- 无标题文档
查看论文信息

题名:

 ZnO-CDs复合光催化剂的制备及其光降解罗丹明B性能研究    

作者:

 高希桐    

学号:

 22213225065    

保密级别:

 内部    

语种:

 chi    

学科代码:

 085600    

学科:

 工学 - 材料与化工    

学生类型:

 硕士    

学位:

 工程硕士    

学位年度:

 2025    

学校:

 西安科技大学    

院系:

 化学与化工学院    

专业:

 材料与化工    

研究方向:

 催化转化新技术    

导师姓名:

 党永强    

导师单位:

 西安科技大学    

提交日期:

 2025-06-16    

答辩日期:

 2025-05-29    

外文题名:

 Preparation of ZnO-CDs composite photocatalyst and its light degradation performance of RhB    

关键词:

 碳点 ; 氧化锌 ; 室温磷光 ; 光催化降解 ; 罗丹明B    

外文关键词:

 carbon dots ; zinc oxide ; room temperature phosphorescence ; photocatalytic degradation ; RhB.    

摘要:

在工业化进程不断加快的当下,水体环境质量持续恶化,研发环境友好型高效净水处理技术已成为当前亟待突破的环保课题。光催化技术凭借其环境友好性和可持续性优势,在降解有机污染物方面展现出巨大潜力。氧化锌(ZnO)因制备成本低廉且具有环境友好特性而备受关注,同时在光催化领域展现出显著活性优势。然而,ZnO在应用中仍面临光生载流子复合速率较快及可见光响应范围有限等不足,这在一定程度上制约了其实际应用潜力。作为一类新兴碳纳米材料,碳点(CDs)不仅展现出独特的光致发光特性,更兼具突出的生物安全性优势,其表面可修饰性特征为多元化应用提供了广阔空间。针对上述分析,本文以ZnO为基底,分别与1, 8-萘酰亚胺(NA)衍生CDs和铝基磷光CDs进行复合,通过调控复合材料的合成温度和采用不同的合成方法,拓宽ZnO纳米材料的可见光响应范围;同时增强光生电子-空穴对的分离效能与传输能力。成功制备出兼具优异光催化性能和良好循环稳定性的ZnO-CDs复合体系,主要研究结果如下:

(1)ZnO/NA衍生碳点复合材料的制备及其光催化性能研究。以NA为碳源、氯化锌(ZnCl2)为锌源,采用一步煅烧法制备了ZnO-NACDs复合材料,通过两步水热法制备了NA-CDs@ZnO。电子显微技术(SEM/TEM)结果表明ZnO-NACDs-450的形貌由不规则的纳米颗粒组成。通过X射线衍射分析(XRD)、傅里叶红外变换光谱(FT-IR)和X射线光电子能谱(XPS)测定了复合材料的结构,结果表明CDs成功与ZnO复合。ZnO-NACDs-450的氧空位占比最高。利用紫外-漫反射光谱(DRS)得到CDs有效的拓宽了ZnO-NACDs在可见光的响应范围。通过荧光光谱(FL)、光电流曲线(It)和电化学阻抗谱(EIS)发现CDs掺杂显著提高了光生载流子的分离及迁移效率,同时ZnO-NACDs-450的光生载流子的分离和迁移效率总体来说高于ZnO和NA-CDs@ZnO,从而表现出更优异的光催化降解性能,紫外-可见光照射40 min后对RhB的降解率为95.6%。通过自由基捕获对照实验,证实了超氧自由基(·O2-)在ZnO-NACDs-450光催化体系中的主导作用。循环稳定性实验表明,在光催化降解RhB的过程中,所制备的ZnO-NACDs-450复合材料具有较好的循环使用稳定性。

(2)ZnO/Al基磷光碳点复合材料的制备及其光催化性能研究。以氯化铝(AlCl3·6H2O)和NA为原料,通过升温热解制备了室温磷光碳点CDs@Al2O3,然后分别采用一步煅烧法和分步水热法制备了ZnO-AlCDs和AlCDs@ZnO复合材料。XPS结果显示,AlCDs@ZnO复合材料比ZnO和ZnO-AlCD的氧空位占比更高。AlCDs@ZnO复合材料具有比ZnO和ZnO-AlCDs更优异的光催化降解性能,经可见光照射120 min后AlCDs-550@ZnO对RhB的降解率可达94.9%,远高于ZnO的60.1%和ZnO-AlCD-500的61.5%。FL、It和EIS结果表明光催化活性提高的原因是CDs@Al2O3的复合有效地促进了光生载流子的分离和迁移效率。活性物质的捕捉实验证实了AlCDs-550@ZnO在光催化降解RhB过程中的主要活性物质还是·O2-。循环稳定性实验表明,在光催化降解RhB的过程中,所制备的AlCDs-550@ZnO复合材料具有较好的循环使用稳定性。

外文摘要:

With the rapid development of industrialization, the problem of water pollution has become increasingly serious, and the development of efficient and environmentally friendly water treatment technologies is urgently needed. Photocatalytic technology, as a green and sustainable advanced oxidation method, demonstrates great potential in degrading organic pollutants. Zinc oxide (ZnO) has attracted much attention due to its inexpensive preparation and environmentally friendly properties, and has shown significant activity advantages in photocatalysis. However, ZnO still faces shortcomings such as fast photogenerated carrier complexation rate and limited visible light response range, which to a certain extent restricts its practical application potential. As an emerging class of carbon nanomaterials, carbon dots (CDs) not only exhibit unique photoluminescent properties, but also have outstanding biosafety advantages, and their surface modifiability provides a broad space for diversified applications. Based on the aforementioned analysis, this study constructs composites using ZnO as the substrate combined with 1,8-naphthalimide (NA)-derived carbon dots and aluminum-based phosphorescent carbon dots, respectively. By controlling the synthesis temperature of the composites and employing different synthetic methods, the visible light response range of ZnO nanomaterials has been broadened, while the separation efficiency and transport capability of photogenerated electron-hole pairs have been enhanced. We have successfully prepared a ZnO-CDs composite system that exhibits both excellent photocatalytic performance and remarkable cycling stability. The main findings are as follows:

(1) Preparation of ZnO/NA-Derived Carbon Dots Composite and Its Photocatalytic Performance Study. Using NA as the carbon source and zinc chloride (ZnCl2) as the zinc source, the ZnO-NACDs composite was prepared via a one-step calcination method, while NA-CDs@ZnO was prepared via a two-step hydrothermal method. Electron microscopy (SEM/TEM) results revealed that the morphology of ZnO-NACDs-450 consists of irregular nanoparticles. The structure of the composites was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS), confirming the successful compositing of CDs with ZnO. ZnO-NACDs-450 generated more oxygen vacancies. Ultraviolet-visible diffuse reflectance spectroscopy (DRS) showed that CDs effectively broadened the visible-light response range of ZnO-NACDs. Fluorescence spectroscopy (FL), photocurrent response (It), and electrochemical impedance spectroscopy (EIS) measurements demonstrated that CDs doping significantly enhanced the separation and migration efficiency of photogenerated carriers. Furthermore, the separation and migration efficiency of photogenerated carriers in ZnO-NACDs-450 was generally higher than that in ZnO and NA-CDs@ZnO, leading to superior photocatalytic degradation performance. Under UV-vis light irradiation for 40 minutes, the degradation rate of Rhodamine B (RhB) reached 95.6%. Radical trapping experiments confirmed the dominant role of superoxide radicals (·O2-) in the ZnO-NACDs-450 photocatalytic system. Cycling stability tests indicated that the prepared ZnO-NACDs-450 composite exhibited good reusability and stability during the photocatalytic degradation of RhB.

(2) Preparation of ZnO/Al-Based Phosphorescent Carbon Dot Composites and Their Photocatalytic Properties. Using aluminum chloride (AlCl3·6H2O) and NA as raw materials, room-temperature phosphorescent carbon dots CDs@Al2O3 were prepared via pyrolysis under heating. Subsequently, ZnO-AlCDs and AlCDs@ZnO composites were synthesized through one-step calcination and stepwise hydrothermal methods, respectively. XPS results revealed that the AlCDs@ZnO composite generated more oxygen vacancies compared to ZnO and ZnO-AlCDs. The AlCDs@ZnO composite exhibited superior photocatalytic degradation performance over ZnO and ZnO-AlCDs. After 120 minutes of visible-light irradiation, the degradation rate of RhB by AlCDs-550@ZnO reached 94.9%, significantly higher than those of ZnO (60.1%) and ZnO-AlCD-500 (61.5%). FL, It, and EIS analyses indicated that the enhanced photocatalytic activity originated by CDs@Al2O3, which effectively promoted the separation and migration efficiency of photogenerated charge carriers. Active species trapping experiments confirmed that ·O2- remained the primary active species in the photocatalytic degradation of RhB by AlCDs-550@ZnO. Cycling stability tests demonstrated excellent recyclability and stability of the AlCDs-550@ZnO composite during the photocatalytic degradation of RhB.

参考文献:

[1] 韩咪, 李洪兵, 刘可. “双碳”目标下中国能源需求未来走势预测分析[J]. 生态经济, 2024, 40(11): 31-37.

[2] Ahmad N, Anae J, Khan M Z, et al. Visible light-conducting polymer nanocomposites as efficient photocatalysts for the treatment of organic pollutants in wastewater[J]. Journal of Environmental Management, 2021, 295: 113362.

[3] Thirunavukkarasu A, Nithya R, Sivashankar R. A review on the role of nanomaterials in the removal of organic pollutants from wastewater[J]. Reviews in Environmental Science and Bio/Technology, 2020, 19(4): 751-778.

[4] 张泽田. 印染废水再生处理回用技术研究[J]. 化纤与纺织技术, 2025, 54(02): 43-45.

[5] Yahya N, Aziz F, Jamaludin N A, et al. A review of integrated photocatalyst adsorbents for wastewater treatment[J]. Journal of Environmental Chemical Engineering, 2018, 6(6): 7411-7425.

[6] 杜明虹, 李启蓝. 水环境污染现状及治理对策分析[J]. 化工管理, 2021, (06): 129-130.

[7] Ozawa A, Yamamoto M, Tanabe T, et al. TiOx Ny/TiO2 Photocatalyst for Hydrogen Evolution under Visible-Light Irradiation. I: Characterization of N in TiOx Ny/TiO2 Photocatalyst[J]. ACS Omega, 2019, 4(24): 20424-20429.

[8] Kraeutler B, Reiche H, Bard J A, et al. Initiation of free radical polymerization by heterogeneous photocatalysis at semiconductor powders[J]. Journal of Polymer Science: Polymer Letters Edition, 1979, 17(8): 535-538.

[9] Yanagida S, Ishimaru Y, Miyake Y, et al. Zinc sulfide-catalyzed photoreduction of aldehydes and related derivatives: two-electron-transfer reduction and relationship with spectroscopic properties[J]. The Journal of Physical Chemistry, 1989, 93(6): 2576-2582.

[10] Nishimoto S, Ohtani B, Shirai H, et al. Photolysis of aqueous poly (vinyl alcohol) solution by heterogeneous TiO2/Pt catalyst[J]. Journal of Polymer Science: Polymer Letters Edition, 1985, 23(3): 141-145.

[11] Doerffler W, Hauffe K. Heterogeneous photocatalysis I. The influence of oxidizing and reducing gases on the electrical conductivity of dark and illuminated zinc oxide surfaces[J]. Journal of Catalysis, 1964, 3(2): 156-170.

[12] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.

[13] Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions[J]. Bulletin of Environmental Contamination and Toxicology, 1976, 16: 697-701.

[14] Maillard-Dupuy C, Guillard C, Courbon H, et al. Kinetics and products of the TiO2 photocatalytic degradation of pyridine in water[J]. Environmental Science & Technology, 1994, 28(12): 2176-2183.

[15] Ren G, Han H, Wang Y, et al. Recent advances of photocatalytic application in water treatment: A review[J]. Nanomaterials, 2021, 11(7): 1804.

[16] Dong S, Feng J, Fan M, et al. Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review[J]. Rsc Advances, 2015, 5(19): 14610-14630.

[17] Ahuja T, Brighu U, Saxena K. Recent advances in photocatalytic materials and their applications for treatment of wastewater: a review[J]. Journal of Water Process Engineering, 2023, 53: 103759.

[18] 杨冲. 氧化锌基功能材料的可控制备、改性及光催化活性研究[D]. 中国石油大学(华东), 2018.

[19] Sun Y, Zhang W, Li Q, et al. Preparations and applications of zinc oxide based photocatalytic materials[J]. Advanced Sensor and Energy Materials, 2023, 2(3): 100069.

[20] Jing L, Wang M, Li X, et al. Covalently functionalized TiO2 with ionic liquid: A high-performance catalyst for photoelectrochemical water oxidation[J]. Applied Catalysis B: Environmental, 2015, 166: 270-276.

[21] Qamar M, Muneer M. A comparative photocatalytic activity of titanium dioxide and zinc oxide by investigating the degradation of vanillin[J]. Desalination, 2009, 249(2): 535-540.

[22] Schlom D G, Pfeiffer L N. Upward mobility rocks![J]. Nature Materials, 2010, 9(11): 881-883.

[23] van Embden J, Gross S, Kittilstved K R, et al. Colloidal approaches to zinc oxide nanocrystals[J]. Chemical Reviews, 2022, 123(1): 271-326.

[24] Ong C B, Ng L Y, Mohammad A W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 536-551.

[25] He W, Kim H K, Wamer W G, et al. Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity[J]. Journal of The American Chemical Society, 2014, 136(2): 750-757.

[26] Tan X, Zhou S, Tao H, et al. Influence of Ag on photocatalytic performance of Ag/ZnO nanosheet photocatalysts[J]. Journal of Central South University, 2019, 26(7): 2011-2018.

[27] Yuan J, Choo E S G, Tang X, et al. Synthesis of ZnO-Pt nanoflowers and their photocatalytic applications[J]. Nanotechnology, 2010, 21(18): 185606.

[28] EkaPutri A, Fauzia V, Roza L. Effect of Au nanoparticles and Au mesostars on the photocatalytic activity of ZnO nanorods[J]. Materials Research Express, 2019, 6(8): 084008.

[29] Liu J, Wang H, Wu H, et al. Research progress of zinc oxide-based heterojunction photocatalysts[J]. Journal of Materials Chemistry A, 2024.

[30] Jana T K, Pal A, Chatterjee K. Self assembled flower like CdS-ZnO nanocomposite and its photo catalytic activity[J]. Journal of Alloys and Compounds, 2014, 583: 510-515.

[31] Jiang J, Wang H, Chen X, et al. Enhanced photocatalytic degradation of phenol and photogenerated charges transfer property over BiOI-loaded ZnO composites[J]. Journal of Colloid and Interface Science, 2017, 494: 130-138.

[32] Gong W, Wei X, Han Y, et al. Photon localization-assisted visible light photocatalysis of photonic crystal CdS-N/ZnO heterojunction for efficient photodegradation tetracycline hydrochloride[J]. Separation and Purification Technology, 2023, 316: 123795.

[33] Fu Y, Ren Z, Wu J, et al. Direct Z-scheme heterojunction of ZnO/MoS2 nanoarrays realized by flowing-induced piezoelectric field for enhanced sunlight photocatalytic performances[J]. Applied Catalysis B: Environmental, 2021, 285: 119785.

[34] Li T, Li M, Jiang J, et al. Bimetallic (Cu, Zn) ZIF-derived S-scheme heterojunction for efficient remediation of aqueous pollutants in visible light/peroxymonosulfate system[J]. Applied Catalysis B: Environmental, 2023, 330: 122539.

[35] Lee K M, Lai C W, Ngai K S, et al. Recent developments of zinc oxide based photocatalyst in water treatment technology: a review[J]. Water Research, 2016, 88: 428-448.

[36] 张文蕾. N、Hf原子单掺和共掺ZnO的第一性原理计算[D]. 伊犁师范学院, 2016.

[37] Elangovan S V, Sivakumar N, Chandramohan V. Magnesium doped zinc oxide nanocrystals for photo-catalytic applications[J]. Journal of Materials Science: Materials in Electronics, 2015, 26: 8753-8759.

[38] Senthilraja A, Subash B, Krishnakumar B, et al. Novel Sr-Au-ZnO: synthesis, characterization and photocatalytic activity[J]. Superlattices and Microstructures, 2014, 75: 701-715.

[39] Hong H K, Jo J, Hwang D, et al. Atomic scale study on growth and heteroepitaxy of ZnO monolayer on graphene[J]. Nano Letters, 2017, 17(1): 120-127.

[40] Zhou X, Shi T, Zhou H. Hydrothermal preparation of ZnO-reduced graphene oxide hybrid with high performance in photocatalytic degradation[J]. Applied Surface Science, 2012, 258(17): 6204-6211.

[41] Barman M K, Mitra P, Bera R, et al. An efficient charge separation and photocurrent generation in the carbon dot-zinc oxide nanoparticle composite[J]. Nanoscale, 2017, 9(20): 6791-6799.

[42] Li S, Li L, Tu H, et al. The development of carbon dots: From the perspective of materials chemistry[J]. Materials Today, 2021, 51: 188-207.

[43] Xu X, Ray R, Gu Y, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. Journal of The American Chemical Society, 2004, 126(40): 12736-12737.

[44] Sun Y P, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. Journal of The American Chemical Society, 2006, 128(24): 7756-7757.

[45] Ambrosi A, Chua C K, Bonanni A, et al. Electrochemistry of graphene and related materials[J]. Chemical Reviews, 2014, 114(14): 7150-7188.

[46] Chen D, Tang L, Li J. Graphene-based materials in electrochemistry[J]. Chemical Society Reviews, 2010, 39(8): 3157-3180.

[47] Yan Y, Gong J, Chen J, et al. Recent advances on graphene quantum dots: from chemistry and physics to applications[J]. Advanced Materials, 2019, 31(21): 1808283.

[48] Sk M A, Ananthanarayanan A, Huang L, et al. Revealing the tunable photoluminescence properties of graphene quantum dots[J]. Journal of Materials Chemistry C, 2014, 2(34): 6954-6960.

[49] Shinde D B, Pillai V K. Electrochemical resolution of multiple redox events for graphene quantum dots[J]. Angewandte Chemie, 2013, 125(9): 2482-2485.

[50] Zhou J, Booker C, Li R, et al. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs)[J]. Journal of The American Chemical Society, 2007, 129(4): 744-745.

[51] Wang Y, Kalytchuk S, Zhang Y, et al. Thickness-dependent full-color emission tunability in a flexible carbon dot ionogel[J]. The Journal of Physical Chemistry Letters, 2014, 5(8): 1412-1420.

[52] Wang Z, Fu B, Zou S, et al. Facile construction of carbon dots via acid catalytic hydrothermal method and their application for target imaging of cancer cells[J]. Nano Research, 2016, 9: 214-223.

[53] Li M, Chen T, Gooding J J, et al. Review of carbon and graphene quantum dots for sensing[J]. ACS Sensors, 2019, 4(7): 1732-1748.

[54] Li H, He X, Liu Y, et al. One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties[J]. Carbon, 2011, 49(2): 605-609.

[55] Ding H, Yu S B, Wei J S, et al. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism[J]. ACS Nano, 2016, 10(1): 484-491.

[56] Ding H, Li X H, Chen X B, et al. Surface states of carbon dots and their influences on luminescence[J]. Journal of Applied Physics, 2020, 127(23): 1101.

[57] Krysmann M J, Kelarakis A, Dallas P, et al. Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission[J]. Journal of The American Chemical Society, 2012, 134(2): 747-750.

[58] Lim S Y, Shen W, Gao Z. Carbon quantum dots and their applications[J]. Chemical Society Reviews, 2015, 44(1): 362-381.

[59] Jiang K, Wang Y, Gao X, et al. Facile, quick, and gram‐scale synthesis of ultralong‐lifetime room‐temperature‐phosphorescent carbon dots by microwave irradiation[J]. Angewandte Chemie International Edition, 2018, 57(21): 6216-6220.

[60] Cao L, Wang X, Meziani M J, et al. Carbon dots for multiphoton bioimaging[J]. Journal of The American Chemical Society, 2007, 129(37): 11318-11319.

[61] Zhu S, Zhang J, Tang S, et al. Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up‐conversion bioimaging applications[J]. Advanced Functional Materials, 2012, 22(22): 4732-4740.

[62] Jiang K, Zhang L, Lu J, et al. Triple‐mode emission of carbon dots: applications for advanced anti‐counterfeiting[J]. Angewandte Chemie International Edition, 2016, 55(25): 7231-7235.

[63] Deng Y, Zhao D, Chen X, et al. Long lifetime pure organic phosphorescence based on water soluble carbon dots[J]. Chemical Communications, 2013, 49(51): 5751-5753.

[64] Chu K W, Lee S L, Chang C J, et al. Recent progress of carbon dot precursors and photocatalysis applications[J]. Polymers, 2019, 11(4): 689.

[65] Chai N N, Wang H X, Hu C X, et al. Well-controlled layer-by-layer assembly of carbon dot/CdS heterojunctions for efficient visible-light-driven photocatalysis[J]. Journal of Materials Chemistry A, 2015, 3(32): 16613-16620.

[66] Pan D, Zhang J, Li Z, et al. Hydrothermal route for cutting graphene sheets into blue‐luminescent graphene quantum dots[J]. Advanced Materials, 2010, 22(6): 734-738.

[67] Zhou J, Yang Y, Zhang C. A low-temperature solid-phase method to synthesize highly fluorescent carbon nitride dots with tunable emission[J]. Chemical Communications, 2013, 49(77): 8605-8607.

[68] Chua C K, Sofer Z, Simek P, et al. Synthesis of strongly fluorescent graphene quantum dots by cage-opening buckminsterfullerene[J]. Acs Nano, 2015, 9(3): 2548-2555.

[69] Yew Y T, Loo A H, Sofer Z, et al. Coke-derived graphene quantum dots as fluorescence nanoquencher in DNA detection[J]. Applied Materials Today, 2017, 7: 138-143.

[70] Schneider J, Reckmeier C J, Xiong Y, et al. Molecular fluorescence in citric acid-based carbon dots[J]. The Journal of Physical Chemistry C, 2017, 121(3): 2014-2022.

[71] Loo A H, Sofer Z, Bouša D, et al. Carboxylic carbon quantum dots as a fluorescent sensing platform for DNA detection[J]. ACS Applied Materials & Interfaces, 2016, 8(3): 1951-1957.

[72] Ma Z, Ming H, Huang H, et al. One-step ultrasonic synthesis of fluorescent N-doped carbon dots from glucose and their visible-light sensitive photocatalytic ability[J]. New Journal of Chemistry, 2012, 36(4): 861-864.

[73] Li L, Li Y, Ye Y, et al. Kilogram-scale synthesis and functionalization of carbon dots for superior electrochemical potassium storage[J]. ACS Nano, 2021, 15(4): 6872-6885.

[74] Russo P, Hu A, Compagnini G, et al. Femtosecond laser ablation of highly oriented pyrolytic graphite: a green route for large-scale production of porous graphene and graphene quantum dots[J]. Nanoscale, 2014, 6(4): 2381-2389.

[75] 胡思哲. 室温磷光碳点的高效合成、性能调控与应用研究[D]. 宁波大学, 2020.

[76] Lin L Y, Kavadiya S, Karakocak B B, et al. ZnO1-x/carbon dots composite hollow spheres: facile aerosol synthesis and superior CO2 photoreduction under UV, visible and near-infrared irradiation[J]. Applied Catalysis B: Environmental, 2018, 230, 36-48.

[77] Kulandaivalu T, Rashid S A, Sabli N, et al. Visible light assisted photocatalytic reduction of CO2 to ethane using CQDs/Cu2O nanocomposite photocatalyst[J]. Diamond and Related Materials, 2019, 91, 64-73.

[78] Liu W L, Liu G D, Shi N, et al. Carbon quantum dot-modified and chloride-doped ordered macroporous graphitic carbon nitride composites for hydrogen evolution[J]. ACS Applied Nano Materials, 2020, 3, (12): 12188-12197.

[78] Mehta A, Mishra A, Basu S, et al. Band gap tuning and surface modification of carbon dots for sustainable environmental remediation and photocatalytic hydrogen production-a review[J]. Journal of Environmental Management, 2019, 250, 109486.

[80] Zaib M, Akhtar A, Maqsood F, et al. Green synthesis of carbon dots and their application as photocatalyst in dye degradation studies[J]. Arabian Journal for Science and Engineering, 2020, 46, (1): 437-446.

[81] Maddu A, Meliafatmah R, Rustami E. Enhancing photocatalytic degradation of methylene blue using ZnO/carbon dots nanocomposite derived From coffee grounds[J]. Polish Journal of Environmental Studies, 2020, 30, (1): 273-282.

[82] Gao J, Zhao S, Guo S, et al. Carbon quantum dot-covered porous Ag with enhanced activity for selective electroreduction of CO2 to CO[J]. Inorganic Chemistry Frontiers, 2019, 6(6): 1453-1460.

[83] Li H, Deng Y, Liu Y, et al. Carbon quantum dots and carbon layer double protected cuprous oxide for efficient visible light CO2 reduction[J]. Chemical Communications, 2019, 55(30): 4419-4422.

[84] Li M, Wang M, Zhu L, et al. Facile microwave assisted synthesis of N-rich carbon quantum dots/dual-phase TiO2 heterostructured nanocomposites with high activity in CO2 photoreduction[J]. Applied Catalysis B: Environmental, 2018, 231: 269-276.

[85] Qu Z, Wang J, Tang J, et al. Carbon quantum dots/KNbO3 hybrid composites with enhanced visible-light driven photocatalytic activity toward dye waste-water degradation and hydrogen production[J]. Molecular Catalysis, 2018, 445: 1-11.

[86] Dong Y, Han Q, Hu Q, et al. Carbon quantum dots enriching molecular nickel polyoxometalate over CdS semiconductor for photocatalytic water splitting[J]. Applied Catalysis B: Environmental, 2021, 293: 120214.

[87] Liu W, Li Y, Liu F, et al. Visible-light-driven photocatalytic degradation of diclofenac by carbon quantum dots modified porous g-C3N4: Mechanisms, degradation pathway and DFT calculation[J]. Water Research, 2019, 151: 8-19.

[88] Xu J J, Lu Y N, Tao F F, et al. ZnO nanoparticles modified by carbon quantum dots for the photocatalytic removal of synthetic pigment pollutants[J]. ACS Omega, 2023, 8(8): 7845-7857.

[89] Zhang X, Pan J, Zhu C, et al. The visible light catalytic properties of carbon quantum dots/ZnO nanoflowers composites[J]. Journal of Materials Science: Materials in Electronics, 2015, 26: 2861-2866.

[90] Bozetine H, Wang Q, Barras A, et al. Green chemistry approach for the synthesis of ZnO-carbon dots nanocomposites with good photocatalytic properties under visible light[J]. Journal of Colloid and Interface Science, 2016, 465: 286-294.

[91] Bhattacharyya S, Ehrat F, Urban P, et al. Effect of nitrogen atom positioning on the trade-off between emissive and photocatalytic properties of carbon dots[J]. Nature Communications, 2017, 8(1): 1401.

[92] Muthulingam S, Bae K B, Khan R, et al. Improved daylight-induced photocatalytic performance and suppressed photocorrosion of N-doped ZnO decorated with carbon quantum dots[J]. RSC Advances, 2015, 5(57): 46247-46251.

[93] Velumani A, Sengodan P, Arumugam P, et al. Carbon quantum dots supported ZnO sphere based photocatalyst for dye degradation application[J]. Current Applied Physics, 2020, 20(10): 1176-1184.

[94] Ren H, Ge L, Guo Q, et al. The enhancement of photocatalytic performance of SrTiO3 nanoparticles via combining with carbon quantum dots[J]. RSC Advances, 2018, 8(36): 20157-20165.

[95] Liu R, Zuo D, Tan C. Construction of C/ZnO/BiOI photocatalyst for enhanced degradation of carbaryl: Characterization, performance and mechanism[J]. Journal of Alloys and Compounds, 2022, 911: 165023.

[96] Lee D E, Kim D J, Moru S, et al. Highly-configured TiO2 hollow spheres adorned with N-doped carbon dots as a high-performance photocatalyst for solar-induced CO2 reduction to methane[J]. Applied Surface Science, 2021, 563: 150292.

[97] Shi L, Li L, Li X, et al. Excitation-independent yellow-fluorescent nitrogen-doped carbon nanodots for biological imaging and paper-based sensing[J]. Sensors and Actuators B: Chemical, 2017, 251: 234-241.

[98] Zhang X, Qin J, Hao R, et al. Carbon-Doped ZnO Nanostructures: Facile Synthesis and Visible Light Photocatalytic Applications[J]. The Journal of Physical Chemistry, C. Nanomaterials and Interfaces, 2015, 119(35):20544-20554.

[99] Wang H, Xie C. The effects of oxygen partial pressure on the microstructures and photocatalytic property of ZnO nanoparticles[J]. Physica E: Low-dimensional Systems and Nanostructures, 2008, 40(8): 2724-2729.

[100] Liang H, Tai X, Du Z, et al. Enhanced photocatalytic activity of ZnO sensitized by carbon quantum dots and application in phenol wastewater[J]. Optical Materials, 2020, 100: 109674.

[101] Xiong G, Pal U, Serrano J G, et al. Photoluminesence and FTIR study of ZnO nanoparticles: the impurity and defect perspective[J]. Physica Status Solidi C, 2006, 3(10): 3577-3581.

[102] Chen J, Chen Q, Ma Q. Influence of surface functionalization via chemical oxidation on the properties of carbon nanotubes[J]. Journal of Colloid and Interface Science, 2012, 370(1): 32-38.

[103] Mukherjee I, Cilamkoti V, Dutta R K. Sunlight-driven photocatalytic degradation of ciprofloxacin by carbon dots embedded in ZnO nanostructures[J]. ACS Applied Nano Materials, 2021, 4(8): 7686-7697.

[104] Zhang X, Wang Y, Hou F, et al. Effects of Ag loading on structural and photocatalytic properties of flower-like ZnO microspheres[J]. Applied Surface Science, 2017, 391: 476 483.

[105] Liu X, Li B, Wang X, et al. Enhanced Schottky effect in the Ni2P cocatalyst via work function up-shift induced by MoO2 for boosting photocatalytic hydrogen evolution[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(32): 10627-10640.

[106] Liu Z, Ji M, Zhao J, et al. Dual modulation steering electron reducibility and transfer of bismuth molybdate nanoparticle to boost carbon dioxide photoreduction to carbon monoxide[J]. Journal of Colloid and Interface Science, 2022, 610: 518-526.

[107] Zhang J, Xu J, Tao F. Interface modification of TiO2 nanotubes by biomass-derived carbon quantum dots for enhanced photocatalytic reduction of CO2[J]. ACS Applied Energy Materials, 2021, 4(11): 13120-13131.

[108] Jia J, Zhang Q, Li Z, et al. Lateral heterojunctions within ultrathin FeS-FeSe2 nanosheet semiconductors for photocatalytic hydrogen evolution[J]. Journal of Materials Chemistry A, 2019, 7(8): 3828-3841.

[109] Zhang J, Ma Y, Du Y, et al. Carbon nanodots/WO3 nanorods Z-scheme composites: remarkably enhanced photocatalytic performance under broad spectrum[J]. Applied Catalysis B: Environmental, 2017, 209: 253-264.

[110] Prabhu S, Pudukudy M, Harish S, et al. Facile construction of djembe-like ZnO and its composite with g-C3N4 as a visible-light-driven heterojunction photocatalyst for the degradation of organic dyes[J]. Materials Science in Semiconductor Processing, 2020, 106: 104754.

[111] Sun L, Zhao X, Jia C J, et al. Enhanced visible-light photocatalytic activity of gC3N4-ZnWO4 by fabricating a heterojunction: investigation based on experimental and theoretical studies[J]. Journal of Materials Chemistry, 2012, 22(44): 23428-23438.

[112] Zhang X, Pan J, Zhu C, et al. The visible light catalytic properties of carbon quantum dots/ZnO nanoflowers composites[J]. Journal of Materials Science: Materials in Electronics, 2015, 26: 2861-2866.

[113] Tran D P H, Pham M T, Wang Y F, et al. Tuning visible light-driven photocatalytic NO removal: Insights from glucose-derived CQDs/ZnO nanorods composite[J]. Journal of Environmental Chemical Engineering, 2023, 11(6): 111561.

[114] Sharma S, Mehta S K, Kansal S K. N doped ZnO/C-dots nanoflowers as visible light driven photocatalyst for the degradation of malachite green dye in aqueous phase[J]. Journal of Alloys and Compounds, 2017, 699: 323-333.

[115] Bozetine H, Wang Q, Barras A, et al. Green chemistry approach for the synthesis of ZnO-carbon dots nanocomposites with good photocatalytic properties under visible light[J]. Journal of Colloid and Interface Science, 2016, 465: 286-294.

[116] Toma E E, Stoian G, Cojocaru B, et al. ZnO/CQDs nanocomposites for visible light photodegradation of organic pollutants[J]. Catalysts, 2022, 12(9): 952.

[117] Kumar S, Dhiman A, Sudhagar P, et al. ZnO-graphene quantum dots heterojunctions for natural sunlight-driven photocatalytic environmental remediation[J]. Applied Surface Science, 2018, 447: 802-815.

[118] Velumani A, Sengodan P, Arumugam P, et al. Carbon quantum dots supported ZnO sphere based photocatalyst for dye degradation application[J]. Current Applied Physics, 2020, 20(10): 1176-1184.

[119] Zhang X, Pan J, Zhu C, et al. The visible light catalytic properties of carbon quantum dots/ZnO nanoflowers composites[J]. Journal of Materials Science: Materials in Electronics, 2015, 26: 2861-2866.

[120] Nugroho D, Wannakan K, Nanan S, et al. The Synthesis of carbon dots/zincoxide (CDs/ZnO-H400) by using hydrothermal methods for degradation of ofloxacin antibiotics and reactive red azo dye (RR141)[J]. Scientific Reports, 2024, 14(1): 2455.

[121] Ayu D G, Gea S, Andriayani, et al. Photocatalytic degradation of methylene blue using N-doped ZnO/carbon dot (N-ZnO/CD) nanocomposites derived from organic soybean[J]. ACS Omega, 2023, 8(17): 14965-14984.

[122] Xu Y, Jin J, Li X, et al. Simple synthesis of ZnO nanoflowers and its photocatalytic performances toward the photodegradation of metamitron[J]. Materials Research Bulletin, 2016, 76: 235-239.

[123] Patra A K, Dutta A, Bhaumik A. Self-assembled mesoporous γ-Al2O3 spherical nanoparticles and their efficiency for the removal of arsenic from water[J]. Journal of Hazardous Materials, 2012, 201: 170-177.

[124] He J, Chen Y, He Y, et al. Anchoring carbon nanodots onto nanosilica for phosphorescence enhancement and delayed fluorescence nascence in solid and liquid states[J]. Small, 2020, 16(49): 2005228.

[125] Ge W, Zhang P, Zhang X, et al. Amorphous alumina: a bright red matrix for flexible and transparent anti-counterfeiting[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(30): 10220-10226.

[126] Han Z, Ren L, Cui Z, et al. Ag/ZnO flower heterostructures as a visible-light driven photocatalyst via surface plasmon resonance[J]. Applied Catalysis B: Environmental, 2012, 126: 298-305.

[127] Gao D D, Liu W J, Xu Y, et al. Core-shell Ag@Ni cocatalyst on the TiO2 photocatalyst: one-step photoinduced deposition and its improved H2-evolution activity[J]. Applied Catalysis B: Environmental, 2020, 260, 118190.

中图分类号:

 TQ426    

开放日期:

 2026-06-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式