- 无标题文档
查看论文信息

论文中文题名:

 MOFs/GO 复合材料衍生过渡金属基碳材料的制备及其 氧电催化特性研究    

姓名:

 王鹏    

学号:

 18213069012    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081704    

学科名称:

 工学 - 化学工程与技术 - 应用化学    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 化学与化工学院    

专业:

 应用化学    

研究方向:

 碳基纳米复合材料制备及其电催化性能研究    

第一导师姓名:

 张亚婷    

第一导师单位:

  西安科技大学    

论文提交日期:

 2021-06-25    

论文答辩日期:

 2021-06-07    

论文外文题名:

 Preparation and oxygen electrocatalytic properties of transition metal-based carbon materials derived from MOFs/GO composites    

论文中文关键词:

 氮掺杂石墨烯金属有机骨架氧还原反应氧析出反应    

论文外文关键词:

 Nitrogen doping ; Graphene ; Metal-organic frameworks ; Oxygen reduction reaction ; Oxygen evolution reaction    

论文中文摘要:

化石燃料的日渐枯竭引发了绿色可再生能源储存与转化技术的研究。锌-空气电池(Zinc-Air Batteries, ZABs)由于环境友好性、高效、长时运行能力及高能量密度等特点被认为是最具前景的能源转化装置。但ZABs在实际应用中仍面临由于ORR和OER过程中缓慢的电子转移动力学造成的能量转换效率低、稳定性差等问题。目前,Pt基催化剂及RuO2催化剂分别是最具ORR活性和OER活性的催化剂,但其昂贵又稀少的缺点限制了它们的广泛应用。因此,开发高效、低成本的非贵金属ORR/OER催化剂对于推动锌-空气电池的发展具有十分重要的意义。本论文以石墨烯为催化剂载体,金属有机骨架为活性金属来源,通过配位组装和原位生长等方法制备得到一系列过渡金属-氮-碳(M-N-C)纳米催化剂,并研究了系列材料的ORR及OER性能。具体研究内容如下:

(1)以氧化石墨烯为催化载体,通过水热条件下氧化石墨烯(GO)、Fe3+及单宁酸(TA)之间的配位组装诱导Fe-TA@GO的形成,进而以含氮量高的脲作为氮源,经一步碳化制得具有核-壳结构的纳米Fe/C催化剂(Fe/Fe3C@NC-Gs)。对材料的表征与测试表明:Fe/Fe3C@NC-Gs具有独特的核-壳结构、丰富的介孔结构、大的表面积及高效的氮掺杂。铁核和石墨壳的紧密接触有利于调节电子密度,促进电子由铁核向碳壳的转移。同时,碳壳起到对金属物种Fe/Fe3C的保护和限域作用,可以有效防止碱性介质对活性物种的腐蚀,也有利于避免高温碳化过程中金属物种的团聚。在碱性条件下的电化学测试表明:Fe/Fe3C@NC-G-2具有0.97 V的初始电位和0.88 V的半波电位,均高于商用的Pt/C催化剂。此外,当Fe/Fe3C@NC-G-2作为ORR催化剂使用时,其具有比商用Pt/C催化剂还要高的稳定性和优异的抗甲醇毒蚀能力。相较于不掺氮的Fe/Fe3C@C-G-2,电催化性能得到了明显的提升。

(2)以氧化石墨烯为催化载体,在液相环境中将其与ZIF-67复合得到催化剂前驱体ZIF-67/GO。并依次通过高温碳化及酸刻工艺得到氮掺杂石墨烯修饰的Co/N共掺杂中空碳纳米胶囊(Co@N-HCCs@NG)。所得到的材料具有以下优点:(i)同时将零维(0D)Co纳米颗粒、零维(0D)空心碳纳米胶囊和二维(2D)石墨烯耦合到同一催化体中,丰富了催化活性物种及界面特性;(ii)中空碳纳米胶囊因其独有的内表面而为整个催化体提供了大的表面积(表面积高达618.12 m2·g-1);(iii)杂原子N引入碳骨架可以提高碳基的导电性和电子亲和力,有利于提供更多的活性中心,促进电化学性能的提高。同时,N原子的引入可以促进碳纳米胶囊和氧相关物种的反应性,进而加强各个组分之间的耦合。在碱性条件下的电化学测试表明,Co@N-HCCs@NG展示了高的ORR/OER双功能催化活性。对于ORR,Co@N-HCCs@NG展现了高的ORR初始电位(Eonset=0.98 V)和半波电位(E1/2=0.86 V)。对于OER,Co@N-HCCs@NG仅仅需要1.528 V的电位就能达到10 mA·cm-2的电流密度,这也优于商用的RuO2催化剂(1.583 V)。此外,Co@N-HCCs@NG也表现出优异的催化稳定性。

(3)采用简单的机械配位自组装法成功合成了双氰胺基Co-MOF。以此为金属钴源,将其与氧化石墨烯(GO)进行复合,进而通过高温碳化及酸刻工艺制备得到氮掺杂石墨烯修饰的三维珊瑚礁状碳纳米管组装体(CNAs-NG)纳米材料。在这一策略中,Co-MOF中的双氰胺配体不仅有助于氮的引入,而且可以作为碳纳米管生长的诱导剂。在整个催化剂结构中,金属Co被包裹在碳层中。以氧化石墨烯(GO)为基体对碳纳米管进行桥接,保证碳纳米管的均匀分布。所制备的CNTAs-NG具有三维多孔结构、丰富的缺陷、理想的氮键合类型和高比表面积,这为他们提供了优异的ORR和OER性能。在碱性条件下的电化学测试表明,CNTAs-NG显示了高的ORR初始电位(Eonset=0.97 V)和半波电位(E1/2=0.85 V)以及低的OER过电位(340 mV@10 mA·cm-2)。同时,CNTAs-NG也具有比商用贵金属基催化剂(Pt/C,RuO2)更高的稳定性。

论文外文摘要:

The consumption of fossil fuels has spurred the development of green and renewable energy storage and conversion devices. Zinc-Air Batteries (ZABs) have been targeted as the most promising energy conversion devices due to their environmental-friendliness, high efficiency, long-term operating capacity as well as remarkable energy density. However, the main challenge facing ZABs in widespread application and commercialization is still the bottleneck of low energy conversion efficiency and poor stability caused by sluggish electron transfer dynamics in ORR and OER. Heretofore, it is well known that Pt-based catalysts and RuO2-based catalysts are the most effective catalysts for ORR and OER, respectively. Unfortunately, their wide application are severely restricted by the high price and terrestrial scarcity. Hence, the design of efficient and low-cost noble-metal-free ORR/OER electrocatalysts is of great significance, which will promote the development of the ZABs. In this paper, a series of transition metal-nitrogen-carbon (M-N-C) nano-catalysts were prepared by means of coordination assembly and in-situ growth using graphene as catalyst carrier and metal-organic framework as metal source. In addition, their catalytic abilities of ORR and OER were investigated. The specific research content is as follows:

Graphene oxide (GO) was selected as a catalytic carrier, the formation of Fe-TA@GO is driven by the coordination assembly between GO, Fe3+ and tannic acid (TA) under hydrothermal conditions. Further, a nano-Fe/C catalyst (Fe/Fe3C@NC-Gs) with a core-shell structure is prepared through a one-step carbonization method using urea with high nitrogen content as the nitrogen source. Fe/Fe3C@NC-Gs has a unique core-shell structure, abundant mesoporous structure, large surface area and high efficiency nitrogen doping. The close contact between the iron core and the graphite shell is beneficial to adjust the electron density and promote the transfer of electrons from the iron core to the carbon shell. Furthermore, the carbon shell also plays a role of protecting and confining the metal species Fe/Fe3C, which effectively prevents the alkaline medium from corroding the active species, and also helps to avoid the agglomeration of metal species during the high-temperature carbonization process. The electrochemical test under alkaline conditions shows that Fe/Fe3C@NC-G-2 has an onset potential of 0.97 V and a half-wave potential of 0.88 V, both of which are higher than those of commercial Pt/C catalysts. In addition, when Fe/Fe3C@NC-G-2 is used as an ORR catalyst, its stability and methanol resistance are better than commercial Pt/C catalyst. Compared with Fe/Fe3C@C-G-2, which is not doped with nitrogen, the electrocatalytic performance of Fe/Fe3C@NC-G-2 has been significantly improved.

The catalyst precursor ZIF-67/GO was synthesized by using graphene oxide as the catalytic carrier in the liquid phase environment. The nitrogen-doped graphene decorated Co/N co-doped hollow carbon nanocapsules (Co@N-HCCs@NG) were prepared by high temperature carbonization and acid etching. The obtained material has the following advantages: (i) Co@N-HCCs@NG simultaneously integrates Co nanoparticles (0D), hollow carbon nanocapsules (0D) and graphene (2D) into a catalytic entity, enriched catalytic active species and interface characteristics; (ii) Hollow carbon nanocapsules provide large surface area (up to 618.12 m2·g-1) for the whole catalyst due to their unique inner surface; (iii) The introduction of heteroatom N into the carbon skeleton can increase the conductivity and electron affinity of the carbon substrate, thereby generating more active centers to improvethe electrocatalytic performance. Concurrently, the introduction of N atoms can promote the reactivity of carbon nanocapsules and O2-related species, and strengthen the coupling between the various ingredients. The electrochemical test under alkaline conditions shows that Co@N-HCCs@NG has excellent ORR/OER bifunctional catalytic activity. For ORR, Co@N-HCCs@NG exhibited a high onset potential of 0.98 V and half-wave potential of 0.86 V. For OER, Co@N-HCCs@NG only requires a potential of 1.528 V to reach a current density of 10 mA·cm-2, which is also better than the commercial RuO2 catalyst (1.583 V). Moreover, Co@N-HCCs@NG also possessed excellent catalytic stability.

A dicyanamide-based Co-MOF was successfully synthesized by a simple mechanical coordination self-assembly method. It was then compounded with graphene oxide, and finally the nitrogen-doped graphene decorated three-dimensional coral-like carbon nanotube assembly (CNTAs-NG) was prepared by high temperature carbonization and acid etching process. In this tactic, dicyanamide ligand on the Co-MOF not only was instrumental in the introduction of nitrogen but also acted as the inducer of CNTs. In this structure, Co is encapsulated in the carbon layer. Graphene oxide (GO) is chosen as a matrix to bridge the CNTs and ensure the uniform distribution of CNTs. The obtained CNTAs-NG structure possesses 3D open porous texture, abundant defects, desired nitrogen bonding type and high specific surface area, providing them with excellent ORR and OER properties. The electrochemical test under alkaline conditions shows that the optimized CNTAs-NG sample shows a high onset potential (Eonset=0.97 V) and half-wave potential (E1/2= 0.85 V) for ORR as well as an overpotential of 340 mV at 10 mA·cm-2 for OER. Simultaneously, CNTAs-NG has higher stability than commercial noble metal-based catalysts (Pt/C, RuO2).

 

参考文献:

[1] Stefani V.M. Guaitolini, Jussara F. Fardin. Fuel cells: history (short remind), principles of operation, main features, and applications [J]. Chem. Commun., 2013, 49, 7884-7886.

[2] Ostwald. W.. Die wissenschaftliche Elektrochemie der Gegenwart und die technische der Zukunft [J]. Physikalische Chemie, 2017, 15 U(1): 409-421.

[3] Peighambardoust S. J., Rowshanzamir S., Amjadi M. Review of the proton exchange membranes for fuel cell applications [J]. Int. J. Hydrogen Energy, 2010, 35, 9349-9384.

[4] Zhu B J, Xia D G, Zou R Q. Metal-organic frameworks and their derivatives as bifunctional electrocatalysts [J]. Coord. Chem. Rev., 2018, 376, 430-448.

[5] Safaei M, Foroughi M M, Ebrahimpoor N, Jahani S, Omidi A, Khatami M. A review on metal-organic frameworks: Synthesis and Applications [J]. Trends in Analytical Chemistry, 2019, 118, 401-425.

[6] Yaghi O. M., Li H L. Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels [J]. J. Am. Chem. Soc., 1995, 117, 10401-10402.

[7] S.-S.-Y. Chui, S.-M.-F. Lo, J.P.H. Charmant, A.G. Orpen, I.D. Williams, A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n [J]. Science, 1999, 283, 1148-1150.

[8] Fang Q R, Shi X, Wu G, Tian G, Zhu G S, Wang R W, Qiu S L. The synthesis and characterization of a new 3-D inorganic-organic hybrid framework porous material Zn3(bbdc)3 (4,4’ -bpy)·2(DMF)·4(H2O) [J]. J. Solid State Chem, 2003, 176, 1-4.

[9] Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I A. Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area [J]. Science, 2005, 309, 2040-2042.

[10] Biemmi E, Bein T, Stock N. Synthesis and characterization of a new metal organic framework structure with a 2D porous system: (H2NEt2)2[Zn3(BDC)4]·3DEF [J]. Solid State Sci., 2006, 8, 363-370.

[11] Qi Y, Luo F, Che Y X, Zheng J M. Hydrothermal Synthesis of Metal-Organic Frameworks Based on Aromatic Polycarboxylate and Flexible Bis (imidazole) Ligands [J]. Crystal Growth Design, 2008, 8, 606-611.

[12] P. Horcajada, S. Surble´, C. Serre, D.-Y. Hong, Y.-K. Seo, J.-S. Chang, J.-M. Greneche, I. Margiolakid, G. Ferey [J], Chem. Commun. 27 (2007) 2820-2822.

[13] Tranchemontagne D J., Hunt J R., Yaghi O M.. Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0 [J]. Tetrahedron, 2008, 64, 8553-8557.

[14] Liu W L, Ye L H, Liu X F, Yuan L M, Lu X L, Jiang J X. Rapid synthesis of a novel cadmium imidazole-4,5-dicarboxylate metal-organic framework under microwave-assisted solvothermal condition [J]. Inorg. Chem. Commun., 2008, 11, 1250-1252.

[15] Kaur R, Kaur A, Umar A, Anderson W A., Kansal S K. Metal organic framework (MOF) porous octahedral nanocrystals of Cu-BTC: Synthesis, properties and enhanced absorption properties [J]. Mater. Res. Bull., 2019, 109, 124-133.

[16] Liu Q Y, Xiong W L, Liu C M, Wang Y L, Wei J J, Xiahou Z J, Xiong L H. Chiral Induction in the Ionothermal Synthesis of a 3D Chiral Heterometallic Metal-Organic Framework Constructed from Achiral 1,4-Naphthalenedicarboxylate [J]. Inorg. Chem., 2013, 52, 6773-6775.

[17] Peña-Rodríguez R, Márquez-López E, Guerrero A, Chiñas L E., Hernández-González D F., María Rivera J. Hydrothermal synthesis of Cobalt (II) 3D Metal-Organic Framework acid catalyst applied in the transesterification process of vegetable oil [J]. Mater. Lett., 2018, 217, 117-119.

[18] Stassen I, Styles M J, Van Assche T, Campagnol N, Fransaer J, Denayer J, Tan J C, Falcaro P, De Vos D, Ameloot R. Electrochemical Film Deposition of the Zirconium Metal-Organic Framework UiO-66 and Application in Miniaturized Sorbent Trap [J]. Chem. Mater., 2015, 27, 1801-1807.

[19] Yang H M, Liu X, Song X L, Yang T L, Liang Z H, Fan C M. In situ electrochemical synthesis of MOF-5 and its application in improving photocatalytic activity of BiOBr [J]. Trans. Nonferrous Met. Soc. China, 2015, 25, 3987-3994.

[20] Worrall S D., Mann H, Rogers A, Bissett M A., Attfield M P., Dryfe R A.W.. Electrochemical deposition of zeolitic imidazolate framework electrode coatings for supercapacitor electrodes [J]. Electrochim. Acta, 2016, 197, 228-240.

[21] Lestari W W, Winarni I D, Rahmawati F. Electrosynthesis of Metal-Organic Frameworks (MOFs) Based on Nickel (II) and Benzene 1,3,5-Tri Carboxylic Acid (H3BTC): An Optimization Reaction Condition [J]. Mater. Sci. Eng., 2017, 172, 012064.

[22] Zhang F, Zhang T T, Zou X Q, Liang X Q, Zhu G S, Qu F Y. Electrochemical synthesis of metal organic framework films with proton conductive property [J]. Solid State Ion., 2017, 301, 125-132.

[23] Ni Z, Masel R I.. Rapid Production of Metal-Organic Frameworks via Microwave-Assisted Solvothermal Synthesis [J]. J. Am. Chem. Soc., 2006, 128, 12394-12395.

[24] Lin Z J, Wragg D S., Morris R E.. Microwave-assisted synthesis of anionic metal-organic frameworks under ionothermal conditions [J]. Chem. Commun., 2006, 19, 2021-2023.

[25] Amo-Ochoa P, Givaja G, Miguel P J. S, Castillo O, Zamora F. Microwave assisted hydrothermal synthesis of a novel CuI-sulfate-pyrazine MOF [J]. Inorg. Chem. Commun., 2007, 10, 921-924.

[26] Huh S, Jung S, Kim Y, Kim S J, Park S. Two-dimensional metal-organic frameworks with blue luminescence [J]. Dalton Trans., 2010, 39, 1261-1265.

[27] Schlesinger M, Schulze S, Hietschold M, Mehring M. Evaluation of synthetic methods for microporous metal-organic frameworks exemplified by the competitive formation of [Cu2(btc)3 (H2O)3] and [Cu2(btc)(OH)(H2O)] [J]. Micropor. Mesopor. Mat., 2010, 132, 121-127.

[28] Minh T T, Thien T V. Synthesis of metal-organic framework-199: Comparision of microwave process and solvothermal process [J]. Natural Science, 2017, 126, 107-116.

[29] Jiang Y, Zhang X, Dai X P, Zhang W, Sheng Q, Zhuo H Y, Xiao Y, Wang H. Microwave-assisted synthesis of ultrafine Au nanoparticles immobilized on MOF-199 in high loading as efficient catalysts for a three-component coupling reaction [J]. Nano Res., 2016, 10, 876-889.

[30] Tu J P, Zeng X L, Xu F J, Wu X, Tian Y F, Hou X D, Long Z. Microwave-induced fast incorporation of titanium into UiO-66 metal-organic frameworks for enhanced photocatalytic properties [J]. Chem. Commun., 2017, 53, 3361-3364.

[31] Chen Y X, Ni D, Yang X W, Liu C C, Yin J L, Cai K F. Microwave-assisted synthesis of honeycomblike hierarchical spherical Zn-doped Ni-MOF as a high-performance battery-type supercapacitor electrode material [J]. Electrochimi. Acta, 2018, 278, 114-123.

[32] Zhang H, Gao X W, Wang L, Zhao X S, Li Q Y, Wang X J. Microwave-Assisted Synthesis of Urea-Containing Zirconium Metal-Organic Framework for Heterogeneous Catalysis of Henry Reactions [J]. CrystEngComm, 2019, 21, 1358-1362.

[33] Pichon A, Lazuen-Garay A, James S L.. Solvent-free synthesis of a microporous metal-organic framework [J]. CrystEngComm, 2006, 8, 211-214.

[34] Adams C J., Colquhoun H M., Crawford P C., Lusi M, Orpen A. G. Solid-State Interconversions of Coordination Networks and Hydrogen-Bonded Salts [J]. Angew. Chem., 2007, 119, 1142-1146.

[35] Klimakow M, Klobes P, Thunemann A F., Rademann K, Emmerling F. Mechanochemical Synthesis of Metal-Organic Frameworks: A Fast and Facile Approach toward Quantitative Yields and High Specific Surface Areas [J]. Chem. Mater., 2010, 22, 5216-5221.

[36] Tanaka S, Kida K, Nagaoka T, Ota T, Miyake Y. Mechanochemical dry conversion of zinc oxide to zeolitic imidazolate framework [J]. Chem. Commun., 2013, 49, 7884-7886.

[37] Yan D P, Gao R, Wei M, Li S D, Lu J, Evans D G., Duan X. Mechanochemical synthesis of a fluorenone-based metal organic framework with polarized fluorescence: an experimental and computational study [J]. J. Mater. Chem. C, 2013, 1, 997-1004.

[38] Pillonia M, Padella F, Ennas G, Lai S, Bellusci M, Rombi E, Sini F, Pentimalli M, Delitala C, Scano A, Cabras V, Ferino I. Liquid-assisted mechanochemical synthesis of an iron carboxylate Metal Organic Framework and its evaluation in diesel fuel desulfurization [J]. Micropor. Mesopor. Mat., 2015, 213, 14-21.

[39] Suslick K S., Hammerton D A., Cline R E.. The Sonochemical Hot Spot [J]. J. Am. Chem. Soc., 1986, 108, 5641-5642.

[40] Suslick K S.. Sonochemistry [J]. Science, 1990, 247, 1439-1445.

[41] Faustini M, Kim J, Jeong G Y, Kim J Y, Moon H R, Ahn W S, Kim D P. Microfluidic Approach toward Continuous and Ultrafast Synthesis of Metal-Organic Framework Crystals and Hetero Structures in Confined Microdroplets [J]. J. Am. Chem. Soc., 2013, 135, 14619-14626.

[42] Abdollahi N, Masoomi M Y, Morsali A, Junk P C., Wang J. Sonochemical synthesis and structural characterization of a new Zn (II) nanoplate metal-organic framework with removal efficiency of Sudan red and Congo red [J]. Ultrason. Sonochem., 2018, 45, 50-56.

[43] Bigdeli A, Morsali A. Sonochemical synthesis of a nano-structured zinc (II) amidic pillar Metal-organic framework [J]. Ultrason. Sonochem., 2015, 27, 416-422.

[44] Safarifard V, Morsali A. Facile Preparation of Nanocubes Zinc-based Metal-organic Framework by an Ultrasound-assisted Synthesis Method; Precursor for the Fabrication of Zinc Oxide Octahedral Nanostructures [J]. Ultrason Sonochem., 2018, 40, 921-928.

[45] Sculley J L, Yuan D Q, Zhou H C. The current status of hydrogen storage in metal-organic frameworks-updated [J]. Energy Environ. Sci., 2011, 4, 2721-2735.

[46] Nandasiri M I., Jambovane S R., McGrail B. P, Schaef H T., Nune S. K.. Adsorption, separation, and catalytic properties of densified metal-organic frameworks [J]. Coordin. Chem. Rev., 2016, 311, 38-52.

[47] Sumida K, Rogow D L., Mason J A., McDonald T M., Bloch E D., Herm Z R., Bae T H, Long J R.. Carbon dioxide capture in metal-organic frameworks [J], Chem. Rev., 2012,112,724-781.

[48] Férey G, Serre C, Devic T, Maurin G, Jobic H, Llewellyn P L., Weireld G D, Vimont A, Daturi M, Chang J S. Why hybrid porous solids capture greenhouse gases [J]. Chem. Soc. Rev., 2011, 40, 550-562.

[49] Zhou H C, Long J R., Yaghi O M.. Introduction to metal-organic frameworks [J]. Chem. Rev., 2012, 112, 673-674.

[50] Li J R, Sculley J L, Zhou H C. Metal-organic frameworks for separations [J]. Chem. Rev., 2011, 112, 869-932.

[51] Li R, Wang X Z, Dong Y F, Pan X, Liu X G, Zhao Z B, Qiu J S. Nitrogen-doped carbon nanotubes decorated with cobalt nanoparticles derived from zeolitic imidazolate framework-67 for highly efficient oxygen reduction reaction electrocatalysis [J]. Carbon, 2018, 132, 580-588.

[52] Qin X L, Huang Y, Wang K, Xu T, Wang Y L, Liu P B, Kang Y, Zhang Y. Novel hierarchically porous Ti-MOFs/nitrogen-doped graphene nanocomposite served as high efficient oxygen reduction reaction catalyst for fuel cells application [J]. Electrochim. Acta, 2019, 297, 805-813.

[53] Li B, Igawa K, Chai J W, Chen Y, Wang Y, Fam D W, Tham N N, An T, Konno T, Sng A Q, Liu Z L, Zhang H, Zong Y. String of Pyrolyzed ZIF-67 Particles on Carbon Fibers for High-Performance Electrocatalysis [J]. Energy Storage Materials, 2020, 25, 137-144.

[54] Markopoulou P, Panagiotou N, Li A, Rocio Bueno-Perez, Madden D, Buchanan S, David Fairen-Jimenez, Paul G. Shiels, Ross S. Forgan. Identifying Differing Intracellular Cargo Release Mechanisms by Monitoring In Vitro Drug Delivery from MOFs in Real Time [J]. Cell Rep. Phys. Sci., 2020, 1, 100254.

[55] Zhang L, Chen Y, Shi R, Kang T G, Pang G S, Wang B R, Zhao Y, Zeng X, Zou C X, Wu P, Li J Y. Synthesis of hollow nanocages MOF-5 as drug delivery vehicle to solve the load-bearing problem of insoluble antitumor drug oleanolic acid (OA) [J]. Inorg. Chem. Commun., 2018, 96, 20-23.

[56] Sherif A.Younis, Neha Bhardwaj, Sanjeev K. Bhardwaj, Ki-Hyun Kim, Akash Deep. Rare earth metal-organic frameworks (RE-MOFs): Synthesis, properties, and biomedical applications [J]. Coordin. Chem. Rev., 2021, 429, 213620.

[57] Isabel Abánades Lázaro, Ross S. Forgan. Application of zirconium MOFs in drug delivery and biomedicine [J]. Coordin. Chem. Rev., 2019, 380, 230-259.

[58] K. Müller-Buschbaum, F. Beuerle, C. Feldmann, MOF based luminescence tuning and chemical/physical sensing [J]. Micropor. Mesopor. Mat., 2015, 216, 171-199.

[59] Cao E S, Guo Z Q, Song G Q, Zhang Y J, Hao W T, Sun L, Nie Z Q. MOF-derived ZnFe2O4/(Fe-ZnO) nanocomposites with enhanced acetone sensing performance [J]. Sensors & Actuators: B. Chemical, 2020, 325, 128783.

[60] Van Thuan Le, Vy AnhTran, Dai Lam Tran, Thi Lan Huong Nguyen, Van-Dat Doan. Fabrication of Fe3O4/CuO@C composite from MOF-based materials as an efficient and magnetically separable photocatalyst for degradation of ciprofloxacin antibiotic [J]. Chemosphere, 2021, 270, 129417.

[61] Aydan T, Yang C, Xu Y, Yuan T, Zhang M, Li H, Liu X M, Su X T, Wang J D. A magnetic composite material derived from FeOOH decorated Cu-MOF and its catalytic properties [J]. Inorg. Chem. Commun., 2019, 102, 162-170.

[62] Alan P. Kauling, Andressa T. Seefeldt, Diego P. Pisoni, Roshini C. Pradeep, Ricardo Bentini, Ricardo V. B. Oliveira, Konstantin S. Novoselov, Antonio H. Castro Neto, The Worldwide Graphene Flake Production [J]. Adv. Mater., 2018, 1803784.

[63] Bianco A, Cheng H M, Enoki T, Gogotsi Y, Hurt R H., Koratkar N, Kyotani T, Monthioux M, Park C R, Tascon, J M.D., Zhang J. All in the graphene family-A recommended nomenclature for two-dimensional carbon materials [J]. Carbon, 2013, 65, 1-6.

[64] Cheng C, Li S, Thomas A, Kotov N A., Haag R. Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications [J]. Chem. Rev., 2017, 117, 1826-1914.

[65] Yola M L. Development of novel nanocomposites based on graphene/graphene oxide and electrochemical sensor applications [J]. Curr Anal Chem, 2019, 15, 159-65.

[66] Shao Y Y, Wang J, Wu H, Liu J, Aksay I A., Lin Y H. Graphene Based Electrochemical Sensors and Biosensors: A Review [J]. Electroanalysis, 2010, 22, 1027-1036.

[67] Zhou M, Zhai Y M, Dong S J. Electrochemical Sensing and Biosensing Platform Based on Chemically Reduced Graphene Oxide [J]. Anal. Chem., 2009, 81, 5603-5613.

[68] A.G. Olabi, Mohammad Ali Abdelkareem, Tabbi Wilberforce, Enas Taha Sayed. Application of graphene in energy storage device-A review [J]. Renewable and Sustainable Energy Reviews, 2021, 135, 110026.

[69] Mazumder V, Lee Y M, Sun S H. Recent Development of Active Nanoparticle Catalysts for Fuel Cell Reactions [J]. Adv. Funct. Mater., 2010, 20, 1224-1231.

[70] Beckord S, Brimaud S, Behm R J.. Stability and ORR performance of a well-defined bimetallic Ag70Pt30/Pt (111) monolayer surface alloy electrode-Probing the de-alloying at an atomic scale [J]. Electrochim. Acta, 2018, 259, 762-771.

[71] Li S Y, Tang X W, Jia H L, Li H L, Xie G Q, Liu X J, Lin X, Qiu H J. Nanoporous high-entropy alloys with low Pt loadings for high-performance electrochemical oxygen reduction [J]. J. Catal., 2020, 383, 164-171.

[72] Lobato J, Zamora H, Plaza J, Cañizares P, Rodrigo M A.. Enhancement of high temperature PEMFC stability using catalysts based on Pt supported on SiC based materials [J]. Appl. Catal. B Environ., 2016, 198, 516-524.

[73] Serhiy Cherevko, Simon Geiger, Olga Kasian, Nadiia Kulyk, Jan-Philipp Grote, Alan Savan, Buddha Ratna Shrestha, Sergiy Merzlikin, Benjamin Breitbach, Alfred Ludwig, Karl J.J. Mayrhofer. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability [J]. Catal. Today, 2016, 262, 170-180.

[74] Sud D, Kaur G. A comprehensive review on synthetic approaches for metal-organic frameworks: From traditional solvothermal to greener protocols [J]. Polyhedron, 2021, 193, 114897.

[75] Chen G D, Xu Y Y, Huang L, Douka A I, Xia B Y. Continuous nitrogen-doped carbon nanotube matrix for boosting oxygen electrocatalysis in rechargeable Zn-air batteries [J]. J. Energy. Chem., 2021, 55, 183-189.

[76] Tang B, Wang S K, Li R, Gou X L, Long J L. Urea treated metal organic frameworks-graphene oxide composites derived N-doped Co-based materials as efficient catalyst for enhanced oxygen reduction [J]. J. Power Sources, 2019, 425, 76-86.

[77] Zhan Y F, Xie F Y, Zhang H, Jin Y S, Meng H, Chen J, Sun X L. Highly Dispersed Nonprecious Metal Catalyst for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells [J]. ACS Appl. Mater. Interfaces, 2020, 12, 17481-17491.

[78] Liu G P, Wang B, Ding P H, Ye Y Z, Wei W X, Zhu W S, Xu L, Xia J X, Li H M. Reactable ionic liquid in situ-induced synthesis of Fe3O4 nanoparticles modified N-doped hollow porous carbon microtubes for boosting multifunctional electrocatalytic activity [J]. Journal of Alloys and Compounds, 2019, 797, 849-858.

[79] Jia X D, Zhang Y, Zhang L S, Wang L Z, Zhou L M. Controllable synthesis and bi-functional electrocatalytic performance towards oxygen electrocatalytic reactions of Co3O4 nanoflakes/nitrogen-doped modified CMK-3 nanocomposite [J]. Inorg. Chem. Commun., 2019, 108, 107524.

[80] Qian J M, Guo X S, Wang T T, Liu P T, Zhang H, Gao D Q. Bifunctional porous Co-doped NiO nanoflowers electrocatalysts for rechargeable zinc-air batteries [J]. Appl. Catal. B Environ., 2019, 250, 71-77.

[81] Pan H Z, Cao Y W, Zhang B A, Han J Q, Bai Y F, Shang X N, Jiang Z Q, Tian X N, Jiang Z J. Amino functionalized carbon nanotubes supported CoNi@CoO-NiO core/shell nanoparticles as highly efficient bifunctional catalyst for rechargeable Zn-air batteries [J]. Int. J. Hydrogen Energy, 2021, 46, 374-388.

[82] Rui X H, Tan H T, Yan Q Y. Nanostructured metal sulfides for energy storage [J]. Nanoscale, 2014, 6, 9889-9924.

[83] Shen M X, Ruan C P, Chen Y, Jiang C H, Ai K L, Lu L H. Covalent entrapment of cobalt-iron sulfides in N-Doped mesoporous carbon: extraordinary bifunctional electrocatalysts for oxygen reduction and evolution reactions [J]. ACS Appl. Mater. Interfaces, 2015, 7, 1207-1218.

[84] Baresel D, Sarholz W, Scharer P, et al. Transition metal chalcogenides as oxygen catalysts for fuel cells [J]. Berichte der Bunsen-Gesellschaft, 1974, 78, 608-611.

[85] Behret. H., Binder H., Sandstede G.. Electrocatalytic oxygen reduction with thiospinels and other sulphides of transition metals [J]. Electrochim. Acta, 1975, 20(2): 111-117.

[86] Peng W, Wang Y, Yang X X, Mao L C, Jin J H, Yang S L, Fu K, Li G. Co9S8 nanoparticles embedded in multiple doped and electrospun hollow carbon nanofibers as bifunctional oxygen electrocatalysts for rechargeable zinc-air battery [J]. Appl. Catal. B Environ., 2020, 268,118437.

[87] Xie S L, Lin J J, Wang S S, Xie D, Liu P, Tan G P, Zhang M, Ruan D L, Zhen C, Cheng F L. Rational design of hybrid Fe7S8/Fe2N nanoparticles as effective and durable bifunctional electrocatalysts for rechargeable zinc-air batteries [J]. J. Power Sources, 2020, 457, 228038.

[88] Zhang J Y, Wang T T, Xue D S, Guan C, Xi P X, Gao D Q, Huang W. Energy-level engineered hollow N-doped NiS1.03 for Zn-Air batteries [J]. Energy Storage Materials, 2020, 25, 202-209.

[89] Yang C C, Zai S F, Zhou Y T, Du L, Jiang Q. Fe3C-Co Nanoparticles Encapsulated in a Hierarchical Structure of N-Doped Carbon as a Multifunctional Electrocatalyst for ORR, OER, and HER [J]. Adv. Funct. Mater., 2019, 1901949.

[90] Li Z Y, Gao Q M, Liang X, Zhang H, Xiao H, Xu P, Liu Z P. Low content of Fe3C anchored on Fe,N,S-codoped graphene-like carbon as bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions [J]. Carbon, 2019, 150, 93-100.

[91] Liu X, Liu H, Chen C, Zou L L, Li Y, Zhang Q, Yang B, Zou Z Q, Yang H. Fe2N nanoparticles boosting FeNx moieties for highly efficient oxygen reduction reaction in Fe-N-C porous catalyst [J]. Nano Res., 2019, 12, 1651-1657.

[92] Meganathan M D, Mao S, Huang T Z, Sun G X. Reduced graphene oxide intercalated Co2C or Co4N nanoparticles as an efficient and durable fuel cell catalyst for oxygen reduction [J]. J. Mater. Chem. A, 2017, 5, 2972.

[93] Gong K P, Du F, Xia Z H, Durstock M, Dai L M. Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction [J]. Science, 2009, 323, 760-764.

[94] Yang L J, Jiang S J, Zhao Y, Zhu L, Chen S, Wang X Z, Wu Q, Ma J, Ma Y W, Hu Z. Boron-Doped Carbon Nanotubes as Metal-Free Electrocatalysts for the Oxygen Reduction Reaction [J]. Angew. Chemie-Int. Ed., 2011, 50, 7132-7135.

[95] Chen W M, Wan M, Liu Q, Xiong X Q, Yu F Q, Huang Y H. Heteroatom-Doped Carbon Materials: Synthesis, Mechanism, and Application for Sodium-Ion Batteries [J].Small Methods, 2018, 1800323.

[96] Li D N, Chen H B, Zhang Y Y, Yang J Z, Yuan H R, Chen Y. Upcycling biomass tar into highly porous, defective and pyridinic-n-enriched graphene nanohybrid as efficient bifunctional catalyst for Zn-air battery [J]. Electrochim. Acta, 2020, 364, 137319.

[97] Li Y M, Yan Z, Wang Q D, Ye H T, Li M L, Zhu L W, Cao X B. Ultrathin, highly branched carbon nanotube cluster with outstanding oxygen electrocatalytic performance [J]. Electrochim. Acta, 10.1016/j.electacta.2018.06.058.

[98] Qu L T, Liu Y, Baek J B, Dai L M. Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalysts for Oxygen Reduction in Fuel Cells [J]. ACS Nano., 2010, 4, 1321-1326.

[99] Sheng Z H, Shao L, Chen J J, Bao W J, Wang F B, Xia X H. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis [J]. ACS Nano., 2011, 5, 4350-4358.

[100] Wu J J, Ma L L, Yadav R M, Yang Y C, Zhang X, Vajtai R, Lou J, Ajayan P M. Nitrogen-doped graphene with pyridinic dominance as a highly active and stable electrocatalyst for oxygen reduction [J]. ACS Appl. Mater. Interfaces., 2015, 7, 14763-14769.

[101] Wu X H, Liu L, Tang P, Li M X, Shi Z J. Influence of nitrogen precursors on the structure, composition, and oxygen reduction reaction performance of dual heteroatom doped carbon nanohorns [J]. RSC Adv., 2016, 6, 63730-63735.

[102] Zhan Y F, Yu X, Cao L M, Zhang B D, Wu X X, Xie F Y, Zhang W H, Chen J, Xie W G, Mai W J, Meng H. The influence of nitrogen source and doping sequence on the electrocatalytic activity for oxygen reduction reaction of nitrogen doped carbon materials [J]. Int. J. Hydrogen Energy, 2016, 41, 13493-13503.

[103] Zheng B, Wang J, Wang F B, Xia X H. Synthesis of nitrogen doped graphene with high electrocatalytic activity toward oxygen reduction reaction [J]. Electrochem. Commun., 2013, 28, 24-26.

[104] A.M. Puziy, O.I. Poddubnaya, B. Gawdzik, J.M.D. Tascón. Phosphorus-containing carbons: Preparation, properties and utilization [J]. Carbon, 2020, 157, 796-846.

[105] Liu Z W, Peng F, Wang H J, Yu H, Zheng W X, Yang J. Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium [J]. Angew. Chemie-Int. Ed., 2011, 50, 3257-3261.

[106] Yang D S, Bhattacharjya D, Song M Y, Yu J S. Highly efficient metal-free phosphorus-doped platelet ordered mesoporous carbon for electrocatalytic oxygen reduction [J]. Carbon, 2014, 67, 736-743.

[107] Preuss K, Siwoniku A M., Bucur C I., Titirici M M. The Influence of Heteroatom Dopants Nitrogen, Boron, Sulfur, and Phosphorus on Carbon Electrocatalysts for the Oxygen Reduction Reaction [J]. Chempluschem., 2019, 84, 457-464.

[108] Bai K K, Fan J C, Shi P H, Min Y L, Xu Q J. Directly ball milling red phosphorus and expended graphite for oxygen evolution reaction [J]. J. Power Sources, 2020, 456, 228003.

[109] Liu Z, Wang M L, Luo X L, Li S L, Li S Y, Zhou Q L, Xu W J, Wu R X. N-, P-, and O-doped porous carbon: A trifunctional metal-free electrocatalyst [J]. Applied Surface Science, 2021, 544, 148912.

[110] Li J C, Hou P X, Cheng M, Liu C, Cheng H M, Shao M H. Carbon nanotube encapsulated in nitrogen and phosphorus co-doped carbon as a bifunctional electrocatalyst for oxygen reduction and evolution reactions [J]. Carbon, 2018, 139, 156-163.

[111] Rajesh Kumar, Sumanta Sahoo, Ednan Joanni, Rajesh K. Singh, Keiichiro Maegawa, Wai Kian Tan, Go Kawamur, Kamal K. Kar, Atsunori Matsuda. Heteroatom doped graphene engineering for energy storage and conversion [J]. Materials Today, 2020, 39, 47-65.

[112] Javier Quílez-Bermejo, Emilia Morallón, Diego Cazorla-Amorós. Metal-free heteroatom-doped carbon-based catalysts for ORR: A critical assessment about the role of heteroatoms [J]. Carbon, 2020, 165, 434-454.

[113] Song J, Liu T F, Ali S, Li B, Su D S. The synergy effect and reaction pathway in the oxygen reduction reaction on the sulfur and nitrogen dual doped graphene catalyst [J]. Chemical Physics Letters, 2017, 677, 65-69.

[114] Fan H, Wang Y, Gao F J, Yang L Q, Liu M, Du X, Wang P, Yang L J, Wu Q, Wang X Z, Hu Z. Hierarchical sulfur and nitrogen co-doped carbon nanocages as efficient bifunctional oxygen electrocatalysts for rechargeable Zn-air battery [J]. J. Energy. Chem., 2019, 34, 64-71.

[115] Zhang J, Song X M, Li P, Wu Z X, Wu Y M, Wang S, Liu X E. Sulfur, nitrogen co-doped nanocomposite of graphene and carbon nanotube as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions [J]. Journal of the Taiwan Institute of Chemical Engineers, 2018,000, 1-6.

[116] Zhao J J, Liu Y M, Quan X, Chen S, Zhao H M, Yu H T. Nitrogen and sulfur co-doped graphene/carbon nanotube as metal-free electrocatalyst for oxygen evolution reaction: the enhanced performance by sulfur doping [J]. Electrochim. Acta, 2016, 204, 169-175.

[117] Jang A. R, Lee Y W, Lee S S, Hong J, Beak S H, Pak S, Lee J, Shin H S, Ahn D, Hong W K, Cha S, Sohn J I, Park I K. Correction: Electrochemical and electrocatalytic reaction characteristics of boron-incorporated graphene via a simple spin-on dopant process [J]. J. Mater. Chem. A., 2018, 6, 7351-7356.

[118] Radovic L R., Adolfo J.A. Salgado-Casanova, Mora-Vilches, C. V.. On the active sites for the oxygen reduction reaction catalyzed by graphene-based materials [J]. Carbon, 2020, 156, 389-398.

[119] Gong Y J, Fei H L, Zou X L, Zhou W, Yang S B, Ye G L, Liu Z, Peng Z W, Lou J, Vajtai R, Yakobson B I., Tour J M., Ajayan P M. Boron-and nitrogen-substituted graphene nanoribbons as efficient catalysts for oxygen reduction reaction [J]. Chem. Mater., 2015, 27, 1181-1186.

[120] Ozaki J I, Anahara T, Kimura N, Oya A. Simultaneous doping of boron and nitrogen into a carbon to enhance its oxygen reduction activity in proton exchange membrane fuel cells [J]. Carbon, 2006, 44, 3358-3361.

[121] Ozaki J I, Kimura N, Anahara T, Oya A. Preparation and oxygen reduction activity of B, N-doped carbons [J]. Carbon, 2007, 45, 1847-1853.

[122] Ikeda T, Boero M, Huang S F, Terakura K, Oshima M, Ozaki J I, Miyata S. Enhanced catalytic activity of carbon alloy catalysts codoped with boron and nitrogen for oxygen reduction reaction [J]. J. Phys. Chem. C., 2010, 114, 8933-8937.

[123] Ishii T, Maie T, Kimura N, Kobori Y, Imashiro Y, Ozaki J I. Enhanced catalytic activity of nanoshell carbon co-doped with boron and nitrogen in the oxygen reduction reaction [J]. Int. J. Hydrogen Energy, 2017, 42, 15489-15496.

[124] Chen W, Xu L, Tian Y H, Li H N, Wang K. Boron and nitrogen co-doped graphene aerogels: Facile preparation, tunable doping contents and bifunctional oxygen electrocatalysis [J]. Carbon, 2018, 137, 458-466.

[125] Cheng Y H, Tian Y Y, Fan X Z, Liu J G, Yan C W. Boron Doped Multi-walled Carbon Nanotubes as Catalysts for Oxygen Reduction Reaction and Oxygen Evolution Reactionin in Alkaline Media [J]. Electrochim. Acta, 2014, 143, 291-296.

[126] Lu Z Y, Wang J, Huang S F, Hou Y L, Li Y G, Zhao Y P, Mu S C, Zhang J J, Zhao Y F. N,B-codoped defect-rich graphitic carbon nanocages as high performance multifunctional electrocatalysts [J]. Nano Energy, 2017, 42, 334-340.

[127] Liu S W, Zhang H M, Zhao Q, Zhang X, Liu R R, Ge X, Wang G Z, Zhao H J, Cai W P. Metal-organic framework derived nitrogen-doped porous carbon@graphene sandwich-like structured composites as bifunctional electrocatalysts for oxygen reduction and evolution reactions [J]. Carbon, 2016, 106, 74-83.

[128] Hu H, Guan B Y, Lou X W. Construction of Complex CoS Hollow Structures with Enhanced Electrochemical Properties for Hybrid Supercapacitors [J]. Chem, 2016, 1, 102-113.

[129] Paul Jensen, Stuart R. Batten, Boujemaa Moubaraki, and Keith S. Murray. Synthesis, Structural Isomerism, and Magnetism of the Coordination Polymers [M(dca)2pyz], M=Mn, Fe, Co, Ni and Zn, dca=Dicyanamide (N(CN)2-), and pyz=Pyrazine [J]. Journal of Solid State Chemistry, 2001, 159, 352-361.

[130] Niu H J, Zhang L, Feng J J, Zhang Q L, Huang H, Wang A J. Graphene-encapsulated cobalt nanoparticles embedded in porous nitrogen-doped graphitic carbon nanosheets as efficient electrocatalysts for oxygen reduction reaction [J]. J. Colloid Interface Sci., 2019, 552, 744-751.

[131] Wang Z C, Xu W J, Chen X K, Peng Y H, Song Y Y, Lv C X, Liu H L, Sun J W, Yuan D, Li X Y, Guo X X, Yang D J, Zhang L X. Defect-rich nitrogen doped Co3O4/C porous nanocubes enable high-efficiency bifunctional oxygen electrocatalysis [J]. Adv. Funct. Mater., 2019, 1902875.

[132] Dinesh M M, Mao S, Huang T Z, Sun G X. Reduced graphene oxide intercalated Co2C or Co4N nanoparticles as an efficient and durable fuel cell catalyst for oxygen reduction [J]. J. Mater. Chem. A, 2017, 5, 2972-2980.

[133] Niu H J, Wang A J, Zhang L, Guo J J, Feng J J. Ultrafine NiCoP-decorated N, S, P-codoped hierarchical porous carbon nanosheets as an efficient bifunctional electrocatalyst for oxygen reduction and oxygen evolution [J]. Mater. Chem. Front., 2019, 3, 1849-1858.

[134] Wen G L, Niu H J, Wang A J, Yin Z Z, Zhang Q L, Feng J J. Graphene wrapped Fe7C3 nanoparticles supported on N-doped graphene nanosheets for efficient and highly methanol-tolerant oxygen reduction reaction [J]. J. Colloid Interface Sci., 2019, 556, 352-359.

[135] Shuang W, Huang H, Kong L J, Zhong M, Li A, Wang D H, Xu Y H, Bu X H. Nitrogen-doped carbon shell-confined Ni3S2 composite nanosheets derived from Ni-MOF for high performance sodium-ion battery anodes [J]. Nano Energy, 2019, 62, 154-163.

[136] Ding D N, Shen K, Chen X D, Chen H R, Chen J Y, Fan T, Wu R F, Li Y W. Multi-Level Architecture Optimization of MOF-Templated Co-Based Nanoparticles Embedded in Hollow N-Doped Carbon Polyhedra for Efficient OER and ORR [J]. ACS Catal., 2018, 8, 7879-7888.

[137] Ding D N, Shen K, Chen X D, Chen H R, Chen J Y, Fan T, Wu R F, Li Y W. Efficient oxygen reduction on sandwich-like metal@N-C composites with ultrafine Fe nanoparticles embedded in N-doped carbon nanotubes grafted on graphene sheets [J]. Nanoscale, 2019, 11, 12610-12618.

[138] Wei J, Hu Y X, Liang Y, Kong B, Zhang J, Song J C, Bao Q L, Simon G P., Jiang S P, Wang H T. Nitrogen-Doped Nanoporous Carbon/Graphene NanoSandwiches: Synthesis and Application for Efficient Oxygen Reduction [J]. Adv. Funct. Mater., 2015, 25, 5768-5777.

[139] Chen Y M, Wang H, Liu F S, Gai H J, Ji S, Linkov V, Wang R F. Hydrophobic 3D Fe/N/S doped graphene network as oxygen electrocatalyst to achieve unique performance of zinc-air battery [J]. Chem. Eng. J., 2018, 353, 472-480.

[140] Yan X H, Prabhu P., Xu H, Meng Z W, Xue T, Lee J M. Recent Progress of Metal Carbides Encapsulated in Carbon-Based Materials for Electrocatalysis of Oxygen Reduction Reaction [J]. Small Methods, 2019, 1900575.

[141] Yang Z K, Zhao Z W, Liang K, Zhou X, Shen C C, Liu Y N, Wang X, Xu A W. Synthesis of nanoporous structured iron carbide/Fe-N-carbon composites for efficient oxygen reduction reaction in Zn-air batteries [J]. J. Mater. Chem. A, 2016, 4, 19037-19044.

[142] Zhao J, Fu N, Liu R. Graphite-Wrapped Fe Core-Shell Nanoparticles Anchored on Graphene as pH-Universal Electrocatalyst for Oxygen Reduction Reaction [J]. ACS Appl. Mater. Interfaces, 2018, 10, 28509-28516.

[143] Jiang W J, Gu L, Li L, Zhang Y, Zhang X, Zhang L J, Wang J Q, Hu J S, Wei Z D, Wan L J. Understanding the High Activity of Fe-N-C Electrocatalysts in Oxygen Reduction: Fe/Fe3C Nanoparticles Boost the Activity of Fe-Nx [J]. J. Am. Chem. Soc., 2016, 138, 3570-3578.

[144] Wang Y C, Huang L, Zhang P, Qiu Y T, Sheng T, Zhou Z Y, Wang G, Liu J G, Rauf M, Gu Z Q, Wu W T, Sun S G. Constructing a Triple-Phase Interface in Micropores to Boost Performance of Fe/N/C Catalysts for Direct Methanol Fuel Cells [J]. ACS Energy Lett., 2017, 2, 645-650.

[145] Wang M J, Zhao T, Luo W, Mao Z X, Chen S G, Ding W, Deng Y H, Li W, Li J, Wei Z D. Quantified mass transfer and superior antiflooding performance of ordered macro-mesoporous electrocatalysts [J]. AIChE J., 2018, 64, 2881-2889.

[146] Wang H F, Chen L Y, Pang H, Kaskel S, Xu Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions [J]. Chem. Soc. Rev., 2020, 49, 1414-1448.

[147] Li Z H, He H Y, Cao H B, Sun S M, Diao W L, Gao D L, Lu P L, Zhang S S, Guo Z, Li M J, Liu R J, Ren D H, Liu C M, Zhang Y, Yang Z, Jiang J K, Zhang G J. Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis [J]. Appl. Catal. B Environ., 2019, 240, 112-121.

[148] Zheng S S, Li Q, Xue H G, Pang H, Xu Q. A highly alkaline-stable metal oxide@metal-organic framework composite for high-performance electrochemical energy storage [J]. Natl Sci Rev, 2020, 7, 305-314.

[149] Zheng Y, Zheng S S, Xue H G, Pang H. Metal-organic frameworks/graphenebased materials: preparations and applications [J]. Adv. Funct. Mater., 2018, 28, 1804950.

[150] Guan B Y, Yu L, Lou X W. A dual-metal-organic-framework derived electrocatalyst for oxygen reduction [J]. Energy Environ. Sci., 2016, 9, 3092-3096.

[151] Liu X B, Amiinu I S, Liu S J, Cheng K, Mu S C. Transition metal/nitrogen dualdoped mesoporous graphene-like carbon nanosheets for oxygen reduction and evolution reactions [J]. Nanoscale, 2016, 8, 13311-13320.

[152] Wang H Q, Wei L L, Liu J T, Shen J Q. Hollow N-doped bimetal carbon spheres with superior ORR catalytic performance for microbial fuel cells [J]. J. Colloid Interface Sci., 2020, 575, 177-182.

[153] Han L, Yu X Y, Lou X W. Formation of prussian-blue-analog nanocages via a direct etching method and their conversion into Ni-Co-mixed oxide for enhanced oxygen evolution [J]. Adv. Mater., 2016, 28, 4601-4605.

[154] Bentz K C., Savin D A.. Hollow polymer nanocapsules: synthesis, properties, and applications [J]. Polym. Chem., 2018, 9, 2059-2081.

[155] Wang L J, Liu F H, Ning Y S, Bradley R, Yang C B, Yong K T, Zhao B Y, Wu W P. Biocompatible mesoporous hollow carbon nanocapsules for high erformance Supercapacitors [J]. Sci. Rep., 2020, 10, 1-9.

[156] Klose M, Pinkert K, Zier M, Uhlemann M, Wolke F, Jaumann T, Jehnichen P, Wadewitz D, Oswald S, Eckert J, Giebeler L. Hollow carbon nano-onions with hierarchical porosity derived from commercial metal organic framework [J]. Carbon, 2014, 79, 302-309.

[157] Wang Z, Ang J M, Liu J, Daphne Ma, X Y, Kong J H, Zhang Y F, Yan T, Lu X H. FeNi alloys encapsulated in N-doped CNTs-tangled porous carbon fibers as highly efficient and durable bifunctional oxygen electrocatalyst for rechargeable zinc-air battery [J]. Appl. Catal. B Environ., 2019, 263, 118344.

[158] He W H, Jiang C H, Wang J B, Lu L H. High-rate oxygen electroreduction over graphitic-n species exposed on 3D hierarchically porous nitrogen-doped carbons [J]. Angew. Chem. Int. Ed., 2014, 53, 9503-9507.

[159] Li X R, Wei J L, Li Q, Zheng S S, Xu Y X, Du P, Chen C Y, Zhao J Y, Xue H G, Xu Q, Pang H. Nitrogen-doped cobalt oxide nanostructures derived from cobalt-alanine complexes for highperformance oxygen evolution reactions [J]. Adv. Funct. Mater., 2018, 28, 1800886.

[160] Wang Y Q, Wang K K, Yu J W, Ma Y F, Yang X T, Jiang H, Liu Y, Li J, Li W Z. 3D spiral-like polyhedron nanocarbon confining uniformly dispersed Co nanoparticles for bifunctional electrocatalyst in metal-air battery [J]. J. Power Sources, 2021, 482, 228897.

[161] Fu K, Wang Y, Mao L C, Yang X X, Jin J H, Yang S L, Li G. Strongly coupled Co, N co-doped carbon nanotubes/graphene-like carbon nanosheets as efficient oxygen reduction electrocatalysts for primary Zinc-air battery [J]. Chem. Eng. J., 2018, 351, 94-102.

[162] Wang S G, Wang J, Wang X, Li L, Qin J W, Cao M H. Carbon hybrid with 3D nano-forest architecture in-situ catalytically constructed by CoFe alloy as advanced multifunctional electrocatalysts for Zn-air batteries-driven water splitting [J]. J. Energy. Chem. DOI: 10.1016/j.jechem.2020.07.045.

[163] Xie W F, Song Y K, Li S J, Li J B, Yang Y S, Liu W, Shao M F, Wei M. Single-Atomic-Co electrocatalysts with self-supported architecture toward oxygen-involved reaction [J]. Adv. Funct. Mater., 2019, 29, 1906477.

[164] Jin H Y, Wang J, Su D F, Wei Z Z, Pang Z F, Wang Y. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution [J]. J. Am. Chem. Soc., 2015, 137, 2688-2694.

[165] Amiinu I S, Liu X B, Pu Z H, Li W Q, Li Q D, Zhang J, Tang H L, Zhang H N, Mu S C. From 3D ZIF Nanocrystals to Co-Nx/C nanorod array electrocatalysts for ORR, OER, and Znair batteries [J]. Adv. Funct. Mater., 2017, 28, 1704638.

[166] Wang J, Xu F, Jin H Y, Chen Y Q, Wang Y. Non-noble metal-based carbon Compositesin hydrogen evolution reaction: Fundamentals to applications [J]. Adv. Mater., 2017, 1605838, https://doi.org/10.1002/adma.201605838.

[167] Xu Y Y, Deng P L, Chen G D, Chen J X,Yan Y, Qi K, Liu H F, Xia B Y. 2D Nitrogen-Doped Carbon Nanotubes/Graphene Hybrid as Bifunctional Oxygen Electrocatalyst for Long-Life Rechargeable Zn-Air Batteries [J]. Adv. Funct. Mater., 2019, 1906081.

[168] Liu X J, Yang W X, Chen L L, Liu Z J, Long L, Wang S Y, Liu C Y, Dong S J, Jia J B. Graphitic Carbon Nitride (g-C3N4) Derived Bamboo-like Carbon Nanotubes/Co Nanoparticles Hybrids for Highly Efficient Electrocatalytic Oxygen Reduction [J]. ACS Appl. Mater. Interfaces, 2020, 12, 4463-4472.

[169] Zhang E H, Xie Y, Ci S Q, Jia J C, Cai P W, Yi L C, Wen Z H. Multifunctional high-activity and robust electrocatalyst derived from metal-organic frameworks [J]. J. Mater. Chem. A, 2016, 4, 17288-17298.

[170] Meng J S, Niu C J, Xu L H, Li J T, Liu X, Wang X P, Wu Y Z, Xu X M, Chen W Y, Li Q, Zhu Z Z, Zhao D Y, Mai L Q. General Oriented Formation of Carbon Nanotubes from Metal-Organic Frameworks [J]. J. Am. Chem. Soc., 2017, 139, 8212-8221.

[171] Xia B Y, Yan Y, Li N, Wu H B, Lou X W, Wang X. A metal-organic framework-derived bifunctional oxygen electrocatalyst [J]. Nat. Energy, 2016, 1, 15006.

[172] C. J. Kepert, T. J. Prior, M. J. Rosseinsky. A Versatile Family of Interconvertible Microporous Chiral Molecular Frameworks: The First Example of Ligand Control of Network Chirality [J]. J. Am. Chem. Soc., 2000, 122, 5158-5168.

[173] Szczesniak B, Borysiuk S, Choma J, Jaroniec M. Mechanochemical synthesis of highly porous materials [J]. Mater. Horiz., 2020, 7, 1457.

[174] Ma L, Wang R, Li Y- H, Liu X-F, Zhang Q-Q, Dong X-Y, Zang S-Q. Apically Co-nanoparticles-wrapped nitrogendoped carbon nanotubes from a single-source MOF for efficient oxygen reduction [J]. J. Mater. Chem. A, 2018, 6, 24071.

[175] Hou Y, Huang T Z, Wen Z H, Mao S, Cui S M, Chen J H. Metal-Organic Framework-Derived Nitrogen-Doped Core-Shell-Structured Porous Fe/Fe3C@C Nanoboxes Supported on Graphene Sheets for Efficient Oxygen Reduction Reactions [J]. Adv. Energy Mater., 2014, 1400337.

[176] Wang T T, Kou Z K, Mu S C, Liu J P, He D P, Amiinu I S, Meng W, Zhou K, Luo Z X, Chaemchuen S, Verpoort F. 2D Dual-Metal Zeolitic-Imidazolate-Framework-(ZIF)-derived Bifunctional Air Electrodes with Ultrahigh Electrochemical Properties for Rechargeable Zinc-Air Batteries [J]. Adv. Funct. Mater., 2018, 28, 1705048.

[177] Yan L, Wang H Y, Shen J L, Ning J Q, Zhong Y J, Hu Y. Formation of mesoporous Co/CoS/Metal-N-C@S, N-codoped hairy carbon polyhedrons as an efficient trifunctional electrocatalyst for Zn-air batteries and water splitting [J]. Chem. Eng. J., 2021, 403, 126385.

[178] Fu K, Wang Y, Mao L C, Yang X X, Jin J H, Yang S L, Li G. Strongly coupled Co, N co-doped carbon nanotubes/graphene-like carbon nanosheets as efficient oxygen reduction electrocatalysts for primary Zincair battery [J]. Chem. Eng. J., 2018, 351, 94-102.

[179] Liu H, Yang D-H, Wang X-Y, Zhang J W, Han B-H. N-doped graphitic carbon shell-encapsulated FeCo alloy derived from metal-polyphenol network and melamine sponge for oxygen reduction, oxygen evolution, and hydrogen evolution reactions in alkaline media [J]. J. Colloid Interface Sci., 2021, 581, 362-373.

中图分类号:

 TQ152    

开放日期:

 2021-06-25    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式