈下我国电力需求的影响因素及其影响机理研究[J].经济问题探索,2016(04):176-182.

[21]Sailor D. Relating residential and commercial sector electricity loads to climate—evaluating state level sensitivities and vulnerabilities[J]. Energy, 2001, 26(07):645–657.

[22]Papakostas K andKyriakis N. Heating and cooling degree hours for Athens and Thessaloniki, Greece[J]. Renew Energy, 2005, 30(12):1873–1880.

[23]AhmedT, MuttaqiKM,AgalgaonkarAP. Climate change impacts on electricity demand in the State of New South Wales, Australia[J]. Applied Energy, 2012, 98(03): 376-383.

[24]Francesco A,Alessandra B,Alberto I, et al. Relationships between meteorological variables and monthly electricity demand[J]. Applied Energy, 2012, 98(03): 346-356.

[25]Luiz F and Afshin A. Short-term forecasting of the abudhabi electricity load using multiple weather variables[J]. Energy Procedia,2015, 75(C):3014-3026.

[26]Kamal C and Somsak K. Short-term electricity load forecasting model and bayesian estimation for thailand data[J]. Matec Web of Conferences, 2016,55(06):3-9.

[27]Kamal C, Tomonori S, Somasak K. Improvement of performance of short term electricity demand model with meteorological parameters[J]. Kathford Journal of Engi-neering and Management,2018, 1(01):15-22.

[28]Hiruta Y, Gao L, Ashina S. Sensitivity of hourly electricity power consumption to temperature and humidity in Japan[J].Journal of Japan Society of Civil Engineers, Ser. G (Environmental Research), 2019, 75(06): 17-27.

[29]Hiruta Y, Gao L, Ashina S. A novel method for acquiring rigorous temperature response functions for electricity demand at a regional scale[J]. The Science of the total environment, 2022, 819(03):152893-152899.

[30]盛琼,朱晓东,骆丽楠,等.湖州市用电需求特性及其与气象条件的关系[J].大气科学学报,2011,34(01):122-127.

[31]叶殿秀,张培群,赵珊珊,等.北京夏季日最大电力负荷预报模型建立方法探讨[J].气候与环境研究,2013,18(06):804-810.

[32]张贲,史沛然,蒋超.气象因素对京津唐电网夏季负荷特性影响分析[J].电力自动化设备,2013,33(12):140-144.

[33]鹿翠华,张立强,陈连侠,等.枣庄电网日负荷与气象因素的关系及其预测[J].中国人口•资源与环境,2014,24(S3):354-356.

[34]高亚静,孙永健,杨文海,等.基于新型人体舒适度的气象敏感负荷短期预测研究[J].中国电机工程学报,2017,37(07):1946-1955.

[35]杨志明,李婉睿,鄢哲明.温度变化与电力需求的关系——基于2000-2014年中国城市面板数据的经验证据[J].北京理工大学学报(社会科学版),2019,21(05):44-55.

[36]Michael W,Eillot C, Henri T, et al. Global trends in urban electricity demands for cooling and heating[J]. Energy, 2017, 127(03):786-802.

[37]Wang Y P, Jeffrey MB. Acclimation and the response of hourly electricity loads to meteorological variables[J]. Energy, 2018, 142(10):473-485.

[38]Nnaemeka VE, Taha C, Rabiul AB. The impact of climate change on electricity demand in Australia[J]. Energy & Environment, 2018, 29(07):1263-1297.

[39]刘健,陈星,彭恩志,等.气候变化对江苏省城市系统用电量变化趋势的影响[J].长江流域资源与环境,2005(05):546-550.

[40]冀彩星,延军平.西安市1988—2007年城市生活用电量对气温变化的响应[J].陕西师范大学学报(自然科学版),2011,39(04):91-96.

[41]魏琼.基于安徽省统计数据的电力需求预测模型研究[D].安徽:安徽大学,2014.

[42]Fan J L, Hu J W, Zhang X. Impacts of climate change on electricity demand in China: An empirical estimation based on panel data[J]. Energy, 2019, 170(12):880-888.

[43]Li Y, Pizer WA, Wu L. Climate change and residential electricity consumption in the Yangtze River Delta, China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(02):472-477.

[44]Qin P C, Xu H M, Liu M, et al. Assessing concurrent effects of climate change on hydropower supply, electricity demand, and greenhouse gas emissions in the Upper Yangtze River Basin of China[J]. Applied Energy, 2020, 279:115694-115672.

[45]Venäläinen A, Tammelin B, Tuomenvirta H, et al.The influence of climate change on energy production & heating energy demand in finland[J]. Energy & Environment, 2004, 15(01):93–109.

[46]Karoliina PS,Piia A,Markku O, et al. Climate change and electricity consumption—Witnessing increasing or decreasing use and costs?[J]. Energy Policy, 2009, 38(05): 2409-2419.

[47]Karina D V,Robert KK,Cutler J C,et al. The effect of climate change on electricity expenditures in Massachusetts[J]. Energy Policy,2017,106(03): 1-11.

[48]刘明辉,李江龙,孟观飞,等.气候冲击背景下温度变化如何影响家庭能源消费?——基于需求异质性视角[J/OL].西安交通大学学报(社会科学版),2022:1-16.

[49]姜璐,黄耿志,谢惠春,等.空间尺度视角下的家庭能源消费研究进展与展望[J].地理科学进展,2021,40(10):1788-1798.

[50]Zhou H, Qu S J, Yuan Q L, et al. Spatial effects and nonlinear analysis of energy consumption, financial development, and economic growth in China[J]. Energies, 2020, 13(18): 4982-4987.

[51]Zhang J, Zhang K, Zhao F. Spatial effects of economic growth, energy consumption and environmental pollution in the provinces of China—An empirical study of a spatial econometrics model[J]. Sustainable Development, 2020, 28(04): 868-879.

[52]Xu J J, Ma X J, Xu X Q. Spatial spillover effects and action paths of electricity consumption driven by China's financial development based on global co-integration[J]. Environmental science and pollution research international, 2022.

[53]石建华,韩颖,寇坡.城镇居民用电直接回弹效应分析——考虑局部和全局空间溢出效应[J].东北大学学报(自然科学版),2019,40(12):1800-1804.

[54]韩潇.中国城镇住宅建筑能源回弹效应测度及其空间演化特征研究[D].长安大学,2021.

[55]廖敬文,侯景新.中国能源强度区域特征、空间效应与区域差异[J].内蒙古社会科学(汉文版),2019,40(03):148-156.

[56]Zeng L T, Ye A Z. Spatial-temporal modeling of inside and outside factors on energy intensity: evidence from China. [J]. Environmental science and pollution research international, 2019, 26(31):32600-32609.

[57]Wang H, Zhao X G, Ren L Z, et al. The impact of technological progress on energy intensity in China(2005–2016): Evidence from a geographically and temporally weighted regression model[J]. Energy, 2021, 226.

[58]王少剑,苏泳娴,赵亚博.中国城市能源消费碳排放的区域差异、空间溢出效应及影响因素[J].地理学报,2018,73(03):414-428.

[59]Xiao H W, Ma Z Y, Zhang P,et al. Study of the impact of energy consumption structure on carbon emission intensity in China from the perspective of spatial effects[J]. Natural Hazards, 2019, 99(03): 1365-1380.

[60]Du J, Zhao M C, Zeng M, et al. Spatial effects of urban agglomeration on energy efficiency: evidence from China[J]. Sustainability, 2020, 12(08): 3338-3346.

[61]俞超,陆玉梅,潘冬,等.环境规制对全要素能源效率的空间溢出效应研究[J].统计与决策,2021,37(20):58-61.

[62]汪小英,李小漫,沈镭,等.长江经济带城乡一体化对能源效率的空间效应分析[J].地球信息科学学报,2020,22(11):2188-2198.

[63]刘卫东,石清.我国区域产业转移对电力需求空间结构传导效应分析——以工业为例[J].华北电力大学学报(社会科学版),2016(02):27-32.

[64]杨敏,王宝,李兰兰,等.基于空间计量模型的长三角各地级市服务业用电强度影响因素研究[J].合肥工业大学学报(自然科学版),2018,41(11):1568-1573.

[65]肖宏伟.新型城镇化发展对能源消费的影响研究——基于空间计量模型的实证检验与影响效应分解[J].当代经济管理,2014,36(08):12-18.

[66]孙涵,申俊,彭丽思,等.中国省域居民生活能源消费的空间效应研究[J].科研管理, 2016,37(12):82-91.

[67]Han Y, Shi J H, Yang Y F, et al. Direct rebound effect for electricity consumption of urban residents in china based on the spatial spillover effect[J]. Energies, 2019, 12(11): 2069-2075.

[68]王立平,鲁东晓.城镇化、空间溢出与电力消费——基于我国省际面板数据的空间计量研究[J].郑州航空工业管理学院学报,2018,36(04):14-25.

[69]刘菁,杨天娇,凡培红.空间效应下省际城镇住宅电力消耗影响因素研究[J].建筑科学,2020,36(S2):312-318.

[70]Leticia M, Blázquez G, Massimo F,et al. Regional impact of changes in disposable income on Spanish electricity demand: A spatial econometric analysis[J]. Energy Economics, 2013, 40(S):58-66.

[71]Edimilson C L, Wesley M D S. Impact of climate on firm value: Evidence from the electric power industry in Brazil[J]. Energy, 2018, 153(04): 359-368.

[72]Chen H C, Han Q, Bauke D V. Modeling the spatial relation between urban morphology, land surface temperature and urban energy demand[J]. Sustainable Cities and Society, 2020, 60(10): 246-254.

[73]王文蝶,牛叔文,齐敬辉,等.中国城镇化进程中生活能源消费与收入的关联及其空间差异分析[J].资源科学,2014,36(07):1434-1441.

[74]申俊,孙涵,成金华.中国城镇居民完全能源消费的空间计量分析[J].资源科学,2016,38(03):439-449.

[75]Vu DH, MuttaqiKM, Agalgaonkar AP. A variance inflation factor and backward elimination based robust regression model for forecasting monthly electricity demand using climatic variables[J]. Applied Energy, 2015, 140(12):385-394.

[76]Omotola A, Catalina S. Modelling and forecasting hourly electricity demand in West African countries[J]. Applied Energy, 2019, 242(03):311-333.

[77]魏骜,茅大钧,韩万里,等.基于EMD和长短期记忆网络的短期电力负荷预测研究[J].热能动力工程,2020,35(04):203-209.

[78]Dudek G, Pelka P. Pattern similarity-based machine learning methods formid-termload forecasting: A comparative study[J]. Applied Soft Computing, 2021, 104(03):107223-107228.

[79]郝宇,廖华,魏一鸣.中国能源消费和电力消费的环境库兹涅茨曲线:基于面板数据空间计郝宇量模型的分析[J].中国软科学,2014(01):134-147.

[80]吴玉鸣.中国区域能源消费的决定因素及空间溢出效应——基于空间面板数据计量经济模型的实证[J].南京农业大学学报(社会科学版),2012,12(04):124-132.

[81]方如康.《科学版词典系列•环境学词典》,科学出版社,2003.

[82]黄河水利委员会.http://www. yrcc. gov. cn/hhyl/hhgk/

[83]Tobler WA. Computer movie simulating urban growth in the detroitregion [J].Economic Geography, 1970, 46(02): 234-240.

[84]Anselin L. Spatial Econometrics: Methods and Models[M]. Springer, Dordrecht.

[85]杨姗姗,任冬梅,贾菲.空间计量理论与应用研究综述[J].统计与决策, 2020,36(06):39-42.

[86]刘明.中国居民消费空间效应问题研究——基于消费理论的检验[J].经济问题探索,2015(10):27-32.

[87]纪玉俊,王芳.产业集聚、空间溢出与城市能源效率[J].北京理工大学学报(社会科学版),2021,23(06):13-26.

[88]俞超,陆玉梅,潘冬,等.环境规制对全要素能源效率的空间溢出效应研究[J].统计与决策,2021,37(20):58-61.

[89]王韶华,张伟.中国能源强度的空间特征及供给侧影响因素分析[J].技术经济与管理研究,2022(03):3-8.

[90]夏德孝,张道宏.区域协调发展理论的研究综述[J].生产力研究,2008,(01):144-147.

[91]刘安国,张越,张英奎.新经济地理学扩展视角下的区域协调发展理论研究——综述与展望[J].经济问题探索,2014(11):184-190.

[92]习近平.推动形成优势互补高质量发展的区域经济布局[J].当代党员,2020(01):1-3.

[93]王奕淇,李国平.基于SD模型的黄河流域生态环境与社会经济发展可持续性模拟[J].干旱区地理,2022,45(03):901-911.

[94]Clark W G. Then and now: The perspective of the man who coined the term ‘DSM’[J]. Energy Policy, 1996, 24(04), 285-288.

[95]吴鹏,刘小聪,贾跃龙.充分发挥电力需求侧管理在新时代供需协调优化中的关键作用[J].中国电力企业管理,2021,(01):26-28.

[96]曾鸣,王俐英.“双碳”目标下的电力需求侧管理进阶与变革[J].中国电力企业管理,2021(10):23-25.

[97]Ding Y H. Sustainable management and action in China under the increasing risks of global climate change[J]. Engineering, 2018, 4(03):301-305.

[98]王有恒,谭丹,韩兰英,等.黄河流域气候变化研究综述[J].中国沙漠,2021,41(04):235-246.

[99]黄建平,张国龙,于海鹏,等.黄河流域近40年气候变化的时空特征[J].水利学报,2020, 51(09):1048-1058.

[100]刘勤,严昌荣,何文清.黄河流域干旱时空变化特征及其气候要素敏感性分析[J].中国农业气象,2016,37(06):623-632.

[101]张克新,董小刚,廖空太,等.1960-2017年黄河流域极端气温的季节变化特征及其与ENSO的相关性分析[J].水土保持研究,2020,27(02):185-192.

[102]张镭,黄建平,梁捷宁,等.气候变化对黄河流域的影响及应对措施[J].科技导报,2020, 38(17):42-51.

[103]马柱国,符淙斌,周天军,等.黄河流域气候与水文变化的现状及思考[J].中国科学院院刊,2020,35(01):52-60.

[104]王芸,赵鹏祥.黄河流域极端气候事件的时空变异特征研究[J].西北农林学报,2021, 36(03):190-196.

[105]王胜杰,赵国强,王旻燕,等.1961-2020年黄河流域气候变化特征研究[J].气象与环境科学,2021,44(06):1-8.

[106]谢品杰,王梁洪,王绵斌.碳排放约束下的中国电力需求研究——基于空间面板模型的实证分析[J].生态经济,2019,35(03):13-22+31.

[107]王守坤.空间计量模型中权重矩阵的类型与选择[J].经济数学,2013,30(03):57-63.

中图分类号:

 F426.61    

开放日期:

 2023-03-01    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式