- 无标题文档
查看论文信息

论文中文题名:

 中国XCO2时空变化特征及影响因素分析    

姓名:

 邓彦昊    

学号:

 21210061036    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0816    

学科名称:

 工学 - 测绘科学与技术    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘科学与技术    

研究方向:

 地理空间信息技术与应用    

第一导师姓名:

 杨梅焕    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-14    

论文答辩日期:

 2024-06-05    

论文外文题名:

 Characteristics of spatial and temporal variations of XCO2 in China and analysis of influencing factors    

论文中文关键词:

 CO2柱浓度 ; 时空变化 ; XCO2异常 ; 人为CO2排放 ; 轨迹聚类    

论文外文关键词:

 CO2 column concentration ; Spatial and temporal variation ; XCO2 anomaly ; Anthropogenic CO2 emissions ; Trajectory clustering    

论文中文摘要:

工业革命以来,大气温室气体浓度急剧上升,由此导致的全球气候变暖引发了一系列生态环境问题,对地球生态系统构成极大威胁。CO2作为温室气体中含量最高、增长最快的气体,成为当前全球变化研究领域最受关注的温室气体。作为CO2主要排放国,中国于2020年提出了实现“碳达峰、碳中和”的“双碳”目标。科学认识中国XCO2(column-averaged CO2 dry air mole fraction,XCO2)时空变化特征及影响因素可为国家制定碳减排政策和实现“双碳”目标提供科学参考。

本文以2009-2020年Mapping XCO2和2021-2023年OCO-2卫星的XCO2数据为基础,采用趋势分析、R/S分析、标准差椭圆、皮尔逊相关分析和HYSPLIT模型等方法,分析了2009-2023年中国XCO2时空变化特征及影响因素,并明晰了中国人为CO2排放特征和大气传输对区域CO2浓度的影响。主要研究结论如下:

(1)Mapping-XCO2和OCO-2 XCO2数据与同期的鹿林站(LLN)、瓦里关站(WLG)和上甸子站(SDZ)地面监测数据具有较高一致性,其中Mapping-XCO2与LLN、WLG和SDZ站地面监测数据线性拟合的R2值分别为0.96、0.93、0.50;OCO-2 XCO2与LLN和WLG站的R2值分别为0.79、0.73(SDZ地面监测数据在2015年以后数据缺失)。

(2)年际上,2009-2023年中国年均XCO2由385.98 ppm增长到419.74 ppm,增加速率为2.41 ppm/a,但在2020年“双碳”目标提出后,XCO2年增长量逐年递减;季节上,XCO2表现为春季>冬季>秋季>夏季;月尺度上,XCO2每年4月最高,8月最低。空间分布上,2009-2023年XCO2高值区域主要集中在京津冀、长三角等城市群地区,低值区分布在中国西南部和东北部地区。空间变化上,2015-2023年中国XCO2平均中心整体向东偏北方向移动,其中2015-2018年,XCO2平均中心向东部转移,2018-2021年向西部转移,2021-2023年再次向东部转移;一元线性回归分析和R/S分析结果表明,青藏高原、陕西北部、辽宁省、东南沿海部分地区的XCO2增长速率相对较高且将会持续。

(3)2009-2023年中国XCO2与NDVI呈显著负相关(R=-0.84,P<0.01),反映出植被覆盖度越高,其对CO2的吸收作用越强;XCO2与地表温度、气温和降水也均呈显著负相关(R=-0.51、-0.62、-0.66,P<0.05),地表温度、气温和降水主要通过影响区域植被生长状况进而影响大气XCO2水平;XCO2与化石燃料燃烧排放呈显著正相关(R=0.63,P<0.05),排放量越高的区域,二者的相关性越强。地理加权回归模型模拟结果显示,NDVI在全国大部分地区夏季模型中的回归系数表现为负值,特别是在东北和西北地区;化石燃料燃烧排放对应的回归系数峰值均出现在人口密集的中部地区、经济发达的东部城市群地区。

(4)非生长季XCO2异常在表现人为CO2排放方面具有重要作用。2009-2021年非生长季XCO2异常值高值位于京津冀和长三角等城市群地区;受国家碳减排政策影响,2015-2021年京津冀和长三角等城市群地区人为CO2排放呈下降趋势,华中和东北地区人为CO2增长速度较高。以省级行政区为单位的非生长季XCO2异常可表现各省的人为CO2排放情况,东北地区人为CO2排放呈上升趋势;华北、华东地区呈先上升后下降的变化趋势;华南地区人为CO2排放在2009-2015年保持较低水平,但在2015-2021年人为CO2排放增长较快;华中地区人为CO2排放在2015-2021年增长较快;西北和西南地区变化平缓。对分别位于青藏高原地区、京津冀城市群和长三角城市群的瓦里关站、上甸子站和临安站CO2传输路径进行分析,结果显示,影响瓦里关站CO2浓度的气团主要来自于嘉峪关、酒泉一带和兰州-西宁城市群地区;影响上甸子站CO2浓度的气团主要来自于北京西南和东南两个方向;影响临安站CO2浓度的气团主要来自于其北部高人为排放地区。

论文外文摘要:

Since the Industrial Revolution, the concentration of greenhouse gases in the atmosphere has risen sharply, resulting in global warming, which has led to a series of ecological and environmental problems and posed a great threat to the Earth's ecosystems; CO2, as the most abundant and fastest-growing of the greenhouse gases, has become the greenhouse gas of greatest concern in the current field of global change research. As a major CO2 emitter, China has set a "double carbon" goal of "carbon peak and carbon neutral" by 2020. A scientific understanding of the spatial and temporal variability of XCO2 (column-averaged CO2 dry air mole fraction (XCO2)) in China and the factors affecting it can provide scientific references for the formulation of national carbon emission reduction policies and the realisation of the "dual-carbon" goal.

In this paper, based on the Mapping XCO2 from 2009-2020 and the XCO2 data from the OCO-2 satellite from 2021-2023, we analyse the characteristics of spatial and temporal changes of XCO2 in China from 2009 to 2023 and the factors affecting them by using the methods of trend analysis, R/S analysis, standard deviation ellipse, Pearson's correlation analysis and the HYSPLIT model. and clarify the influence of anthropogenic CO2 emission characteristics and atmospheric transport on the regional CO2 concentration in China. The main conclusions of the study are as follows:

(1) The Mapping-XCO2 and OCO-2 XCO2 data showed high consistency with the ground monitoring data from Lulin (LLN), Waliguan (WLG) and Shangdianzi (SDZ) stations during the same period of time, with the R2 values of the linear fit of Mapping-XCO2 to the ground monitoring data from LLN, WLG and SDZ stations being 0.96, 0.93 and 0.50, respectively; The R2 values of OCO-2 XCO2 with LLN and WLG stations are 0.79, 0.73, respectively (SDZ ground monitoring data are missing after 2015).

(2) On the interannual scale, the average annual XCO2 in China increased from 385.98 ppm to 419.74 ppm from 2009 to 2023, with an increase rate of 2.41 ppm/a, but after the "double carbon" target was proposed in 2020, the annual increase of XCO2 decreased year by year; On the seasonal scale, XCO2 shows that spring>winter>autumn>summer; on the monthly scale, XCO2 is highest in April and lowest in August. In terms of spatial distribution, from 2009 to 2023, high XCO2 values are mainly concentrated in urban agglomerations such as Beijing-Tianjin-Hebei and the Yangtze River Delta, while low XCO2 values are distributed in the southwestern and northeastern regions of China. In terms of spatial changes, the average centre of XCO2 in China shifted to the north-east direction as a whole from 2015 to 2023, with the average centre of XCO2 shifting to the east in 2015-2018, to the west in 2018-2021, and to the east again in 2021-2023; the results of the one-way linear regression and R/S analyses showed that the Tibetan Plateau, northern Shaanxi, Liaoning Province and parts of the southeastern coast have relatively high XCO2 growth rates and will continue.

(3) From 2009 to 2023, China's XCO2 and NDVI show a significant negative correlation (R=-0.84, P<0.01), reflecting that the higher the vegetation cover, the stronger the absorption of CO2; XCO2 also shows a significant negative correlation (R=-0.51, -0.62, -0.66, P<0.05) with surface temperature, air temperature and precipitation, and surface temperature, air temperature and precipitation mainly affect regional vegetation growth conditions and then influence atmospheric XCO2 levels. XCO2 was significantly and positively correlated with fossil fuel combustion emissions (R=0.63, p<0.05), and the correlation was stronger in regions with higher emissions. The simulation results of the geographically weighted regression model show that the regression coefficients of NDVI in the summer model are negative in most regions of the country, especially in the Northeast and Northwest; the peaks of the regression coefficients corresponding to the emissions from the combustion of fossil fuels are found in the densely populated central region, and in the economically developed eastern metropolitan agglomeration region.

(4) Non-growing season XCO2 anomalies play an important role in the expression of anthropogenic CO2 emissions. 2009-2021 non-growing season XCO2 anomalies are located in the Beijing-Tianjin-Hebei and Yangtze River Delta urban agglomerations; due to the influence of the national carbon emission reduction policy, the anthropogenic CO2 emissions of the urban agglomerations of Beijing-Tianjin-Hebei and Yangtze River Delta show a decreasing trend in 2015-2021, and the anthropogenic CO2 in central and northeastern China grow at a higher rate. growth rate is higher. The XCO2 anomaly of the non-growing season based on provincial-level administrative regions can show the anthropogenic CO2 emissions of each province, with an upward trend of anthropogenic CO2 emissions in Northeast China; an upward and then a downward trend in North China and East China; anthropogenic CO2 emissions in South China stayed at a relatively low level in 2009-2015, but the anthropogenic CO2 emissions grow faster in 2015-2021; Anthropogenic CO2 emissions in Central China grow faster in 2015-2021; in Northwest and Southwest China, the change will be gentle. The CO2 transport paths of Waliguan, Shangdianzi and Lin'an stations, which are located in the Tibetan Plateau region, Beijing-Tianjin-Hebei urban agglomeration and Yangtze River Delta urban agglomeration, respectively, are analysed, and the results show that the air masses affecting the CO2 concentration at Waliguan station mainly come from Jiayuguan, Jiuquan and Lanzhou-Xining urban agglomeration areas; those affecting Shangdianzi station come from the south-west and south-east of Beijing; and those affecting the CO2 concentration at Lin'an station mainly come from high anthropogenic emission areas in the northern part of the station.

参考文献:

[1]庞宇婷, 徐宏辉, 单萌, 等. 长江三角洲地区CO2浓度本底特征及来源分析[J]. 环境科学学报, 2023, 43(2): 340-353.

[2]世界气象组织. 2020年温室气体公报[R]. 纽约:世界气象组织, 2021.

[3]绳梦雅. 多源碳卫星遥感监测的大气CO2浓度变化对人为排放的响应研究[D]. 北京:中国科学院大学(中国科学院空天信息创新研究院), 2022.

[4]莫露. 中国二氧化碳柱浓度时空分布及其影响因素分析[D]. 武汉:武汉大学, 2021.

[5]夏玲君, 刘立新, 李柏贞, 等. 我国中部地区大气CO2柱浓度时空分布[J]. 中国环境科学, 2018, 38(8): 2811-2819.

[6]张兴赢, 孟晓阳, 周敏强, 等. 卫星高光谱大气CO2探测精度验证研究进展[J]. 气候变化研究进展, 2018, 14(6): 602-612.

[7]Frankenberg C, Pollock R, Lee R A M, et al. The Orbiting Carbon Observatory (OCO-2): spectrometer performance evaluation using pre-launch direct sun measurements[J]. Atmospheric Measurement Techniques, 2015, 8(1): 301-313.

[8]庞若男, 梁艾琳, 李欣语, 等. 基于OCO-2/3卫星的高时空分辨率XCO2数据插值算法研究[J]. 遥感技术与应用, 2023, 38(3): 614-623.

[9]张丽丽, 赵明伟, 赵娜, 等. 基于OCO-2卫星观测模拟高精度XCO2的空间分布[J]. 地球信息科学学报, 2018, 20(9): 1316-1326.

[10]Yi L, Jing W, Lu Y, et al. TanSat mission achievements: from scientific driving to preliminary observations[J]. Chinese Journal of Space Science, 2018, 38(5): 627-639.

[11]张连翀, 王丝丝, 李静, 等. 中国碳卫星(TanSat)数据产品及国际合作进展[J]. 卫星应用, 2023, (7): 13-17.

[12]加亦瑱, 陶明辉, 丁思佳, 等. 基于卫星遥感的中国地区XCO2和XCH4时空分布研究[J]. 大气与环境光学学报, 2022, 17(6): 679-692.

[13]杨东旭, 刘毅, 蔡兆男, 等. 基于GOSAT反演的中国地区二氧化碳浓度时空分布研究[J]. 大气科学, 2016, 40(3): 541-550.

[14]Wang J, Feng L, Palmer P I, et al. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data[J]. Nature, 2020, 586(7831): 720-723.

[15]王婧, 刘毅, 杨东旭. 探寻我国碳汇分布:从大气CO2探测入手[J]. 科学通报, 2021, 66(7): 709-710.

[16]邓安健, 郭海波, 郭洁, 等. GOSAT卫星监测中国大陆上空CO2浓度时空变化特征[J]. 遥感学报, 2020, 24(3): 319-325.

[17]吴长江. 多源卫星长时间序列XCO2数据生成方法研究[D]. 北京:中国科学院大学(中国科学院遥感与数字地球研究所), 2018.

[18]Yokota T, Yoshida Y, Eguchi N, et al. Global concentrations of CO2 and CH4 retrieved from GOSAT: first preliminary results[J]. Sola, 2009, 5: 160-163.

[19]Oishi Y, Ishida H, Nakajima T Y, et al. The impact of different support vectors on GOSAT-2 CAI-2 L2 cloud discrimination[J]. Remote Sensing, 2017, 9(12): 1236-1249.

[20]Buchwitz M, De Beek R, Noel S, et al. Carbon monoxide, methane and carbon dioxide over China retrieved from SCIAMACHY/ENVISAT by WFMDOAS[J]. European Space Agency, (Special Publication) ESA SP, 2006, 611: 159-165.

[21]Basu S, Krol M, Butz A, et al. The seasonal variation of the CO2 flux over Tropical Asia estimated from GOSAT, CONTRAIL, and IASI[J]. Geophysical Research Letters, 2014, 41(5): 1809-1815.

[22]赵静. 中国区域CO2柱状浓度时空分布特征研究[D]. 辽宁:辽宁工程技术大学, 2013

[23]Liang A, Gong W, Han G, et al. Comparison of satellite-observed XCO2 from GOSAT, OCO-2, and ground-based TCCON[J]. Remote Sensing, 2017, 9(10): 1033-1060.

[24]白文广, 张兴赢, 张鹏. 卫星遥感监测中国地区对流层二氧化碳时空变化特征分析[J]. 科学通报, 2010, 55(30): 2955-2962.

[25]戴丽君, 崔伟宏. 2003-2010年中国对流层CO2时空分布研究[J]. 生态环境学报, 2012, 21(7): 1266-1270.

[26]陈玉敏, 唐伟, 刘雪原, 等. 基于卫星遥感的四川省XCO2高分辨率时空分布[J]. 环境科学与技术, 2023, 46(2): 133-140.

[27]Sheng M, Lei L, Zeng Z C, et al. Global land 1° mapping dataset of XCO2 from satellite observations of GOSAT and OCO-2 from 2009 to 2020[J]. Big Earth Data, 2023, 7(1): 170-190.

[28]莫露, 巫兆聪, 张熠. 中国XCO2时空分布与影响因素分析[J]. 中国环境科学, 2021, 41(6): 2562-2570.

[29]刘建军, 姜腾龙, 杨晓钰, 等. 基于OCO-2/OCO-3数据的山东省CO2柱浓度特征分析[J]. 河北环境工程学院学报, 2023, 33(1): 74-78.

[30]葛钰洁, 肖钟湧. 基于GOSAT卫星的中国CO2浓度时空特征分析[J]. 中国环境监测, 2022, 38(5): 96-108.

[31]Park C, Jeong S, Park H, et al. Evaluation of the potential use of satellite-derived XCO2 in detecting CO2 enhancement in megacities with limited ground observations: a case study in Seoul using Orbiting Carbon Observatory-2[J]. Asia-Pacific Journal Of Atmospheric Sciences, 2021, 57(2): 289-299.

[32]Liu Y, Wang X, Guo M, et al. Mapping the FTS SWIR L2 product of XCO2 and XCH4 data from the GOSAT by the kriging method–a case study in East Asia[J]. International Journal of Remote Sensing, 2012, 33(10): 3004-3025.

[33]Gupta A, Dhaka S K, Matsumi Y, et al. Seasonal and annual variation of AIRS retrieved CO2 over India during 2003–2011[J]. Journal of Earth System Science, 2019, 128(4): 1-12.

[34]姜春艳. 2000-2013年中国陆地植被吸收二氧化碳量模拟及其时空变化[D]. 哈尔滨:哈尔滨师范大学, 2015.

[35]Zhang L, Zhang J. Analysis of the seasonal variation of CO2 concentration in China based on GOSAT satellite data[J]. Journal of the Indian Society of Remote Sensing, 2018, 46(10): 1667-1675.

[36]阮琳, 曹维佳, 杨国兴, 等. 基于OCO-2卫星遥感数据的三峡库区XCO2时空特征演变分析[J]. 航天返回与遥感, 2022, 43(6): 141-151.

[37]任杨千千, 连懿, 李海笑, 等. 中国大陆CO2浓度时空分布特征及驱动因素[J]. 中国环境科学, 2023, 43(4): 1919-1929.

[38]李凯旋, 杨丽萍, 张静, 等. 基于TanSat的中国大陆CO2浓度监测及驱动因子分析 [J]. 中国环境科学, 2023, 43 (11): 5645-5654.

[39]王震山, 绳梦雅, 肖薇, 等. 基于多源碳卫星融合产品的中国地区XCO2与人为CO2排放时空变化[J]. 中国环境科学, 2023, 43(3): 1053-1063.

[40]Shim C, Han J, Henze D K, et al. Identifying local anthropogenic CO2 emissions with satellite retrievals: a case study in South Korea[J]. International Journal of Remote Sensing, 2019, 40(3): 1011-1029.

[41]雷莉萍, 钟惠, 贺忠华, 等. 人为排放所引起大气 CO2浓度变化的卫星遥感观测评估[J]. 科学通报, 2017, 62(25): 2941-2950.

[42]钟惠. 卫星遥感大气CO2浓度变化与人为排放的关联分析研究[D]. 北京:中国科学院大学(中国科学院遥感与数字地球研究所), 2019.

[43]Schwandner F M, Gunson M R, Miller C E, et al. Spaceborne detection of localized carbon dioxide sources[J]. Science, 2017, 58(6360): 192-205.

[44]Wang S, Zhang Y, Hakkarainen J, et al. Distinguishing anthropogenic CO2 emissions from different energy intensive industrial sources using OCO-2 observations: a case study in Northern China[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(17): 9462-9473.

[45]Eldering A, Wennberg P O, Crisp D, et al. The Orbiting Carbon Observatory-2 early science investigations of regional carbon dioxide fluxes[J]. Science, 2017, 358(6360): 188-208.

[46]Hakkarainen J, Ialongo I, Maksyutov S, et al. Analysis of four years of global XCO2 anomalies as seen by Orbiting Carbon Observatory-2[J]. Remote Sensing, 2019, 11(7): 850-870.

[47]Hakkarainen J, Ialongo I, Tamminen J. Direct space-based observations of anthropogenic CO2 emission areas from OCO-2[J]. Geophysical Research Letters, 2016, 42(21): 11400-11406.

[48]Keppel-Aleks G, Wennberg P O, Schneider T. Sources of variations in total column carbon dioxide[J]. Atmospheric Chemistry and Physics, 2011, 11(8): 3581-3593.

[49]Sheng M, Lei L, Zeng Z C, et al. Detecting the responses of CO2 column abundances to anthropogenic emissions from satellite observations of GOSAT and OCO-2[J]. Remote Sensing, 2021, 13(17): 3524-3545.

[50]Diao A, Shu J, Song C, et al. Global consistency check of AIRS and IASI total CO2 column concentrations using WDCGG ground-based measurements[J]. Frontiers of Earth Science, 2017, 11(1): 1-10.

[51]Oda T, Maksyutov S. A very high-resolution (1km×1km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights[J]. Atmospheric Chemistry and Physics, 2011, 11(2): 543-556.

[52]Peng S, Ding Y, Liu W, et al. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017[J]. Earth System Science Data, 2019, 11(4): 1931-1946.

[53]Gu C J, Tang Q H, Zhu G F, et al. Discrepant responses between evapotranspiration- and transpiration-based ecosystem water use efficiency to interannual precipitation fluctuations[J]. Agricultural and Forest Meteorology, 2021, 303: 108385.

[54]刘贤赵, 张安定, 李嘉竹. 地理学数学方法[M]. 北京:科学出版社, 2009.

[55]Peng H, Wang S, Wang X. Consistency and asymptotic distribution of the Theil–Sen estimator[J]. Journal of Statistical Planning and Inference, 2008, 138(6): 1836-1850.

[56]蔡博峰, 于嵘. 基于遥感的植被长时序趋势特征研究进展及评价[J]. 遥感学报, 2009, 13(6): 1170-1186.

[57]王少剑, 莫惠斌, 方创琳. 珠江三角洲城市群城市碳排放动态模拟与碳达峰[J]. 科学通报, 2021, 67(7): 670-684

[58]卢娜, 曲福田, 冯淑怡, 等. 基于STIRPAT模型的能源消费碳足迹变化及影响因素——以江苏省苏锡常地区为例[J]. 自然资源学报, 2011, 26(5): 814-824.

[59]Hurst H E. Long-term storage capacity of reservoirs[J]. Transactions of the American Society of Civil Engineers, 1951, 116(1): 770-799.

[60]赵晶, 王乃昂. 近50年来兰州城市气候变化的R/S分析[J]. 干旱区地理, 2002, (1): 90-95.

[61]吕政翰. 中国大气二氧化碳浓度时空变化特征及其影响因素分析[D]. 哈尔滨:哈尔滨师范大学, 2019.

[62]Lv Z, Shi Y, Zang S, et al. Spatial and temporal variations of atmospheric CO2 concentration in China and its influencing factors[J]. Atmosphere, 2020, 11(3): 231-249.

[63]叶勤玉, 高阳华, 杨世琦, 等. 基于 MODIS 数据的重庆市植被覆盖度时空变化分析[J]. 高原山地气象研究, 2016, 36(2): 53-58.

[64]李佳. 毛乌素沙地气候变化及其对植被NDVI的影响[D]. 西安:西安科技大学, 2022.

[65]魏宁. 基于卫星遥感的中国大气CO2浓度时空分布特征及其影响因素研究[D]. 上海:华东师范大学, 2017.

[66]Cui L, Song X, Zhong G. Comparative analysis of three methods for hysplit atmospheric trajectories clustering[J]. Atmosphere, 2021, 12(6): 698-713.

[67]杨浩, 白永清, 刘琳, 等. 基于轨迹聚类河南地区大气污染过程空气输送通道研究[J].气象与环境学报, 2017, 33(4): 29-39.

[68]国家统计局. 中国统计年鉴[M]. 北京:中国统计出版社, 2023.

[69]袁媛, 高辉, 贾小龙, 等. 2014-2016年超强厄尔尼诺事件的气候影响[J]. 气象, 2016, 42(5): 532-539.

[70]Lintner B R. Characterizing global CO2 interannual variability with empirical orthogonal function/principal component (EOF/PC) analysis[J]. Geophysical Research Letters, 2002, 29(19): 27-1-27-4.

[71]Jones C D, Cox P M. Constraints on the temperature sensitivity of global soil respiration from the observed interannual variability in atmospheric CO2[J]. Atmospheric Science Letters, 2001, 2(1-4): 166-172.

[72]Bacastow R B. Atmospheric carbon dioxide concentration and the observed airborne fraction[J]. Carbon Cycle Modelling, 1981: 103-112.

[73]张兰兰. 基于GOSAT卫星短波红外辐射数据反演的中国碳通量分析[D]. 武汉:湖北工业大学, 2018.

[74]刘少振. 中国CO2时空分布及影响因素分析[D]. 徐州:中国矿业大学, 2017.

[75]韦福雷. 论“双碳”下高耗能产业向西部地区的转移[J]. 开放导报, 2021(5): 21-27.

[76]凌再莉. 我国能源与资源产业西移及产品东输对西北地区SO2排放和空气质量的影响[D]. 兰州:兰州大学, 2018.

[77]刘传江, 赵晓梦, 张振源. 中国碳排放的区域空间比较和影响因素研究[J]. 学习与实践, 2015(6): 5-16+2.

[78]杨元合, 石岳, 孙文娟, 等. 中国及全球陆地生态系统碳源汇特征及其对碳中和的贡献[J]. 中国科学:生命科学, 2022, 52(4): 534-574.

[79]郭岩, 何毅, 张立峰, 等. 2000-2017年中亚地区植被变化遥感监测[J]. 中国农学通报, 2021, 37(8): 123-131.

[80]吴蓓蕾, 姜大膀, 王晓欣. 1961~2018年中国生长季变化[J]. 大气科学, 2021, 45(2): 424-434.

[81]邓忠坚, 李晓娜, 周汝良, 等. 云南省卫星热点与林火格局的关系研究[J]. 西南林业大学学报, 2016, 36(4): 132-137.

[82]Liu J, Bowman K W, Schimel D S, et al. Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño[J]. Science, 2017, 358: 191.

[83]Hassan W, David J, Abbas F. Effect of type and quality of two contrasting plant residues on CO2 emission potential of Ultisol soil: implications for indirect influence of temperature and moisture[J]. Catena, 2014, 114: 90-96.

[84]Shi K, Chen Y, Yu B, et al. Modeling spatiotemporal CO2 (carbon dioxide) emission dynamics in China from DMSP-OLS nighttime stable light data using panel data analysis[J]. Applied Energy, 2016, 168: 523-533.

[85]Ishizawa M, Mabuchi K, Shirai T, et al. Inter-annual variability of summertime CO2 exchange in Northern Eurasia inferred from GOSAT XCO2[J]. Environmental Research Letters, 2016, 11(10): 105001.

[86]Yu S, Mo Q, Chen Y, et al. Effects of seasonal precipitation change on soil respiration processes in a seasonally dry tropical forest[J]. Ecology and Evolution, 2020, 10(1): 467-479.

[87]Golkar F, Al-Wardy M, Saffari S F, et al. Using OCO-2 satellite data for investigating the variability of atmospheric CO2 concentration in relationship with precipitation, relative humidity, and vegetation over Oman[J]. Water, 2019, 12(1): 101-117.

[88]周婧, 何政伟, 张志, 等. 植被NPP时空格局与气象因子的关系分析[J]. 地理空间信息, 2018, 16 (11): 25-28+31+10.

[89]徐晓. 基于地理加权回归模型的山西省CO2时空分布驱动因素分析[D]. 徐州:中国矿业大学, 2022.

[90]Keppel-Aleks G, Wennberg P O, Schneider T. Sources of variations in total column carbon dioxide[J]. Atmospheric Chemistry and Physics, 2011, 11(8): 3581-3593.

[91]郭文, 刘小峰, 吴孝灵. 中国“十三五”时期省际碳减排目标的效率分配[J]. 中国人口·资源与环境, 2017, 27(5): 72-83.

[92]张诗卉, 李明煜, 王灿, 等. 中国省级碳排放趋势及差异化达峰路径[J]. 中国人口·资源与环境, 2021, 31(9): 45-54.

[93]李继峰, 顾阿伦, 张成龙, 等. “十四五”中国分省经济发展、能源需求与碳排放展望—基于CMRCGE模型的分析[J]. 气候变化研究进展, 2019, 15(6): 649-659.

[94]蒋含颖, 段祎然, 张哲, 等. 基于统计学的中国典型大城市CO2排放达峰研究[J]. 气候变化研究进展, 2021, 17(2): 131-139.

[95]王剑琼, 祁栋林, 薛丽梅. 瓦里关全球大气本底站站址环境及部分观测要素变化特征[J]. 环境化学, 2020, 39(8): 2084-2092.

[96]王宁章, 李明, 罗文昭, 等. 2019年瓦里关地区CO2和CH4浓度变化特征及潜在来源分析[J]. 气象科技进展, 2023, 13(4): 17-23.

[97]张林, 靳孟贵, 刘延锋, 等. 中国瓦里关和上甸子大气温室气体浓度变化特征[J]. 地球科学, 2021, 46(8): 2984-2998.

[98]沈洪艳, 吕宗璞, 师华定, 等. 基于HYSPLIT模型的京津冀地区大气污染物输送的路径分析[J]. 环境工程技术学报, 2018, 8(4): 359-366.

[99]孙佳琪, 刘永学, 董雁伫, 等. 基于Suomi-NPP VIIRS夜间热异常产品的城市工业热源分类—以京津冀地区为例[J]. 地理与地理信息科学, 2018, 34 (3): 13-19.

中图分类号:

 P237    

开放日期:

 2024-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式