论文中文题名: | 钒流电池钛氧化物/石墨毡复合电极的制 备与电化学性能 |
姓名: | |
学号: | 21211225032 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085600 |
学科名称: | 工学 - 材料与化工 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2021 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 新能源材料与器件 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2024-06-18 |
论文答辩日期: | 2024-06-04 |
论文外文题名: | Preparation and Electrochemical Performance of Titanium Oxide/Graphite Felt Composite Electrodes in Vanadium Redox Flow Battery |
论文中文关键词: | |
论文外文关键词: | Vanadium flow battery ; graphite felt ; oxygen vacancies ; Ti4O7 ; Ti3O5 ; niobium doping |
论文中文摘要: |
全钒液流电池(VRFB)作为一种新型储能电池,具有设计灵活、高效、循环寿命 长、安全、环保等多重优点,可广泛应用于电网调峰、可再生能源发电以及军用蓄电等 领域。石墨毡材料由于其导电性良好、稳定性高以及孔隙率大等特点,成为 VRFB 中应 用最广泛的电极材料。然而,石墨毡(GF)电化学活性较差,对正负极反应特别是负 极反应催化性能不足,正负极析氧析氢现象较为显著。为了解决上述问题,本文拟出在 石墨毡上包覆钛氧化合物作为催化剂催化电极反应,同时抑制析氢析氧。第三章中,通 过水热与氢还原方法在电极表面包覆了氧空位 TiO2。在第四章中,在第三章的基础上 进一步优化工艺,成功合成了 Magnéli 相电极。最后,在第五章中,我们采用了异价离 子掺杂和低温还原方法,成功合成了 NbxTi1-xO2/石墨毡复合电极。 首先通过引入氧空位来调节 TiO2 的表面电子分布,增强电极 VO2 + /VO2+和 V3+/V2+ 氧化还原反应的催化能力,并同时抑制有害的副反应(HER 和 OER)。由于增强的催化 活性和选择性,1000-TiO2-GF 电极在小电流下展示出接近 90%的钒利用率。此外, 1000-TiO2-GF 电极在 120 mA/cm2 下稳定运行了 200 个循环,没有明显的效率下降。密 度泛函理论(DFT)结果表明,TiO2 中的氧空位为其相邻的钛提供了额外电子,进一步 加强了富电子的钛与 VO2 + /VO2+中氧之间的相互作用,从而增强其吸附和催化性能。氧 空位丰富的 TiO2涂层对 V3+/V2+的增强催化活性则可归因于对析氢反应的有效抑制。 为了进一步提高 TiO2 包覆层的电导率,进一步优化了还原过程,成功制备了 Magn éli 相,纯 Ti3O5 和 Ti4O7 相包覆石墨毡电极。Ti4O7-GF、Ti3O5-GF 电极能够有效地同时 催化 VO2 + /VO2+和 V3+/V2+的氧化还原反应,并抑制正极的氧气析出反应和负极的氢气 析出反应,其中以 Ti4O7-GF 电极催化性能最佳。使用 Ti4O7-GF 组装的 VRFB 在 120 mA/cm2 下稳定运行 100 个循环,没有出现明显的效率下降,在电流密度为 180 mA/cm2 时,Ti4O7-GF 电极的电压效率和能量效率分别比 GF 电极高出 18%和 19%。 最后,为进一步降低电极极化,提升能量效率,同时采用高价阳离子掺杂和低温氢 还原的策略。通过水热法+氢气还原制备铌掺杂钛氧化合物包覆石墨毡电极。随着氢气 还原温度的升高锐钛矿 TiO2 会向金红石 TiO2 转变。氢还原 Nb 掺杂 TiO2 包覆的石墨毡电极能够有效地同时催化 VO2 + /VO2+和 V3+/V2+的氧化还原反应,并抑制正极的氧气析出反应和负极的氢气析出反应。在 135 mA/cm2 下,经 800℃还原的 Nb-TiO2-GF 电极表 现出高达 80%的电压效率,并在 120 mA/cm2 下稳定运行 100 个循环,没有出现明显的效率下降。 |
论文外文摘要: |
The vanadium redox flow battery (VRFB), as a novel energy storage battery, possesses multiple advantages such as flexible design, high efficiency, long cycle life, safety, and environmental friendliness, making it suitable for a wide range of applications including grid peak shaving, renewable energy generation, and military storage. Graphite felt (GF), due to its excellent conductivity, high stability, and large porosity, has become the most widely used electrode material in VRFBs. However, GF exhibits poor electrochemical activity, particularly in catalyzing electrode reactions, leading to significant oxygen and hydrogen evolution at both positive and negative electrodes. To address these issues, this study proposes the coating of titanium oxides on graphite felt to catalyze electrode reactions while suppressing hydrogen and oxygen evolution. In Chapter Three, oxygen-vacancy TiO2 was coated on the electrode surface by hydrothermal and hydrogen reduction methods. In Chapter Four, building upon the findings of Chapter Three, we further optimized the process and successfully synthesized Magnéli phase electrodes. Finally, in Chapter Five, we adopted strategies involving heterovalent ion doping and low-temperature reduction to synthesize NbxTi1-xO2/graphite felt composite electrodes. By introducing oxygen vacancies to modulate the surface electronic distribution of TiO2, we enhanced the catalytic ability of the electrode for VO2 + /VO2+ and V3+/V2+ oxidation reduction reactions while inhibiting detrimental side reactions (HER and OER). Due to the enhanced catalytic activity and selectivity, the 1000-TiO2-GF electrode demonstrated close to 90% vanadium utilization at low currents. Additionally, the 1000-TiO2-GF electrode exhibited stable operation for 200 cycles at 120 mA/cm2 without significant efficiency degradation. Density functional theory (DFT) results showed that oxygen vacancies in TiO2 provided additional electrons to neighboring titanium, further strengthening the interaction between electron-rich titanium and oxygen in VO2 + /VO2+, thereby enhancing its adsorption and catalytic performance. The abundant oxygen vacancies in TiO2 coating contributed to the enhanced catalytic activity for V3+/V2+ and effectively suppressed hydrogen evolution reaction. To further improve the electrical conductivity of the TiO2 coating, we optimized the reduction process and successfully prepared Magnéli phase electrodes, including pure Ti3O5 and Ti4O7 phase-coated graphite felt electrodes. The Ti4O7-GF and Ti3O5-GF electrodes effectively catalyzed both VO2 + /VO2+ and V3+/V2+ oxidation-reduction reactions while suppressing oxygen evolution at the positive electrode and hydrogen evolution at the negative electrode, with Ti4O7- GF electrode exhibiting the best catalytic performance. The VRFB assembled with Ti4O7-GF operated stably for 100 cycles at 120 mA/cm2 without significant efficiency degradation, and at a current density of 180 mA/cm2 , the voltage efficiency and energy efficiency of the Ti4O7-GF electrode were 18% and 19% higher, respectively, compared to the GF electrode. Finally, to further reduce electrode polarization and enhance energy efficiency, a strategy involving high-valence cation doping and low-temperature hydrogen reduction was employed. Niobium-doped titanium oxide compounds were prepared by hydrothermal treatment followed by hydrogen reduction to coat the graphite felt electrode. As the temperature of hydrogen reduction increased, the rutile TiO2 transformed into anatase TiO2. The graphite felt electrode coated with hydrogen-reduced Nb-doped TiO2 effectively catalyzed the oxidation-reduction reactions of both VO2 + /VO2+ and V3+/V2+, while suppressing oxygen evolution at the positive electrode and hydrogen evolution at the negative electrode. At 135 mA/cm2 , the Nb-TiO2-GF electrode reduced at 800°C exhibited voltage efficiency as high as 80%, and it operated stably for 100 cycles at 120 mA/cm2 without significant efficiency degradation. |
参考文献: |
[4] 张华民. 储能与液流电池技术[J]. 储能科学与技术, 2012, 1(1): 58-63. [17] 王绍亮, 范新庄, 张建国, 等. 钒电池电解液配比的优化及其对电池性能的影响[J]. 储能科学与技术, 2015, 4(5): 510-514. |
中图分类号: | TM192 |
开放日期: | 2024-06-18 |