- 无标题文档
查看论文信息

题名:

 煤矿井下声波–化学喷雾协同增效降尘机理的实验研究    

作者:

 赵波    

学号:

 19120089017    

保密级别:

 保密(4年后开放)    

语种:

 chi    

学科代码:

 083700    

学科:

 工学 - 安全科学与工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2022    

学校:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 矿井粉尘防治    

导师姓名:

 李树刚    

导师单位:

 西安科技大学    

第二导师姓名:

 何学秋    

提交日期:

 2023-01-09    

答辩日期:

 2022-12-07    

外文题名:

 Experimental study on the synergistic and enhanced mechanism of acoustic-chemical spraying for dust suppression in underground coal mines    

关键词:

 煤尘防治 ; 声波团聚 ; 化学喷雾 ; 协同增效 ; 团聚机理    

外文关键词:

 Coal dust control ; Acoustic agglomeration ; Chemical spray ; Synergy and Enhancement ; Agglomeration mechanism    

摘要:

煤尘是井下作业的主要污染源之一,由于其高致病性和爆炸特性,如何有效防治煤尘危害仍然是煤矿开采过程中亟待解决的问题。近年来,随着煤矿开采强度的增大,煤尘产尘量也迅速增加。表面活性剂增强水喷雾降尘技术是目前主要降尘方式之一,但其降尘效率仍需进一步提升。为进一步提高水喷雾技术的降尘效果,本文提出声波–化学喷雾协同增效降尘技术,采用理论分析、实验研究相结合的方法,研究了声波作用下化学喷雾液滴、煤尘之间的相互作用规律,建立了声波对颗粒物的夹带作用模型,以及声波影响下液滴与煤尘碰撞作用模型,揭示了声波–化学喷雾协同增效降尘机理。

论文采集陕西山阳(SY)、董家河(DJH)、黄陵(HL)和玉华(YH)等典型矿井煤样,采用粒度分析实验、原子力显微镜实验、傅里叶红外光谱实验和润湿团聚实验,获得了煤尘粒径分布特征、形貌特征及煤尘的物化特性。煤样粒径分布0.6~110 μm,SY、DJH、HL和YH等煤样的中值粒径D50分别为9.221 μm、12.679 μm、21.264 μm和21.211 μm;煤样表面均呈现不同程度的起伏及凹陷,平均粗糙度1.10 nm~2.62 nm。煤样表面由不同类型的官能团组成,不同类型煤样表面官能团结构无明显区别,但官能团占比不同。4种煤样的粘附力较小,煤尘自身具有较强的疏水性和较差的团聚特性。

通过研发声波–化学喷雾试剂增效降尘模拟实验平台,研究了声波对颗粒物的夹带作用及声波对水喷雾降尘的影响规律。声波单一作用下,增强了煤尘颗粒物的运动,加速了煤尘颗粒物的扩散;水喷雾单一作用下,巷道空间内总粉尘和呼吸性粉尘的平均降尘效率分别为70.24 %和34.21 %;当声波频率f =1300 Hz,声压级SPL=120 dB时,声波–水喷雾协同作用下的总粉尘和呼吸性粉尘的平均降尘效率可达到80.0%和63.16%,液滴捕获煤尘的能力显著增强。

研发了高效化学喷雾抑尘剂,采用表面张力实验、接触角实验、沉降实验及喷雾降尘模拟实验,获得了复配化学试剂的动态、静态降尘效果,并阐明了气–液–固三相相互作用及润湿剂、团聚剂协同增效机理。相同条件下,煤样在十二烷基苯磺酸钠与黄原胶复配溶液(SDBS+0.05 %XTG)中的沉降速率为14.29 mg/s,是相同条件下十二烷基硫酸钠与黄原胶复配溶液(SDS+0.05 %XTG)的8.57倍,烷基糖苷与黄原胶复配溶液(APG0810+0.05 %XTG)的4.43倍。复合试剂并不会改变煤尘表面的官能团结构,但对官能团的数量及占比有一定影响。0.20 %SDBS+0.05 %XTG溶液处理的煤粉表面羟基含量比0.05 %XTG处理的煤粉增加了26.3 %,该过程促进了XTG分子在煤表面的吸附,高分子吸附促进了固体桥的形成。复合试剂主要通过增强液滴与煤尘之间的粘附力,从而提升对煤尘的团聚作用,液滴与煤尘之间的团聚机制主要表现为分布机制。

利用声波–化学喷雾增效降尘模拟实验平台,分析了声波频率、声压级对声波化学喷雾协同增效降尘的影响规律。声波不会改变溶液特性,但会引起气–液界面介质振动,使煤尘润湿速率提高33.64 %,从而提高化学喷雾液滴的煤尘润湿能力。当声波频率从100 Hz增加至2200 Hz时,巷道内粉尘浓度主要呈现出先减小,然后增大的变化趋势,且声波频率f=1300 Hz时,粉尘浓度最低,降尘效果最好。当声波频率f=1300 Hz,声压级SPL=120 dB时,巷道内粉尘浓度达到最低值9.5 mg/m3。相比未采取措施时的原始粉尘浓度均值,总粉尘降尘效率为90.73%,呼吸性粉尘降尘效率为82.46 %;相对于水喷雾降尘效率分别提高20.49 %和48.25 %;相对于复合试剂喷雾技术的降尘效率分别提高8.54 %和19.3 %。

揭示了声波–化学喷雾协同增效降尘机理,建立了声波对颗粒物的夹带作用模型以及声波作用下液滴与煤尘碰撞模型。声波–化学喷雾协同增效降尘机理不仅涉及声波对颗粒运动的影响,同时涉及声波在两相介质界面传播的影响。声波通过其夹带作用,影响颗粒物运动轨迹,提高了煤尘与液滴的碰撞频率,增加了除尘效率。碰撞过程主要涉及同向作用团聚机理,声尾流效应。最后以陕西山阳煤矿3505轨道巷掘进工作面为工程背景,提出了掘进工作面声波–化学喷雾协同增效降尘实施工艺展望,根据现场煤尘实际情况,分析了该项技术实施的必要性,并从降尘理论和技术层面分别阐明了应用可行性。

本文通过分析声波对化学喷雾液滴捕获煤尘的影响规律,揭示了声波–化学喷雾协同增效降尘机理,为提高掘进工作面的降尘效率,改善井下工人的作业环境,保障工人健康提供了一定理论基础和技术支持。

外文摘要:

Coal dust is one of the main sources of pollution in underground operations, and due to its highly pathogenic and explosive properties, the effective control of coal dust hazards remains a pressing issue during mining. In recent years, as the intensity of coal mining has increased, the produced amount of coal dust has also increased rapidly. Surfactant enhanced water spray dust reduction technology is currently one of the main dust reduction methods, but its dust reduction efficiency still needs to be further improved. In order to further improve the dust reduction effect of water spray technology, this paper proposed acoustic-chemical spray synergistic dust reduction technology, using a combination of theoretical analysis and experimental research, the interaction law between chemical spray droplets and coal dust under the action of acoustic waves was studied, and the entrainment effect of acoustic waves on particulate matter and the collision effect model between droplets and coal dust under the influence of acoustic waves were established. A model for the entrainment of particulate matter by acoustic waves and collision between droplets and coal dust under the influence of acoustic waves were established, the synergistic mechanism for dust reduction having been revealed.

The paper collected typical mine coal samples from Shanyang (SY), Dongjiahe (DJH), Huangling (HL) and Yuhua (YH) in Shaanxi, and particle size analysis experiments, atomic force microscopy experiments, Fourier infrared spectroscopy experiments and wetting agglomeration experiments were used to obtain the particle size distribution characteristics, morphological characteristics and physical and chemical properties of coal dust. The particle size distribution of the coal samples ranged from 0.6 to 110 μm, and the median particle size D50 of SY, DJH, HL and YH were 9.221 μm, 12.679 μm, 21.264 μm and 21.211 μm respectively. The adhesion of the four coal samples was low, and the coal dust had strong hydrophobicity and poor agglomeration characteristics by itself.

By developing an acoustic wave-chemical spray reagent enhanced dust reduction simulation platform, the entrainment effect of acoustic wave on particulate matter and the influence law of acoustic wave on dust reduction by water spray were studied. The single action of acoustic wave enhanced the motion of dust particles and accelerated the diffusion of dust particles, while the ability of droplets to trap coal dust was significantly enhanced; the average dust reduction efficiency of total dust and respirable dust in the tunnel space under the single action of water spray was 70.24 % and 34.21 % respectively; when the acoustic wave f = 1300 Hz and sound pressure level SPL = 120 dB. The dust reduction efficiency of total and respirable dust under the synergistic action of water spray can reach 80.0% and 63.16% respectively.

A highly efficient chemical spray dust suppressant was developed. The dynamic and static dust reduction effects of the compound chemical reagents were obtained using surface tension experiments, contact angle experiments, settling experiments and spray dust reduction simulation experiments, and the mechanism of gas-liquid-solid three-phase interaction and synergistic synergism of wetting and agglomeration agents was elucidated. Under the same conditions, the settling rate of coal samples in the complex solution of sodium dodecyl benzene sulfonate and xanthan gum (SDBS + 0.05 % XTG) was 14.29 mg/s, which was 8.57 times higher than that of the complex solution of sodium dodecyl sulfate and xanthan gum (SDS + 0.05 % XTG) and 4.43 times higher than that of the complex solution of alkyl glycosides and xanthan gum (APG0810 + 0.05 % XTG) under the same conditions. XTG) by a factor of 4.43. The complex reagents did not change the structure of the functional groups on the surface of the coal dust, but had an effect on the number and percentage of functional groups. 26.3 % more hydroxyl groups were present on the surface of the coal dust treated with the 0.20 % SDBS + 0.05 % XTG solution than on the 0.05 % XTG treated dust, a process that promoted the adsorption of XTG molecules on the surface of the coal and the formation of solid bridges promoted by polymer adsorption. The composite reagent mainly enhances the agglomeration effect on coal dust by enhancing the adhesion between droplets and coal dust, and the agglomeration between droplets and coal dust is mainly manifested as a distribution mechanism.

The effect of acoustic wave frequency and sound pressure level on the synergistic effect of acoustic chemical spray on dust reduction was analysed using an acoustic-chemical spray efficiency simulation platform. Acoustic waves do not change the solution properties, but increase the wetting rate of coal dust by 33.64 % through the vibration of the air-liquid interface caused by acoustic waves, thus improving the ability of chemical spray droplets to capture coal dust. When the acoustic wave frequency increases from 100 Hz to 2200 Hz, the dust concentration in the tunnel mainly shows a trend of decreasing and then increasing, and the lowest dust concentration and the best dust reduction effect is achieved when the acoustic wave frequency f=1300 Hz. When the sound frequency f=1300 Hz and the sound pressure level SPL=120 dB, the dust concentration in the tunnel reaches the lowest value of 9.5 mg/m3. Compared to the average value of the original dust concentration without measures, the dust reduction efficiency is 90.73 % for total dust and 82.46 % for respiratory dust; the dust reduction efficiency is increased by 20.49 % and 48.25 % respectively compared to that of water spray; compared to the dust reduction efficiency of The dust reduction efficiencies were 8.54 % and 19.3 % higher than those of the composite reagent spray technology.

The synergistic mechanism of acoustic-chemical spray affecting the agglomeration of fine particle coal dust is revealed, and a model of the interaction between acoustic wave entrainment and collision of particles is developed. The synergistic acoustic-chemical spraying mechanism involves not only the influence of acoustic waves on particle motion, but also the influence of acoustic waves propagating at the interface of two-phase media. Through its entrainment effect, the acoustic waves influence the trajectory of the particles, increasing the collision frequency between coal dust and liquid droplets and increasing the dust removal efficiency. The collision process mainly involves the isotropic action agglomeration mechanism and the acoustic wake effect. Finally, using the 3505 trackway road excavation face of Shanyang coal mine in Shaanxi Province as the engineering background, the outlook of the implementation process of acoustic-chemical spray synergistic dust reduction at the excavation face is proposed. The necessity of the implementation of this technology is analysed according to the actual dust situation at the site, and the feasibility of the application is clarified at the theoretical and technical levels of dust reduction respectively.

This paper reveals the synergistic mechanism of acoustic-chemical spray for dust reduction by analysing the influence of acoustic waves on the capture of coal dust by chemical spray droplets, which provides a theoretical basis and technical support for improving the dust reduction efficiency of the tunneling working face, improving the working environment of underground coal mines and safeguarding workers’ health.

参考文献:

[1] 吴璘, 孙宝东, 朱吉茂, 等. 关于我国煤炭供需统计与消费达峰的再认识[J]. 能源科技, 2022, 20(03): 3–7.

[2] 林海飞, 季鹏飞, 孔祥国, 等. 顺层钻孔预抽煤层瓦斯精准布孔模式及工程实践[J]. 煤炭学报, 2022, 47(03): 1220–1234.

[3] 李树刚, 张静非, 尚建选, 等. 双碳目标下煤气同采技术体系构想及内涵[J]. 煤炭学报, 2022, 47(04): 1416–1429.

[4] Li S, Zhao B, Lin H, et al. Review and prospects of surfactant-enhanced spray dust suppression: Mechanisms and effectiveness[J]. Process Safety and Environmental Protection, 2021, 154: 410–424.

[5] Wang T, Sun W, Wu H, et al. Respiratory traits and coal workers’ pneumoconiosis: Mendelian randomisation and association analysis[J]. Occupational and Environmental Medicine, 2021, 78(2): 137–141.

[6] 秦波涛, 周刚, 周群, 等. 煤矿综采工作面活性磁化水喷雾降尘技术体系与应用[J]. 煤炭学报, 2021, 46(12): 3891–3901.

[7] 秦波涛, 周群, 李修磊, 等. 煤矿井下磁化水与表面活性剂高效协同降尘技术[J]. 煤炭学报, 2017, 42(11): 2900–2907.

[8] Wang Q, Wang D, Wang H, et al. Experimental investigations of a new surfactant adding device used for mine dust control[J]. Powder Technology, 2018, 327: 303–309.

[9] 程卫民, 周刚, 陈连军, 等. 我国煤矿粉尘防治理论与技术20年研究进展及展望[J]. 煤炭科学技术, 2020, 48(02): 1–20.

[10] Ishtiaq M, Jehan N, Khan S A, et al. Potential harmful elements in coal dust and human health risk assessment near the mining areas in Cherat, Pakistan[J]. Environmental Science and Pollution Research, 2018, 25(15): 14666–14673.

[11] Ayoglu F N, Acikgoz B, Tutkun E, et al. Descriptive characteristics of coal workers’ pneumoconiosis cases in Turkey[J]. Iranian J Publ Health, 2014, 43(3): 389–390.

[12] Risamasu A H, Kabiran I, Damayanti I T, et al. Kajian Pustaka: Hubungan durasi kerja dengan pneumokoniosis pada pekerja tambang batubara[J]. CoMPHI Journal: Community Medicine and Public Health of Indonesia Journal, 2021, 2(1): 155–161.

[13] Mo J, Wang L, Au W, et al. Prevalence of coal workers’ pneumoconiosis in China: A systematic analysis of 2001–2011 studies[J]. International Journal of Hygiene and Environmental Health, 2014, 217(1): 46–51.

[14] 李宝平, 周云芝, 杨德昌, 等. 尘肺的流行病学[J]. 职业与健康, 2007, (07): 549–552.

[15] 袁亮. 煤矿粉尘防控与职业安全健康科学构想[J]. 煤炭学报, 2020, 45(1): 1–7.

[16] 薛少谦, 黄子超, 杜宇婷, 等. 基于爆炸强度与隔爆屏障作用技术的巷道隔爆实验[J]. 煤炭学报, 2021, 46(06): 1791–1798.

[17] 景国勋, 彭乐, 班涛, 等. 甲烷煤尘耦合爆炸传播特性及伤害研究[J]. 中国安全科学学报, 2022, 32(01): 72–78.

[18] 聂百胜, 王晓彤, 宫婕, 等. 瓦斯煤尘爆炸特性及抑爆方法研究进展[J]. 安全, 2021, 42(01): 1–15.

[19] 周群. 煤矿井下活性磁化水降尘机制及技术研究[D]. 中国矿业大学, 2019.

[20] 王俊铭, 魏国营. 煤尘爆炸事故救援任务模块化研究[J]. 煤矿开采, 2017, 22(6): 96–99.

[21] 王宝兴, 经建生, 高云升. 黑龙江七台河东风煤矿矿难是瓦斯爆炸引起的煤尘爆炸[J]. 消防技术与产品信息, 2006, (04): 45–47.

[22] 王宝兴. 煤矿瓦斯爆炸的主要原因和应对措施[J]. 消防科学与技术, 2003, (04): 289–291.

[23] Yin S, Nie W, Liu Q, et al. Transient CFD modelling of space-time evolution of dust pollutants and air-curtain generator position during tunneling[J]. Journal of Cleaner Production, 2019, 239: 117924.

[24] Wang P, Tan X, Zhang L, et al. Influence of particle diameter on the wettability of coal dust and the dust suppression efficiency via spraying[J]. Process Safety and Environmental Protection, 2019, 132: 189–199.

[25] Li J, Zhou F, Liu H. The selection and application of a compound wetting agent to the coal seam water infusion for dust control[J]. International Journal of Coal Preparation and Utilization, 2016, 36(4): 192–206.

[26] Liu Z, Nie W, Peng H, et al. The effects of the spraying pressure and nozzle orifice diameter on the atomizing rules and dust suppression performances of an external spraying system in a fully-mechanized excavation face[J]. Powder Technology, 2019, 350: 62–80.

[27] Kojevnikova S, Zimmels Y. Mechanism of collection of aerosols by an array of oppositely charged drops[J]. Journal of Aerosol Science, 2000, 31(4): 437–461.

[28] Adamiak K, Jaworek A, Krupa A. Deposition efficiency of dust particles on a single, falling and charged water droplet[J]. IEEE Transactions on Industry Applications, 2001, 37(3): 743–750.

[29] Hu S, Huang Y, Feng G, et al. Investigation on the design of atomization device for coal dust suppression in underground roadways[J]. Process Safety and Environmental Protection, 2019, 129: 230–237.

[30] 李树刚, 闫冬洁, 严敏, 等. 糖脂活性剂对煤体润湿及微观结构特性影响试验[J]. 安全与环境学报, 2022, 22(02): 680–687.

[31] 李树刚, 郭豆豆, 白杨, 等. 不同质量分数SDBS对煤体润湿性影响的分子模拟[J]. 中国安全科学学报, 2020, 30(03): 21–27.

[32] 林海飞, 刘宝莉, 严敏, 等. 非阳离子表面活性剂对煤润湿性能影响的研究[J]. 中国安全科学学报, 2018, 28(05): 123–128.

[33] 陈厚涛, 赵兵, 徐进, 等. 燃煤飞灰超细颗粒物声波团聚清除的实验研究[J]. 中国电机工程学报, 2007, (35): 28–32.

[34] Wood R W, Loomis A L. The physical and biological effects of high-frequency sound-waves of great intensity[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1927, 4(22): 417–436.

[35] Patterson H, Cawood W. Phenomena in a sounding tube[J]. Nature, Nature Publishing Group, 1931, 127: 667–668.

[36] Brandt O, Hiedemann E. The aggregation of suspended particles in gases by sonic and supersonic waves[J]. Transactions of the Faraday Society, 1936, 32: 1101–1110.

[37] Mednikov E. Acoustic coagulation and precipitation of aerosols[J]. New York: Consultants Bureau, 1963, 1: 1–6.

[38] 陈子越, 吕洪坤, 张光学, 等. 声波团聚技术发展现状及在火灾消烟应用前景[J]. 应用声学, 2021, 12(6): 1–8.

[39] Temkin S, Ecker G Z. Droplet pair interactions in a shock-wave flow field[J]. Journal of Fluid Mechanics, 1989, 202: 467–497.

[40] Hoffmann T L. An extended kernel for acoustic agglomeration simulation based on the acoustic wake effect[J]. Journal of Aerosol Science, 1997, 28(6): 919–936.

[41] Hoffmann T L. Environmental implications of acoustic aerosol agglomeration[J]. Ultrasonics, 2000, 38(1–8): 353–357.

[42] Hoffmann T L, Koopmann G H. Visualization of acoustic particle interaction and agglomeration: Theory and experiments[J]. The Journal of the Acoustical Society of America, 1996, 99(4): 2130–2141.

[43] González I, Gallego-Juárez J A, Riera E. The influence of entrainment on acoustically induced interactions between aerosol particles—an experimental study[J]. Journal of Aerosol Science, 2003, 34(12): 1611–1631.

[44] Volk M, Moroz W J. Sonic agglomeration of aerosol particles[J]. Water, Air, and Soil Pollution, 1976, 5(3): 319–334.

[45] Shaw D T, Tu K W. Acoustic particle agglomeration due to hydrodynamic interaction between monodisperse aerosols[J]. Journal of Aerosol Science, 1979, 10(3): 317–328.

[46] Hoffmann T L, Koopmann G H. Visualization of acoustic particle interaction and agglomeration: Theory evaluation[J]. The Journal of the Acoustical Society of America, 1997, 101(6): 3421–3429.

[47] Yuan D, Zhang G, Lin C, et al. Fast elimination of cable fire smoke in underground tunnels using acoustic agglomeration technology[J]. Tunnelling and Underground Space Technology, 2021, 117: 104154.

[48] Shen G, Huang X, He C, et al. Experimental study of acoustic agglomeration and fragmentation on coal-fired ash with different particle size distribution[J]. Powder Technology, 2018, 325: 145–150.

[49] Cao H, Li F, Zhao X, et al. Micro-droplet deposition and growth on a glass slide driven by acoustic agglomeration[J]. Experiments in Fluids, 2021, 62(6): 127.

[50] Fan F, Zhang M, Peng Z, et al. Direct Simulation Monte Carlo Method for Acoustic Agglomeration under Standing Wave Condition[J]. Aerosol and Air Quality Research, 2017, 17(4): 1073–1083.

[51] Fan F, Yang X, Kim C N. Direct simulation of inhalable particle motion and collision in a standing wave field[J]. Journal of Mechanical Science and Technology, 2013, 27(6): 1707–1712.

[52] Wu Z, Fan F, Yan J, et al. An adaptable direct simulation Monte Carlo method for simulating acoustic agglomeration of solid particles[J]. Chemical Engineering Science, 2022, 249: 117298.

[53] Liu J, Wang J, Zhang G, et al. Frequency comparative study of coal-fired fly ash acoustic agglomeration[J]. Journal of Environmental Sciences, 2011, 23(11): 1845–1851.

[54] Zhang G, Liu J, Wang J, et al. Numerical simulation of acoustic wake effect in acoustic agglomeration under Oseen flow condition[J]. Chinese Science Bulletin, 2012, 57(19): 2404–2412.

[55] 郑建祥, 王宗群. 燃煤细颗粒声波团聚过程的数值模拟[J]. 东北电力大学学报, 2019, 39(05): 65–71.

[56] Kačianauskas R, Maknickas A, Vainorius D. DEM analysis of acoustic wake agglomeration for mono-sized microparticles in the presence of gravitational effects[J]. Granular Matter, 2017, 19(3): 1–12.

[57] Markauskas D, Kačianauskas R, Maknickas A. Numerical particle-based analysis of the effects responsible for acoustic particle agglomeration[J]. Advanced Powder Technology, 2015, 26(3): 698–704.

[58] Markauskas D, Maknickas A, Kačianauskas R. Simulation of Acoustic Particle Agglomeration in Poly-dispersed Aerosols[J]. Procedia Engineering, 2015, 102: 1218–1225.

[59] 屈广宁, 凡凤仙, 张斯宏, 等. 驻波声场中单分散细颗粒的相互作用特性[J]. 物理学报, 2020, 69(6): 178–186.

[60] 徐超. 低浓度细颗粒物声波团聚特性研究与机理分析[D]. 东南大学, 2019.

[61] 王洁. 声波团聚及联合其他方法脱除燃煤飞灰细颗粒的研究[D]. 浙江大学, 2012.

[62] Li K, Wang E, Wang Q, et al. Improving the removal of inhalable particles by combining flue gas condensation and acoustic agglomeration[J]. Journal of Cleaner Production, 2020, 261: 121270.

[63] Yan J, Chen L, Yang L. Combined effect of acoustic agglomeration and vapor condensation on fine particles removal[J]. Chemical Engineering Journal, 2016, 290: 319–327.

[64] Yan J, Chen L, Li Z. Removal of fine particles from coal combustion in the combined effect of acoustic agglomeration and seed droplets with wetting agent[J]. Fuel, 2016, 165: 316–323.

[65] 胡惠敏, 李瑞阳, 蔡萌, 等. 声波与其他方法联合作用脱除细颗粒物的研究进展[J]. 上海理工大学学报, 2016, 38(1): 13–18.

[66] Yang N, Fan F, Hu X, et al. Influence of large seed particle on acoustic particle interaction dynamics: A numerical study[J]. Journal of Aerosol Science, 2022, 165: 106018.

[67] 陶威, 徐超, 仲兆平. 低浓度细颗粒物声波团聚及喷雾优化实验[J]. 环境工程, 2020, 38(10): 162–168.

[68] 张瑞翔, 王鹏, 伍婷婷, 等. 声波与喷雾对于飞灰颗粒团聚的影响[J]. 化工进展, 2020, 39(03): 858–863.

[69] 张光学, 朱颖杰, 周涛涛, 等. 喷雾对促进细颗粒物声波团聚的影响[J]. 化工学报, 2017, 68(03): 864–869.

[70] 沈国清, 黄晓宇, 何春龙, 等. 不同粒径分布颗粒声波团聚联合喷雾实验研究[J]. 燃烧科学与技术, 2018, 24(06): 513–517.

[71] 柳晓琳, 杜健敏, 刘恒, 等. 声波团聚耦合技术在去除烟气细颗粒物中的应用进展[J]. 现代化工, 2022, 42(08): 85–88.

[72] 吕洪坤, 林宸煜, 余斌, 等. 电缆火灾烟雾生成特性及声波团聚消烟的实验研究[J]. 消防科学与技术, 2022, 41(01): 5–10.

[73] 张光学, 马振方, 吴林陶, 等. 超细液滴气溶胶声波团聚的实验研究[J]. 中国电机工程学报, 2020, 40(02): 608–615.

[74] Mao Z, Zhang G, Gu H, et al. Experimental study of acoustic agglomeration coupled with water droplets on eliminating cable fire smoke[J]. Powder Technology, 2022, 412: 117977.

[75] 姚辉辉, 张光学, 吴林陶, 等. 耦合水雾的声团聚消除火灾烟雾的实验研究[J]. 声学技术, 2022, 41(01): 7–13.

[76] Prostański D. Use of air-and-water spraying systems for improving dust control in mines[J]. Journal of Sustainable Mining, 2013, 12(2): 29–34.

[77] 王鹏飞, 刘荣华, 桂哲, 等. 煤矿井下气水喷雾雾化特性及降尘效率理论研究[J]. 煤炭学报, 2016, 41(09): 2256–2262.

[78] Yu H, Cheng W, Peng H, et al. An investigation of the nozzle’s atomization dust suppression rules in a fully-mechanized excavation face based on the airflow-droplet-dust three-phase coupling model[J]. Advanced Powder Technology, 2018, 29(4): 941–956.

[79] 王鹏飞, 谭烜昊, 刘荣华, 等. 供水压力对气水喷雾雾化特性及降尘效果的影响[J]. 应用基础与工程科学学报, 2018, 26(06): 1348–1359.

[80] 王鹏飞, 谭烜昊, 刘荣华, 等. 出口直径对内混式空气雾化喷嘴雾化特性及降尘性能的影响[J]. 煤炭学报, 2018, 43(10): 2823–2831.

[81] 王鹏飞, 刘荣华, 王海桥, 等. 煤矿井下气水喷雾雾化特性实验研究[J]. 煤炭学报, 2017, 42(05): 1213–1220.

[82] 王鹏飞, 刘荣华, 汤梦, 等. 煤矿井下高压喷雾雾化特性及其降尘效果实验研究[J]. 煤炭学报, 2015, 40(09): 2124–2130.

[83] 周刚, 聂文, 程卫民, 等. 煤矿综放工作面高压雾化降尘对粉尘颗粒微观参数影响规律分析[J]. 煤炭学报, 2014, 39(10): 2053–2059.

[84] 马素平, 寇子明. 喷雾降尘效率及喷雾参数匹配研究[J]. 中国安全科学学报, 2006, (05): 84–88.

[85] 周刚, 程卫民, 王刚, 等. 综放工作面粉尘场与雾滴场耦合关系的实验研究[J]. 煤炭学报, 2010, 35(10): 1660–1664.

[86] 王健, 刘荣华, 王鹏飞, 等. 常用压力式喷嘴雾化特性及降尘性能研究[J]. 煤矿安全, 2019, 50(08): 36–40.

[87] Peng H, Nie W, Cai P, et al. Development of a novel wind-assisted centralized spraying dedusting device for dust suppression in a fully mechanized mining face[J]. Environmental Science and Pollution Research, 2019, 26(4): 3292–3307.

[88] Peng H, Nie W, Yu H, et al. Research on mine dust suppression by spraying: Development of an air-assisted PM10 control device based on CFD technology[J]. Advanced Powder Technology, 2019, 30(11): 2588–2599.

[89] Li Y, Qi Q, Zhang L, et al. Atomization characteristics of a fan air-assisted nozzle used for coal mine dust removal: an experimental study[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020: 1–17.

[90] 王鹏飞, 李泳俊, 刘荣华, 等. 内混式空气雾化喷嘴雾化特性及降尘效率研究[J]. 煤炭学报, 2019, 44(05): 1570–1579.

[91] Wang P, Shi Y, Zhang L, et al. Effect of structural parameters on atomization characteristics and dust reduction performance of internal-mixing air-assisted atomizer nozzle[J]. Process Safety and Environmental Protection, 2019, 128: 316–328.

[92] 赵芳, 徐兵兵, 符澄, 等. 旋流式气泡雾化喷嘴喷雾特性实验研究[J]. 实验流体力学, 2022, 36(03): 1–8.

[93] Wang Z, Li S, Ren T, et al. Respirable dust pollution characteristics within an underground heading face driven with continuous miner—A CFD modelling approach[J]. Journal of Cleaner Production, 2019, 217: 267–283.

[94] Pak S I, Chang K S. Performance estimation of a Venturi scrubber using a computational model for capturing dust particles with liquid spray[J]. Journal of Hazardous Materials, 2006, 138(3): 560–573.

[95] Sun B, Cheng W, Wang J, et al. Development of Venturi negative-pressure secondary dedust device and application of local spray closure technique[J]. Advanced Powder Technology, 2019, 30(1): 42–54.

[96] Xie Y, Fan G, Dai J, et al. New respirable dust suppression systems for coal mines[J]. Journal of China University of Mining & Technology, 2007, 17(3): 0321–0325.

[97] Nie W, Liu Y, Wang H, et al. The development and testing of a novel external-spraying injection dedusting device for the heading machine in a fully-mechanized excavation face[J]. Process Safety and Environmental Protection, 2017, 109: 716–731.

[98] Ren T X, Plush B, Aziz N. Dust Controls and Monitoring Practices on Australian Longwalls[J]. Procedia Engineering, 2011, 26: 1417–1429.

[99] 邵化振, 张广军, 李政, 等. 高压喷雾引射降尘装置的理论与实验研究[J]. 煤炭学报, 2001, (03): 299–302.

[100] 孙彪. 综采面尘源局部雾化封闭控除尘技术[D]. 山东科技大学, 2018.

[101] Guo C, Nie W, Xu C, et al. A study of the spray atomization and suppression of tunnel dust pollution based on a CFD-based simulation[J]. Journal of Cleaner Production, 2020, 276: 123632.

[102] Ren W, Shi J, Zhu J, et al. An innovative dust suppression device used in underground tunneling[J]. Tunnelling and Underground Space Technology, 2020, 99: 103337.

[103] Nie W, Ma X, Cheng W, et al. A novel spraying/negative-pressure secondary dust suppression device used in fully mechanized mining face: A case study[J]. Process Safety and Environmental Protection, 2016, 103: 126–135.

[104] Zhou Q, Qin B, Wang F, et al. Effects of droplet formation patterns on the atomization characteristics of a dust removal spray in a coal cutter[J]. Powder Technology, 2019, 344: 570–580.

[105] 邬高高, 王鹏飞, 刘荣华, 等. 供气压力对流体型超声喷嘴雾化特性及降尘效率的影响[J]. 煤炭学报, 2021, 46(06): 1898–1906.

[106] 张天, 荆德吉, 葛少成, 等. 超音速汲水虹吸气动雾化降尘技术[J]. 煤炭学报, 2021, 46(12): 3912–3921.

[107] Zhang T, Jing D, Ge S, et al. Dust removal characteristics of a supersonic antigravity siphon atomization nozzle[J]. Advances in Mechanical Engineering, 2020, 12(12): 1–9.

[108] 陈凯, 宋亚新, 王卓龑, 等. 李家壕煤矿粉尘特性及音爆雾化降尘系统应用[J]. 能源与环保, 2021, 43(12): 14–19.

[109] 马威. 煤矿井下气水喷雾雾化效果实验研究及应用[J]. 煤矿安全, 2021, 52(11): 32–37.

[110] Wang H, Wang C, Wang D. The influence of forced ventilation airflow on water spray for dust suppression on heading face in underground coal mine[J]. Powder Technology, 2017, 320: 498–510.

[111] Wang H, Wu J, Du Y, et al. Investigation on the atomization characteristics of a solid-cone spray for dust reduction at low and medium pressures[J]. Advanced Powder Technology, 2019, 30(5): 903–910.

[112] Cheng W, Ma Y, Yang J, et al. Effects of atomization parameters of dust removal nozzles on the de-dusting results for different dust sources[J]. International Journal of Mining Science and Technology, 2016, 26(6): 1025–1032.

[113] 聂文, 刘阳昊, 马骁, 等. 风流扰动支架架间高压喷雾降尘雾滴粒度实验[J]. 中国矿业大学学报, 2016, 45(04): 670–676.

[114] Zhou Q, Qin B, Wang J, et al. Effects of preparation parameters on the wetting features of surfactant-magnetized water for dust control in Luwa mine, China[J]. Powder Technology, 2018, 326: 7–15.

[115] Zhou Q, Qin B, Wang J, et al. Experimental investigation on the changes of the wettability and surface characteristics of coal dust with different fractal dimensions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 551: 148–157.

[116] Charinpanitkul T, Tanthapanichakoon W. Deterministic model of open-space dust removal system using water spray nozzle: Effects of polydispersity of water droplet and dust particle[J]. Separation and Purification Technology, 2011, 77(3): 382–388.

[117] Xu C, Nie W, Liu Z, et al. Multi-factor numerical simulation study on spray dust suppression device in coal mining process[J]. Energy, 2019, 182: 544–558.

[118] Zhou Q, Qin B. Coal dust suppression based on water mediums: A review of technologies and influencing factors[J]. Fuel, 2021, 302: 121196.

[119] Xu G, Chen Y, Eksteen J, et al. Surfactant-aided coal dust suppression: A review of evaluation methods and influencing factors[J]. Science of The Total Environment, 2018, 639: 1060–1076.

[120] Wang P, Han H, Tian C, et al. Experimental study on dust reduction via spraying using surfactant solution[J]. Atmospheric Pollution Research, 2020, 11(6): 32–42.

[121] Zhou L, Yang S, Hu B, et al. Evaluating of the performance of a composite wetting dust suppressant on lignite dust[J]. Powder Technology, 2018, 339: 882–893.

[122] 周磊, 杨树莹, 吴新, 等. 表面活性剂增强喷雾对褐煤细颗粒物的抑制[J]. 东南大学学报(自然科学版), 2019, 49(02): 280–287.

[123] Zhang K, Zhang J, Wei J, et al. Coal seam water infusion for dust control: a technical review[J]. Environmental Science and Pollution Research, 2019, 26(5): 4537–4554.

[124] Bao Q, Nie W, Liu C, et al. The preparation of a novel hydrogel based on crosslinked polymers for suppressing coal dusts[J]. Journal of Cleaner Production, 2020, 249: 119343.

[125] Zhou Q, Qin B, Ma D, et al. Novel technology for synergetic dust suppression using surfactant-magnetized water in underground coal mines[J]. Process Safety and Environmental Protection, 2017, 109: 631–638.

[126] Xu C, Wang D, Wang H, et al. Experimental investigation of coal dust wetting ability of anionic surfactants with different structures[J]. Process Safety and Environmental Protection, 2019, 121: 69–76.

[127] Tien J C, Kim J. Respirable coal dust control using surfactants[J]. Applied Occupational and Environmental Hygiene, 1997, 12(12): 957–963.

[128] Zhang Q, Chen X, Wang H, et al. Exploration on molecular dynamics simulation methods of microscopic wetting process for coal dust[J]. International Journal of Coal Science & Technology, 2021, 8(2): 205–216.

[129] 张建国, 刘依婷, 王满, 等. 基于分子动力学模拟的非离子表面活性剂对煤润湿性影响机制[J]. 工程科学与技术, 54(5): 1–12.

[130] 聂文, 牛文进, 鲍秋, 等. 离子型表面活性剂对低阶煤润湿性的调控机制研究[J]. 煤炭学报, 2022: 1–13.

[131] 王成勇, 邢耀文, 夏阳超, 等. 离子型表面活性剂对低阶煤润湿性的调控机制研究[J]. 煤炭学报, 47(08): 3101–3107.

[132] Xi X, Jiang S, Zhang W, et al. An experimental study on the effect of ionic liquids on the structure and wetting characteristics of coal[J]. Fuel, 2019, 244: 176–183.

[133] Sun Y, Nie R, Zhang L. Study of Influence Factors on Wettability of Coal Dust[J]. Advanced Materials Research, 2013, 724: 1050–1053.

[134] Zhang G, Zhou T, Zhang L, et al. Improving acoustic agglomeration efficiency of coal-fired fly-ash particles by addition of liquid binders[J]. Chemical Engineering Journal, 2018, 334: 891–899.

[135] Liu Y, Hu B, Zhou L, et al. Improving the removal of fine particles with an electrostatic precipitator by chemical agglomeration[J]. Energy & Fuels, 2016, 30(10): 8441–8447.

[136] Wang X, Yuan S, Li X, et al. Synergistic effect of surfactant compounding on improving dust suppression in a coal mine in Erdos, China[J]. Powder Technology, 2019, 344: 561–569.

[137] Wang X, Yuan S, Jiang B. Experimental investigation of the wetting ability of surfactants to coals dust based on physical chemistry characteristics of the different coal samples[J]. Advanced Powder Technology, 2019, 30(8): 1696–1708.

[138] Meng J, Xia J, Meng H, et al. Effects of surfactant compounding on the wettability characteristics of Zhaozhuang coal: Experiment and molecular simulation[J]. Tenside Surfactants Detergents, 2020, 57(5): 390–400.

[139] Wang Q, Wang D, Wang H, et al. Influence of alkyl polyglucoside and fatty alcohol ether sulfate on the foaming and wetting properties of sodium dodecyl benzene sulfonate for mine dust control[J]. Powder Technology, 2019, 345: 91–98.

[140] 廖艺, 牛亚宾, 潘艳秋, 等. 复配表面活性剂对油水界面行为和性质影响的模拟研究[J]. 化工学报, 73(09): 4003–4014.

[141] Shi G, Han C, Wang Y, et al. Experimental study on synergistic wetting of a coal dust with dust suppressant compounded with noncationic surfactants and its mechanism analysis[J]. Powder Technology, 2019, 356: 1077–1086.

[142] Xu L, Pei Z. Preparation and optimization of a novel dust suppressant for construction sites[J]. Journal of Materials in Civil Engineering, 2017, 29(8): 04017051.

[143] Ni G, Sun Q, Xun M, et al. Effect of NaCl-SDS compound solution on the wettability and functional groups of coal[J]. Fuel, 2019, 257: 116077.

[144] 林海飞, 田佳敏, 刘丹, 等. SDBS与CaCl2复配液对煤体瓦斯解吸抑制效应研究[J]. 中国安全科学学报, 2019, 29(11): 149–155.

[145] 刘丹. 表面活性剂影响煤体瓦斯解吸效应的实验研究[D]. 西安科技大学, 2019.

[146] Liu J, Wang S, Jin L, et al. Water-retaining properties of NCZ composite dust suppressant and its wetting ability to hydrophobic coal dust[J]. International Journal of Coal Science & Technology, 2021, 8(2): 240–247.

[147] Zhou L, Yang S, Chen W, et al. Chemical agglomeration properties of fine particles immersed in solutions and the reduction in fine particle emission by adding emulsion polymers[J]. Fuel Processing Technology, 2018, 175: 44–53.

[148] Zhou L, Yang S, Yuan Z, et al. Inhibition of fine particles fugitive emission from the open-pit lignite mines by polymer aqueous solutions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555: 429–439.

[149] Zhao B, Li S, Lin H, et al. Experimental study on the influence of surfactants in compound solution on the wetting-agglomeration properties of bituminous coal dust[J]. Powder Technology, 2022, 395: 766–775.

[150] Krstonošić V, Milanović M, Dokić L. Application of different techniques in the determination of xanthan gum-SDS and xanthan gum-Tween 80 interaction[J]. Food Hydrocolloids, 2019, 87: 108–118.

[151] Wang H, Wei X, Du Y, et al. Effect of water-soluble polymers on the performance of dust-suppression foams: Wettability, surface viscosity and stability[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 568: 92–98.

[152] Zhou L, Zhang J, Liu X, et al. Improving the electrostatic precipitation removal efficiency on fine particles by adding wetting agent during the chemical agglomeration process[J]. Fuel Processing Technology, 2022, 230: 107202.

[153] Zhou G, Ma Y, Fan T, et al. Preparation and characteristics of a multifunctional dust suppressant with agglomeration and wettability performance used in coal mine[J]. Chemical Engineering Research and Design, 2018, 132: 729–742.

[154] Zhang H, Nie W, Yan J, et al. Preparation and performance study of a novel polymeric spraying dust suppression agent with enhanced wetting and coagulation properties for coal mine[J]. Powder Technology, 2020, 364: 901–914.

[155] Jin H, Nie W, Zhang H, et al. Preparation and characterization of a novel environmentally friendly coal dust suppressant[J]. Journal of Applied Polymer Science, 2019, 136(17): 47354.

[156] Fan T, Zhou G, Wang J. Preparation and characterization of a wetting-agglomeration-based hybrid coal dust suppressant[J]. Process Safety and Environmental Protection, 2018, 113: 282–291.

[157] Zhou G, Ding J, Ma Y, et al. Synthesis and performance characterization of a novel wetting cementing agent for dust control during conveyor transport in coal mines[J]. Powder Technology, 2020, 360: 165–176.

[158] Sun J, Zhou G, Gao D, et al. Preparation and performance characterization of a composite dust suppressant for preventing secondary dust in underground mine roadways[J]. Chemical Engineering Research and Design, 2020, 156: 195–208.

[159] Yan J, Nie W, Xiu Z, et al. Development and characterization of a dust suppression spray agent based on an adhesive NaAlg−gln−poly/polysaccharide polymer[J]. Science of The Total Environment, 2021, 785: 147192.

[160] 姚芙蓉, 李军, 张莹, 等. 生物表面活性剂生产及应用研究进展[J]. 微生物学通报, 2022, 49(05): 1889–1901.

[161] 王和堂, 贺胜, 章琦, 等. 微生物发酵法合成生物抑尘剂的试验研究[J]. 煤炭学报, 2021, 46(02): 477–488.

[162] Shi G, Qi Jiamin, Teng G, et al. Influence of coal properties on dust suppression effect of biological dust suppressant[J]. Advanced Powder Technology, 2022, 33: 103352.

[163] Wu M, Hu X, Zhang Q, et al. Preparation and performance of a biological dust suppressant based on the synergistic effect of enzyme-induced carbonate precipitation and surfactant[J]. Environ Sci Pollut Res, 2022, 29: 8423–8437.

[164] Wang K, Zhang Y, Cai W, et al. Study on the microscopic mechanism and optimization of dust suppression by compounding biological surfactants[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625: 126850.

[165] 生物纳膜抑尘技术[J]. 中国环保产业, 2015, (06): 71.

[166] 张健, 许博, 魏建平, 等. 基于粗糙度的煤体表面接触角数值模拟研究[J]. 煤炭科学技术, : 1–9.

[167] 张妹珠, 许婧璟, 江权, 等. 基于原子力显微镜的板岩杨氏模量宏微观跨尺度表征方法研究[J]. 岩土力学, 2022, 43(S1): 245–257.

[168] Xu C, Wang D, Wang H, et al. Effects of chemical properties of coal dust on its wettability[J]. Powder Technology, 2017, 318: 33–39.

[169] 赵振保, 杨晨, 孙春燕, 等. 煤尘润湿性的实验研究[J]. 煤炭学报, 2011, 36(03): 442–446.

[170] Wang G, Wang E, Huang Q, et al. Effects of cationic and anionic surfactants on long flame coal seam water injection[J]. Fuel, 2022, 309: 122233.

[171] Yu X, Hu X, Cheng W, et al. Preparation and evaluation of humic acid–based composite dust suppressant for coal storage and transportation[J]. Environ Sci Pollut Res, 2022, 29: 17072–17086.

[172] Chau T T. A review of techniques for measurement of contact angles and their applicability on mineral surfaces[J]. Minerals Engineering, 2009, 22(3): 213–219.

[173] Yuan Y, Lee T R. Contact angle and wetting properties[M]. Springer Berlin Heidelberg, 2013, 51.

[174] Ding X, Wang D, Luo Z, et al. Multi-scale study on the agglomerating and wetting behaviour of binary electrolyte-surfactant coal dust suppression based on multiple light scattering[J]. Fuel, 2022, 311: 122515.

[175] Pan L, Golden S, Assemi S, et al. Characterization of particle size and composition of respirable coal mine dust[J]. Minerals, 2021, 11(3): 276.

[176] Trechera P, Querol X, Lah R, et al. Chemistry and particle size distribution of respirable coal dust in underground mines in Central Eastern Europe[J]. International Journal of Coal Science & Technology, 2022, 9(1): 1–17.

[177] Sar P, Ghosh A, Scarso A, et al. Surfactant for better tomorrow: applied aspect of surfactant aggregates from laboratory to industry[J]. Research on Chemical Intermediates, 2019, 45(12): 6021–6041.

[178] Sar P, Saha B. Potential application of Micellar nanoreactor for electron transfer reactions mediated by a variety of oxidants: A review[J]. Advances in Colloid and Interface Science, 2020, 284: 102241.

[179] 李树刚, 闫冬洁, 严敏, 等. 烷基糖苷活性剂对煤体结构改性及甲烷解吸特性的影响[J]. 煤炭学报, 2022, 47(01): 286–296.

[180] Zhao Z, Chang P, Xu G, et al. Comparison of static tests and dynamic tests for coal dust surfactants evaluation: A review[J]. Fuel, 2022, 330: 125625.

[181] Chowdhury S, Rakshit A, Acharjee A, et al. Biodegradability and biocompatibility: Advancements in synthetic surfactants[J]. Journal of Molecular Liquids, 2021, 324: 115105.

[182] Danov K D, Kralchevska S D, Kralchevsky P A, et al. Mixed solutions of anionic and zwitterionic surfactant (Betaine): Surface-tension isotherms, adsorption, and relaxation kinetics[J]. Langmuir, 2004, 20(13): 5445–5453.

[183] Li S, Yan D, Yan M, et al. Molecular simulation of alkyl glycoside surfactants with different concentrations inhibiting methane diffusion in coal[J]. Energy, 2023, 263: 125771.

[184] Garcı́a-Ochoa F, Santos V E, Casas J A, et al. Xanthan gum: production, recovery, and properties[J]. Biotechnology Advances, 2000, 18(7): 549–579.

[185] Xu G, Zhang L, Yang Y, et al. Fluorescence property on solutions of zwitterionic surfactant tetradecylbetaine in the presence of macromolecules[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2000, 56(12): 2431–2437.

[186] Ni G, Li L, Sun Q, et al. Effects of [Bmim][Cl] ionic liquid with different concentrations on the functional groups and wettability of coal[J]. Advanced Powder Technology, 2019, 30(3): 610–624.

[187] Azadi Tabar M, Ghazanfari M H, Dehghan Monfared A. Compare numerical modeling and improved understanding of dynamic sessile drop contact angle analysis in Liquid-Solid-Gas system[J]. Journal of Petroleum Science and Engineering, 2020, 184: 106552.

[188] Gao Y, Jung S, Pan L. Interaction and instability of air films between bituminous coal surfaces and surfactant droplets[J]. Fuel, 2020, 274: 117839.

[189] Kilau H W, Voltz J I. Synergistic wetting of coal by aqueous solutions of anionic surfactant and polyethylene oxide polymer[J]. Colloids and Surfaces, 1991, 57(1): 17–39.

[190] 徐超航. 基于表面活性剂-高分子稳定剂协同效应的矿用经济高效抑尘发泡剂研究[D]. 中国矿业大学, 2019.

[191] Katzbauer B. Properties and applications of xanthan gum[J]. Polymer Degradation and Stability, 1998, 59(97): 81–84.

[192] Kim H T, Jung C H, Oh S N, et al. Particle removal efficiency of gravitational wet scrubber considering diffusion, interception, and impaction[J]. Environmental Engineering Science, 2001, 18(2): 125–136.

[193] Nie W, Wei W, Ma X, et al. The effects of ventilation parameters on the migration behaviors of head-on dusts in the heading face[J]. Tunnelling and Underground Space Technology, 2017, 70: 400–408.

[194] Nevers N De. Air Pollution Control Engineering[M]. University of Utab, 2010.

[195] Cleckler J, Elghobashi S, Liu F. On the motion of inertial particles by sound waves[J]. Physics of Fluids, 2012, 24(3): 033301.

[196] Sumiyoshitani S, Okada T, Hara M, et al. Direct observation of the collection process for dust particles from an air stream by a charged water droplet[J]. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 1984, 20(2): 274–281.

[197] Chen Y, Xu G, Huang J, et al. Characterization of coal particles wettability in surfactant solution by using four laboratory static tests[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 567: 304–312.

[198] Chang P, Xu G, Chen Y, et al. Experimental evaluation of the surfactant adsorptions performance on coal particles with different properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648: 129408.

[199] Shi Y, Wei J, Bai W, et al. Numerical investigations of acoustic agglomeration of liquid droplet using a coupled CFD-DEM model[J]. Advanced Powder Technology, 2020, 31(6): 2394–2411.

[200] Shi Y, Wei J, Qiu J, et al. Numerical study of acoustic agglomeration process of droplet aerosol using a three-dimensional CFD-DEM coupled model[J]. Powder Technology, 2020, 362: 37–53.

[201] 徐璇, 张斯宏, 凡凤仙. 声凝并中颗粒间相互作用研究进展[J]. 声学技术, 2019, 38(3): 241–247.

[202] 宋晓通, 凡凤仙. 驻波声场中可吸入颗粒物漂移的影响因素分析[J]. 热能动力工程, 2016, 31(1): 81–86.

[203] 刘琳, 张秀梅, 王秀明. 孔隙内填充单一固体的固-固孔隙介质中的声波传播[J]. 物理学报, 2022, 71(09): 380–391.

[204] Xie J, Liu L, Liu X, et al. Effect of bubble cutting on spray characteristics and dust control performance in the effervescent atomization[J]. Process Safety and Environmental Protection, 2022, 167: 493–499.

中图分类号:

 TD714    

开放日期:

 2027-01-09    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式