论文中文题名: | 陕西黄河流域典型煤矿区生态系统服务权衡与协同关系研究 |
姓名: | |
学号: | 21210226090 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085700 |
学科名称: | 工学 - 资源与环境 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2024 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 地理信息技术及应用 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2024-06-20 |
论文答辩日期: | 2024-06-05 |
论文外文题名: | Research on the Trade-off and Synergistic Relationships of Ecosystem Services in typical coal mining areas of the Yellow River Basin in Shaanxi Province |
论文中文关键词: | |
论文外文关键词: | Ecosystem service ; Tradeoffs and synergies ; Coal mine area ; Influencing factors ; Yellow River Basin of Shaanxi |
论文中文摘要: |
在黄河流域生态保护和高质量发展的国家战略背景下,陕西省作为黄河流域的重要组成部分,其生态平衡和经济增长对整个流域的可持续发展具有深远影响。其中,陕西黄河流域内丰富的煤炭资源,为地区经济发展提供了强大的动力,但这种开发活动也给当地生态系统带来了显著压力。因此,深入研究陕西黄河流域煤矿区的生态系统服务及其权衡与协同关系,对平衡资源开发与生态保护的矛盾、提升流域生态系统服务功能,以及指导该流域乃至整个黄河流域实现高质量绿色发展具有重要的理论和实践意义。基于此,本文综合考虑了流域内不同地形地貌、气候特征、煤炭资源储量、可开采储量以及矿区生产规模等因素的差异,选择神府新民矿区、子长矿区、韩城矿区和彬长矿区四个典型煤矿区作为研究区,基于2000-2020年的遥感解译数据、气象、土壤和地形等数据,借助ArcGIS对其进行处理和空间分析,然后利用InVEST和CASA模型模拟评估不同煤矿区的产水量、土壤保持量、生境质量和植被净初级生产力,分析其时空变化特征,探究煤矿区生态系统服务之间的权衡与协同关系,并利用地理探测器探测不同煤矿区生态系统服务的主导驱动力,最后结合流域生态分区为煤矿区生态修复提供决策理论和建议。主要结论如下: (1)揭示了典型煤矿区生态系统服务时空变化特征。从产水量、土壤保持量、植被净初级生产力(Net primary productivity,NPP)和生境质量四个生态系统服务的均值来看,不同矿区生态系统服务存在差异,产水量表现为彬长矿区>韩城矿区>子长矿区和神府新民矿区;土壤保持量表现为韩城和彬长矿区高于神府新民和子长矿区;植被NPP表现为韩城矿区>彬长矿区>子长矿区>神府新民矿区;不同矿区生境质量差异较小,其中彬长矿区生境质量较其他三个矿区生境质量稍低,神府新民矿区生境质量逐年降低,子长、韩城和彬长矿区生境质量时间变化较稳定。与陕西黄河流域背景对比,神府新民矿区、子长矿区和彬长矿区的综合生态系统服务均值低于流域背景,而韩城矿区综合生态系统服务高于流域背景。 (2)阐述了典型煤矿区生态系统服务间权衡与协同关系。对煤矿区生态系统服务间相关性进行分析可知煤矿区产水量与其他生态系统服务之间相关性较低,表现为权衡关系。其中神府新民矿区产水量和生境质量以及产水量和植被NPP,子长矿区产水量和生境质量均表现为权衡关系,并且2000-2020年其权衡性均呈先增后减的趋势变化;韩城和彬长矿区产水量和生境质量、土壤保持量、植被NPP之间均表现为权衡性,相较彬长矿区,韩城矿区权衡性更强;而对于煤矿区其他生态系统服务之间均表现为弱协同关系。将其与陕西黄河流域背景对比分析可知,煤矿区大部分生态系统服务间相关性低于流域相关性。从多个生态系统服务的综合权衡与协同关系空间分布看,煤矿区生态系统服务间关系主要以强权衡和低协同分布为主,弱权衡和高协同面积占比相对较少。 (3)明确了典型煤矿区生态系统服务影响因素。生态系统服务受自然因素和人文因素的综合影响,从单个生态系统服务看,主导因子解释力较大,产水量和生境质量的主导因子是土地利用类型,其中对于产水量,气象因子的解释力也相对较大;土壤保持量的主导因子是坡度,植被NPP的主导因子是NDVI。整体上自然因子的解释力高于人为因子。另外双因子交互作用会增强其解释力,尤其是主导因子和其他因子的交互作用力表现最显著。 (4)提出了煤矿区生态修复建议。基于生态系统服务簇的分析,将陕西黄河流域生态系统服务划分为生态脆弱区、生态恢复区、土壤侵蚀防治区、农业生产区和生态保护区5个生态功能分区,在不同煤矿区所在的不同生态功能分区背景下,结合煤矿区生态系统权衡协同关系及影响因素,总结得出煤矿区生态修复的重点是加强水资源管理和保护,进行水土保持治理,以此来减弱产水量和其他生态系统服务之间的权衡性,并根据每个煤矿区的特点,需针对性的进行修复,来实现煤矿区的可持续发展。 |
论文外文摘要: |
Under the background of the national strategy of ecological protection and high-quality development of the Yellow River Basin, Shaanxi Province, as an important part of the Yellow River Basin, has a profound impact on the sustainable development of the entire basin. Among them, the abundant coal resources in the Yellow River Basin in Shaanxi Province provide a strong impetus for regional economic development, but such development activities have also put significant pressure on the local ecosystem. Therefore, it is of great theoretical and practical significance to study the ecosystem services and their trade-offs and synergies in the coal mining areas of the Yellow River Basin in Shaanxi Province to balance the contradiction between resource development and ecological protection, improve the ecosystem service functions of the basin, and guide the basin and the entire Yellow River Basin to achieve high-quality green development.Based on this, the paper takes into account differences in topography, climate characteristics, coal reserves, exploitable reserves, and mine design scales within the basin. It selects four typical coal mining areas as study sites: the Shenfu-Xinmin mining area, the Zichang mining area, the Hancheng mining area, and the Binchang mining area. Based on remote sensing interpretation data from 2000 to 2020, meteorological, soil, and terrain data, it uses ArcGIS for processing and spatial analysis. Then, the paper employs the InVEST and CASA models to simulate and assess the water yield, soil conservation, habitat quality, and net primary productivity of vegetation in different mining areas. It analyzes the temporal and spatial variation characteristics, investigates the trade-offs and synergies between ecosystem services in the mining areas, and use geographic detectors to detect the dominant driving forces of ecosystem services in different coal mining areas, and finally provide decision-making theories and suggestions for ecological restoration in coal mining areas in combination with watershed ecological zoning. The main conclusions are as follows: (1) Revealing the temporal and spatial variation characteristics of ecosystem services in typical coal mining areas. The analysis of the mean values of four ecosystem services—water yield, soil retention, vegetation net primary productivity (NPP), and habitat quality—reveals differences among various mining areas. Water yield is highest in the Binchang mining area, followed by the Hancheng, Zichang, and Shenfu Xinmin mining areas. Soil retention in the Hancheng and Binchang mining areas is higher than in the Shenfu Xinmin and Zichang mining areas. Vegetation NPP is highest in the Hancheng mining area, followed by Binchang, Zichang, and Shenfu Xinmin mining areas. Differences in habitat quality among the mining areas are minimal, with Binchang having slightly lower habitat quality than the other three areas. Habitat quality in the Shenfu Xinmin mining area has been declining annually, while it remains relatively stable over time in the Zichang, Hancheng, and Binchang mining areas. Compared to the background of the Yellow River Basin in Shaanxi, the comprehensive ecosystem service value in the Shenfu Xinmin, Zichang, and Binchang mining areas is lower than the basin average, whereas the Hancheng mining area exhibits higher comprehensive ecosystem services than the basin average. (2) Elucidating the trade-offs and synergies between ecosystem services in typical coal mining areas. Upon analyzing the correlation among ecosystem services in coal mining areas, it is evident that water yield has a relatively low correlation with other ecosystem services, exhibiting a trade-off relationship. Specifically, in the Shenfu Xinmin mining area, there is a trade-off between water yield and habitat quality, as well as between water yield and vegetation NPP. Similarly, in the Zichang mining area, a trade-off exists between water yield and habitat quality. From 2000 to 2020, the magnitude of these trade-offs initially increased and then decreased. In the Hancheng and Binchang mining areas, trade-offs are observed between water yield and habitat quality, soil retention, and vegetation NPP, with stronger trade-offs in the Hancheng mining area compared to Binchang. Other ecosystem services within the coal mining areas generally display weak synergistic relationships. When compared to the background of the Yellow River Basin in Shaanxi, most ecosystem service correlations in the coal mining areas are lower than those of the basin. Looking at the spatial distribution of the comprehensive trade-offs and synergies among multiple ecosystem services, the relationships within coal mining area ecosystem services are primarily characterized by strong trade-offs and low synergy, with areas of weak trade-offs and high synergy occupying a relatively smaller proportion. (3) Identifying the influencing factors of ecosystem services in typical coal mining areas. Ecosystem services are subject to the combined impacts of natural and anthropogenic factors. When examining individual ecosystem services, the dominant factors exhibit considerable explanatory power. The principal factors for water yield and habitat quality are land use types, with meteorological factors also significantly influencing water yield; soil retention is primarily determined by slope, while vegetation NPP is mainly influenced by NDVI. Overall, natural factors have a higher explanatory power than human factors. Additionally, the interaction between dual factors enhances their explanatory power, particularly the interactions between dominant factors and other factors, which are the most significant. (4) Proposing suggestions for ecological restoration in coal mining areas. Based on the analysis of ecosystem service clusters, theBased on the analysis of ecosystem service clusters, theanxi Yellow River Bas the ecosystem services within the Shaanxi Yellow River Basin are categorized into five ecological functional zones: ecologically fragile areas, ecological restoration areas, soil erosion prevention areas, agricultural production areas, and ecological protection areas. In the context of different ecological function zoning where coal mining areas are located, combined with the trade-off and synergistic relationships and influencing factors of ecosystem services in coal mining areas, it is concluded that the focus of ecological restoration in coal mining areas is to strengthen water resource management and protection, and to implement soil and water conservation. This aims to mitigate the trade-off between water yield and other ecosystem services. Moreover, targeted restoration measures should be implemented according to the characteristics of each coal mining area to achieve sustainable development. |
参考文献: |
[1] 颜晓峰. 建设人与自然和谐共生的现代化 [J]. 环境与可持续发展, 2019, 44(6): 24-25. [2] 张勇. 黄河流域生态保护和高质量发展研究 [J]. 农业科技与信息, 2023, (11): 77-80. [3] 左其亭. 黄河流域生态保护和高质量发展研究框架 [J]. 人民黄河, 2019, 41(11): 1-6+16. [4] 任枫, 董文婷, 刘翔宇. 黄河流域陕西段重要生态系统保护策略 [J]. 林业调查规划, 2021, 46(4): 67-71. [5] 杨耀红, 刘盈, 代静, 等. 黄河流域生态补偿现状及科学问题 [J]. 华北水利水电大学学报(社会科学版), 2022, 38(3): 20-27. [8] 欧阳志云, 朱春全, 杨广斌, 等. 生态系统生产总值核算:概念,核算方法与案例研究 [J]. 生态学报, 2013, 33(21): 6747-6761. [9] 冯漪, 曹银贵, 李胜鹏, 等. 生态系统服务权衡与协同研究:发展历程与研究特征 [J]. 农业资源与环境学报, 2022, 39(1): 11-25. [13] 倪维秋. 生态系统服务评估方法研究进展 [J]. 农村经济与科技, 2017, 28(23): 51-53. [14] Helliwell D R. Valuation of wildlife resources [J]. Regional Studies, 1969, 3(1): 41-47. [15] Westman, W. E. How Much Are Nature's Services Worth? [J]. Science, 1977, 197(4307): 960-964. [18] 谢高地, 张彩霞, 张雷明, 等. 基于单位面积价值当量因子的生态系统服务价值化方法改进 [J]. 自然资源学报, 2015, 30(8): 1243-1254. [19] 孙刚, 盛连喜, 周道玮. 生态系统服务及其保护策略 [J]. 应用生态学报, 1999, (3): 110-113. [21] 尹小娟, 钟方雷. 生态系统服务分类的研究进展 [J]. 安徽农业科学, 2011, 39(13): 7994-7999+8071. [22] 董全. 生态功益:自然生态过程对人类的贡献 [J]. 应用生态学报, 1999, 10(2): 106-113. [23] 谢高地, 鲁春霞, 成升魁. 全球生态系统服务价值评估研究进展 [J]. 资源科学, 2001, (6): 5-9. [24] 张彪, 谢高地, 肖玉, 等. 基于人类需求的生态系统服务分类 [J]. 中国人口·资源与环境, 2010, 20(6): 64-67. [25] 欧阳志云, 王效科, 苗鸿. 中国陆地生态系统服务功能及其生态经济价值的初步研究 [J]. 生态学报, 1999, (5): 19-25. [26] 赵景柱, 肖寒, 吴刚. 生态系统服务的物质量与价值量评价方法的比较分析 [J]. 应用生态学报, 2000, 11(2): 290-292. [27] 陈仲新, 张新时. 中国生态系统效益的价值 [J]. 科学通报, 2000, 45(1): 17-22. [28] 袁周炎妍, 万荣荣. 生态系统服务评估方法研究进展 [J]. 生态科学, 2019, 38(5): 210-219. [32] 殷楠, 王帅, 刘焱序. 生态系统服务价值评估:研究进展与展望 [J]. 生态学杂志, 2021, 40(01): 233-244. [33] 刘尧, 张玉钧, 贾倩. 生态系统服务价值评估方法研究 [J]. 环境保护, 2017, 45(6): 64-68. [34] 安国强, 黄海浩, 刘沼, 等. 中国土地利用与生态系统服务价值评估研究进展 [J]. 济南大学学报(自然科学版), 2022, 36(01): 28-37. [39] 马桥, 刘康, 高艳, 等. 基于SolVES模型的西安浐灞国家湿地公园生态系统服务社会价值评估 [J]. 湿地科学, 2018, 16(1): 51-58. [43] 李双成, 张才玉, 刘金龙, 等. 生态系统服务权衡与协同研究进展及地理学研究议题 [J]. 地理研究, 2013, 32(8): 1379-1390. [45] 朱文泉, 潘耀忠, 张锦水. 中国陆地植被净初级生产力遥感估算 [J]. 植物生态学报, 2007, (03): 413-424. [46] 刘文瑞, 李晓婷, 李彤, 等. 基于MODIS和CASA模型的伊春市森林植被NPP变化特征及其影响因子分析 [J]. 生态学杂志, 2022, 41(01): 150-158. [47] 王丽霞, 丁慧兰, 刘招, 等. 基于CASA模型探究泾河流域植被NPP时空动态及其对气候变化的响应 [J]. 水土保持研究, 2022, 29(01): 190-196. [52] 彭建, 胡晓旭, 赵明月, 等. 生态系统服务权衡研究进展:从认知到决策 [J]. 地理学报, 2017, 72(6): 960-973. [62] 杨洁, 谢保鹏, 张德罡. 黄河流域生态系统服务权衡协同关系时空异质性 [J]. 中国沙漠, 2021, 41(6): 78-87. [63] 张静静, 朱文博, 朱连奇, 等. 伏牛山地区森林生态系统服务权衡/协同效应多尺度分析 [J]. 地理学报, 2020, 75(5): 975-988. [64] 汪仕美, 靳甜甜, 燕玲玲, 等. 子午岭区生态系统服务权衡与协同变化及其影响因素 [J]. 应用生态学报, 2022, 33(11): 3087-3096. [65] 韩磊, 杨梅丽, 刘钊, 等. 黄土高原典型退耕区生态系统服务权衡与协同关系研究——以延安市为例 [J]. 生态学报, 2022, 42(20): 8115-8125. [66] 王鹏涛, 张立伟, 李英杰, 等. 汉江上游生态系统服务权衡与协同关系时空特征 [J]. 地理学报, 2017, 72(11): 2064-2078. [67] 冯漪, 曹银贵, 李胜鹏, 等. 生态系统服务权衡与协同研究:发展历程与研究特征 [J]. 农业环境与发展, 2022, 39(1): 11-25. [73] 龙精华, 张卫, 付艳华, 等. 鹤岗矿区生态系统服务价值 [J]. 生态学报, 2021, 41(5): 1728-1737. [74] 李连英, 朱青. 我国矿产资源开发生态补偿存在的问题及解决对策分析 [J]. 中国矿业, 2010, 19(11): 62-65. [76] 肖武, 张文凯, 吕雪娇, 等. 西部生态脆弱区矿山不同开采强度下生态系统服务时空变化——以神府矿区为例 [J]. 自然资源学报, 2020, 35(1): 68-81. [77] 薛占金. 山西典型矿区生态系统服务权衡与协同分析 [D]. 太原:山西大学, 2022. [78] 梁秀琴, 冯强, 段宝玲. 晋西黄土高原矿区生态系统服务福祉效应研究 [J]. 水土保持研究, 2023, 30(4): 431-437. [79] 王凡, 吴一平, 李汇文, 等. 陕北煤炭基地榆神矿区生态系统弹性力时空演变分析 [J]. 生态学报, 2021, 41(20): 8016-8029. [80] 陈淳. 淮南潘集矿区生态系统服务价值评估研究 [D]. 徐州:中国矿业大学, 2015. [81] 李康玮, 曾贤刚. 煤炭资源型城市煤炭开发与生态系统服务协调发展演变及驱动机制-以淮南市为例 [J]. 水土保持研究, 2023, 30(3): 460-469. [82] 刘英, 魏嘉莉, 毕银丽, 等. 神东矿区生态系统服务功能评价 [J]. 煤炭学报, 2021, 46(5): 1599-1613. [83] 陕西省地方志编纂委员会. 陕西省志 第五卷 黄土高原志 [M]. 西安:陕西人民出版社. 1995. [84] 梅志坤. 陕西黄河流域土地利用变化及其景观生态风险评价 [D]. 杨陵:西北农林科技大学, 2022. [85] 马涛, 李文莉, 韩双宝, 等. 黄河流域陕西省地下水资源分布特征、影响因素及开发潜力 [J]. 中国地质, 2023, 50(5): 1432-1445. [86] 李桃英, 张宏斌. 陕西省水文特征 [J]. 西北水资源与水工程, 2000, (3): 55-59. [87] 卞正富, 于昊辰, 雷少刚, 等. 黄河流域煤炭资源开发战略研判与生态修复策略思考 [J]. 煤炭学报, 2021, 46(5): 1378-1391. [88] 马雯思, 马超, 刘玮玮. 陕西彬长矿区NDVI3g(1982-2013)变化趋势及气候响应 [J]. 煤炭学报, 2019, 44(4): 1197-1206. [89] 焦春萌. 陕西省城市化及植被覆盖变化对生态系统服务的影响 [D]. 西安:长安大学, 2022. [90] 马乐波, 米治平, 武彬, 等. 典型气流床煤气化技术对煤质的要求探讨 [J]. 煤化工, 2023, 51(5): 42-44. [91] 段磊, 孙亚乔, 毛明, 等. 韩城矿区河流水化学特征及其影响机制 [J]. 水利水电技术, 2020, 51(9): 154-161. [92] 姚顽强, 马飞, 龚云, 等. 基于D-InSAR的彬长矿区沉陷变形监测 [J]. 西安科技大学学报, 2011, 31(5): 563-568. [94] 刘娇, 郎学东, 苏建荣, 等. 基于InVEST模型的金沙江流域干热河谷区水源涵养功能评估 [J]. 生态学报, 2021, 41(20): 8099-8111. [95] 韩念龙, 刘子荣, 贾培宏, 等. 1996—2020年海南岛水源涵养量时空变化及地理探测 [J]. 水土保持通报, 2022, 42(5): 193-201. [98] 赵亚茹, 周俊菊, 雷莉, 等. 基于InVEST模型的石羊河上游产水量驱动因素识别 [J]. 生态学杂志, 2019, 38(12): 3789-3799. [99] 杨洁, 谢保鹏, 张德罡. 基于InVEST模型的黄河流域产水量时空变化及其对降水和土地利用变化的响应 [J]. 应用生态学报, 2020, 31(8): 2731-2739. [102] 朱文泉, 潘耀忠, 何浩, 等. 中国典型植被最大光利用率模拟 [J]. 科学通报, 2006, (06): 700-706. [103] 王琦琨, 武玮, 杨雪琪, 等. 陕西省生境质量时空演变及驱动机制分析 [J]. 干旱区研究, 2022, 39(5): 1684-1694. [104] 古圳威, 刘京, 陈怡, 等. 陕西渭北旱塬区生境质量及碳储量时空演变分析与模拟 [J]. 环境科学, 2023, 44(8): 4666-4678. [106] 李爽, 李双成. 青藏高原气候变化风险源综合聚类研究 [J]. 北京大学学报(自然科学版), 2012, 48(4): 648-655. [107] 申嘉澍, 梁泽, 刘来保, 等. 雄安新区生态系统服务簇权衡与协同 [J]. 地理研究, 2020, 39(1): 79-91. [108] 陈凯, 刘增文, 李俊, 等. 基于SOFM网络对黄土高原森林生态系统的养分循环分类研究 [J]. 生态学报, 2011, 31(23): 37-45. [109] 李慧蕾, 彭建, 胡熠娜, 等. 基于生态系统服务簇的内蒙古自治区生态功能分区 [J]. 应用生态学报, 2017, 28(8): 2657-2666. [110] 王劲峰, 徐成东. 地理探测器:原理与展望 [J]. 地理学报, 2017, 72(1): 116-134. [111] 禹文豪, 艾廷华, 刘鹏程, 等. 设施POI分布热点分析的网络核密度估计方法 [J]. 测绘学报, 2015, 44(12): 1378-1383+1400. [112] 李明臣, 何霖. 陕西黄土高原生态系统服务时空变化及热点识别 [J]. 人民黄河, 2022, 44(04): 94-99+106. [113] 范静静. 多尺度生态系统服务时空格局变化与相互作用关系研究 [D]. 西安:西北大学, 2021. [114] 楚冰洋, 李月皓. 陕西省土壤保持格局及其时空变化分析——以2000—2015年为例 [J]. 农业与技术, 2021, 41(02): 76-79. [115] 王琦琨, 武玮, 杨雪琪, 等. 陕西省生境质量时空演变及驱动机制分析 [J]. 干旱区研究, 2022, 39(05): 1684-1694. [116] 冀泳帆, 贾鲁净, 杨联安, 等. 耦合InVEST-PLUS模型的榆林市生境质量时空演变及预测分析 [J]. 水土保持学报, 2023, 37(01): 123-132. [117] 李登科, 王钊. 气候变化和人类活动对陕西省植被NPP影响的定量分析 [J]. 生态环境学报, 2022, 31(06): 1071-1079. [118] 宋婷, 李岱青, 张林波, 等. 秦巴山脉区域生态系统服务重要性评价及生态安全格局构建 [J]. 中国工程科学, 2020, 22(01): 64-72. [119] 薛健, 李宗省, 陈雪娇, 等. 2000—2020年河西地区生态系统服务功能时空变化与影响因素分析 [J]. 环境生态学, 2023, 5(7): 1-12. |
中图分类号: | P237/X171 |
开放日期: | 2024-06-20 |