- 无标题文档
查看论文信息

论文中文题名:

 黄土地区含泥皮桩基桩-土界面剪切力学性能研究    

姓名:

 彭湃    

学号:

 21204228099    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085900    

学科名称:

 工学 - 工程 - 建筑与土木工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 土木水利    

研究方向:

 防灾减灾工程及防护工程    

第一导师姓名:

 侯俊锋    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-12    

论文答辩日期:

 2024-06-03    

论文外文题名:

 Study on the shear mechanical properties of pile-soil interface in loess areas with mud skin pile foundation    

论文中文关键词:

 含泥皮界面 ; 直剪试验 ; 力学特性 ; 公式修正 ; 数值模型    

论文外文关键词:

 Interface with mud skin ; Direct shear test ; Mechanical properties ; Formula correction ; Numerical model    

论文中文摘要:

泥浆护壁工艺在钻孔灌注桩施工中应用广泛。受泥浆自身材料特性与其他施工条件的影响,孔壁上残积的泥皮会从本质上会改变桩-土界面的受力性状。为了深入探究含泥皮桩基桩-土界面的剪切力学特性,本文以黄土地区的钻孔灌注桩施工为工程背景,以黄土-泥皮-混凝土多元介质界面为研究对象,采用单因子控制变量法,在界面试样制备完成后开展室内直剪试验,深入分析不同参数对界面剪切特性的影响,并推导含泥皮桩基承载力的计算公式。本文研究内容主要包括以下几个方面:

(1)通过设定四种土体含水率与四种土体干密度水平,开展了不同土体参数下黄土-泥皮-混凝土界面剪切试验。在不同法向应力状态下,不同含水率及干密度水平对应的界面剪应力-剪切位移关系曲线特性明显不同。随着含水率及干密度的不断增大,对应界面抗剪强度分别随之减小和增大,两种条件下对应的粘聚力的变化幅度分别为86.91%与107.33%,均显著大于内摩擦角的变化幅度。

(2)通过设定四种混凝土粗糙度水平,以混凝土表面的平均凹凸程度R来量化界面粗糙度,开展了不同界面粗糙度下黄土-泥皮-混凝土界面剪切试验。在不同粗糙度水平与法向应力状态下,界面剪应力-剪切位移关系曲线均呈应变软化型,且随着法向应力的增大,曲线软化特征及界面抗剪强度的提升更为显著。

(3)通过设定四种泥皮厚度与四种水泥掺量水平,开展了不同泥皮参数下黄土-泥皮-混凝土界面剪切试验。当无泥皮界面转化为含泥皮界面时,剪应力-剪切位移曲线由硬化型转化为软化型。而泥皮中水泥掺量由低至高的过程中,剪应力-剪切位移曲线由软化型转化为硬化型。界面抗剪强度随着泥皮厚度及水泥掺量的增大,分别呈减小和增大趋势。当泥皮厚度达到一定值时,含泥皮界面趋于泥皮-混凝土界面,界面抗剪强度主要取决于泥皮自身强度。而随着水泥掺量的提升,含泥皮界面逐渐向无泥皮界面过渡。

(4)根据不同泥皮参数与含泥皮界面抗剪强度指标建立的相关联系,结合现行规范,对泥皮效应影响下桩基承载力的计算公式进行修正。同时利用FLAC3D有限差分软件建立三维数值模型,分别对不同工况下的桩基承载性状进行模拟分析,将公式计算结果与模拟计算结果进行对比,观察发现两者对应曲线的趋势大致相同且误差分别为6.65%与8.96%,处于合理范围内,验证了利用修正公式计算解决工程实际问题的合理性。

论文外文摘要:

The mud wall protection technology is widely used in the construction of bored piles. Due to the material characteristics of the mud itself and other construction conditions, the residual mud skin on the hole wall will fundamentally change the stress characteristics of the pile soil interface. In order to deeply explore the shear mechanical characteristics of the interface between the pile and soil of the mud skin pile foundation, this paper takes the construction of drilled cast-in-place piles in the loess area as the engineering background, takes the loess mud skin concrete multi medium interface as the research object, adopts the single factor control variable method, and conducts indoor direct shear tests after the preparation of interface samples. The influence of different parameters on the shear characteristics of the interface is analyzed in depth, and the calculation formula for the bearing capacity of the mud skin pile foundation is derived. The research content of this article mainly includes the following aspects:

(1) By setting four soil moisture contents and four soil dry density levels, shear tests were conducted on the interface of loess clay concrete under different soil parameters. The characteristics of the interface shear stress shear displacement relationship curve corresponding to different moisture content and dry density levels are significantly different under different normal stress states. With the continuous increase of moisture content and dry density, the corresponding interface shear strength decreases and increases, respectively. The change amplitude of the corresponding cohesive force under the two conditions is 86.91% and 107.33%, both of which are significantly greater than the change amplitude of the internal friction angle.

(2) By setting four levels of concrete roughness and quantifying the interface roughness based on the average roughness R of the concrete surface, shear tests were conducted on the loess clay concrete interface under different interface roughness levels. At different roughness levels and normal stress states, the interface shear stress shear displacement relationship curve shows a strain softening type, and with the increase of normal stress, the softening characteristics of the curve and the improvement of interface shear strength are more significant.

(3) Shear tests were conducted on the interface between loess clay and concrete under different clay parameters by setting four different thicknesses of clay and four levels of cement content. When the interface without mud skin is transformed into the interface with mud skin, the shear stress shear displacement curve changes from hardening type to softening type. During the process of increasing the cement content in the mud skin from low to high, the shear stress shear displacement curve changes from a softening type to a hardening type. The interface shear strength shows a decreasing and increasing trend with the increase of mud skin thickness and cement content, respectively. When the thickness of the mud skin reaches a certain value, the interface containing the mud skin tends towards the mud skin concrete interface, and the shear strength of the interface mainly depends on the strength of the mud skin itself. As the cement content increases, the interface with mud skin gradually transitions to the interface without mud skin.

(4) Based on the correlation established between different mud skin parameters and the shear strength index of the interface containing mud skin, combined with current regulations, the calculation formula for the bearing capacity of pile foundation under the influence of mud skin effect is revised. At the same time, a three-dimensional numerical model was established using FLAC3D finite difference software to simulate and analyze the bearing behavior of pile foundations under different working conditions. The formula calculation results were compared with the simulation calculation results, and it was observed that the corresponding curve trends of the two were roughly the same, with errors of 6.65% and 8.96%, which were within a reasonable range. This verified the rationality of using the modified formula calculation to solve practical engineering problems.

参考文献:

[1]夏红春,周国庆. 土-结构接触面剪切力学特性及其影响因素试验[J].中国矿业大学学报,2010,39(06):831-836.

[2]刘慧. 黄土与结构物接触面剪切特性试验研究[D]. 西安:西安建筑科技大学, 2019.

[3]张广兴. 泥皮性状对钻孔桩工程特性的影响研究[D]. 杭州:浙江大学, 2006.

[4]石泉彬,杨平,谈金忠,等. 冻土与结构接触面冻结强度压桩法测定系统研制及试验研究[J].岩土工程学报,2019,41(01):139-147.

[5]檀俊坤,郭佳奇,徐子龙,等. 高应力下粗砂与混凝土接触面剪切特性影响因素试验研究[J].土木建筑与环境工程,2018,40(06):67-75.

[6]蒋劲羽,方琴. 不同桩侧粗糙度对桩-土接触面力学特性的影响研究[J].贵州大学学报(自然科学版),2016,33(04):104-107.

[7]原冰月. 基于冻融作用的非饱和固化硫酸盐渍及土-结构界面力学行为研究[D].兰州:兰州理工大学,2023.

[8]赵少飞,戴志广,刘鑫,等. 扰动土-结构接触面抗剪强度特性试验研究[J].地下空间与工程学报,2018,14(01):67-71+228.

[9]路佼. 土石混合体-结构界面剪切力学特性的宏细观研究[D]. 徐州:中国矿业大学, 2022.

[10]Frost J D, Dejong J T, Recalde M.Shear failure behavior of granular–continuum interfaces[J].Engineering Fracture Mechanics, 2002,69(17):2029-2048

[11]Subba Rao K S, Rao K S S, Allam M M ,et al.Interfacial friction between sands and solid surfaces[J].Geotechnical Engineering, 1998,131(2):75-82.

[12]张嘎,张建民. 粗粒土与结构接触面单调力学特性的试验研究[J].岩土工程学报,2004,26(01):21-25.

[13]赵联桢,杨平,王海波. 大型多功能冻土–结构接触面循环直剪系统研制及应用[J].岩土工程学报,2013,35(04):707-713.

[14]陆勇,周国庆,夏红春,等. 中、高压下粗粒土-结构接触面特性受结构面形貌尺度影响的试验研究[J].岩土力学,2013,34(12):3491-3499+3526.

[15]Koval G , Chevoir F , Roux J N ,et al.Interface roughness effect on slow cyclic annular shear of granular materials[J].Granular Matter, 2011, 13(5):525-540.

[16]金子豪,杨奇,陈琛,等. 粗糙度对混凝土–砂土接触面力学特性的影响试验研究[J].岩石力学与工程学报,2018,37(03):754-765.

[17]CHEN X B, ZHANG J S, XIAO Y J, et al. Effect of roughness on shear behavior of red clay-concrete interface in large -scale direct shear tests [J].Canadian Geotechnical Journal, 2015,51(8):1122-1135.

[18]成浩,曾国东,周敏,等. 考虑粗糙度影响的粘土-混凝土接触面峰值剪切强度模型研究[J].工程科学与技术,2021,53(04):168-177.

[19]孙兆辉,卞汉兵,鹿翔宇,等. 盐渍土与混凝土衬砌冻结强度直剪试验研究[J].防灾减灾工程学报,2020,40(02):236-242.

[20]Vangla P , Gali M L .Shear behavior of sand-smooth geomembrane interfaces through micro-topographical analysis[J].Geotextiles & Geomembranes, 2016, 44(4):592-603.

[21]王永洪,张明义,白晓宇,等. 不同含水率状态下黏性土-混凝土界面剪切特性室内试验研究[J].防灾减灾工程学报,2018,38(01):118-123+192.

[22]龙尧,张家生,陈俊桦. 结构接触面剪切特性及软硬化损伤模型[J].华南理工大学学报(自然科学版),2016,44(12):128-134.

[23]王协群,张俊峰,邹维列,等. 格栅-土界面抗剪强度模型及其影响因素[J].土木工程学报,2013,46(04):133-141.

[24]李星,王红雨,陈海全. 坝前淤泥土与新填坝体接触面抗剪强度试验研究及工程应用[J].应用力学学报,2021,38(01):166-175.

[25]GHADRDAN M, DYSON A P, SHAGHAGHI T, et al. Slope stability analysis using deterministic and probabilistic approaches for poorly defined stratigraphies [J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2020, 7(1).1145-1156.

[26]徐方,陈乐,赵春彦,等. 粘土–水泥土接触面剪切特性试验研究[J].工程科学与技术,2021,53(02):110-117.

[27]孙铁成,高晓静,岳祖润,等. 粉土–混凝土接触面冻结强度试验研究[J].岩石力学与工程学报,2020,39(05):1032-1039.

[28]肖杰,屈文俊,朱鹏,等. 砂土与硫酸腐蚀混凝土接触面剪切试验研究[J].岩土力学,2017, 38(09): 2613-2620.

[29]梁鹏,曹卫平,陆清元. 常/变法向应力下松砂-混凝土接触面剪切力学性状试验研究[J].建筑结构,2014,44(08):61-65.

[30]陈福全,韩钧. 高频循环剪切下结构与松砂接触面的土体特性[J].土木建筑与环境工程,2011,33(04):85-92.

[31]CHANG J, LIU J-K, LI Y-L. Frozen sand—concrete interface direct shear behavior under constant normal load and constant normal height boundary [J]. Journal of Zhejiang University-SCIENCE A, 2022, 23(11): 917-932.

[32]赵亦凡,刘文白. 粗粒土与结构接触面往返剪切试验的PFC2D数值模拟[J].上海海事大学学报,2015,36(01):81-85..

[33]董盛时,董兰凤,温智,等. 青藏冻结粉土与混凝土基础接触面本构关系研究[J].岩土力学,2014,35(06):1629-1633.

[34]陈良致,温智,董盛时,等. 青藏冻结粉土与玻璃钢接触面本构模型研究[J].冰川冻土,2016,38(02):402-408.

[35]张嘎,张建民. 粗粒土与结构接触面统一本构模型及试验验证[J].岩土工程学报,2005(10):1175-1179.

[36]胡启军,蒋晶,徐亚辉,等. 红层泥岩桩岩接触面本构模型试验及数值模拟[J].土木建筑与环境工程,2017,39(03):122-128.

[37]王丽琴,鹿忠刚,邵生俊. 岩土体复合幂–指数非线性模型[J].岩石力学与工程学报,2017,36(05):1269-1278.

[38]HATAMI K, ESMAILI D. Unsaturated soil–woven geotextile interface strength properties from small-scale pullout and interface tests [J]. Geosynthetics International, 2015,22(2):161-72

[39]夏红春,周国庆,商翔宇. 基于Weibull分布的土-结构接触面统计损伤软化本构模型[J].中国矿业大学学报,2007(06):734-737+747.

[40]高登辉,邢义川,郭敏霞,等. 非饱和重塑黄土-混凝土接触面修正双曲线模型[J].吉林大学学报(工学版),2020,50(01):156-164.

[41]曾新发,彭振斌,何杰,等. 泥皮条件下土与结构接触面弹塑性本构模型[J].东北大学学报(自然科学版),2014,35(06):890-893.

[42]庞小朝,杨浩新,苏栋,等. 泥皮对花岗岩残积土与结构接触面力学特性影响的试验研究[J].铁道建筑,2017,57(03):98-101+105.

[43]陈琛,冷伍明,杨奇,等. 混凝土桩-泥皮-砂土接触面力学特性试验研究[J].岩土力学,2018,39(07):2461-2472.

[44]张磊,刘慧,王铁行. 不同泥皮厚度下黄土—混凝土接触面剪切试验[J].地下空间与工程学报,2020,16(S2):564-568+575.

[45]丁韬. 泥浆护壁灌注桩承载特性研究[D]. 合肥:安徽建筑大学, 2021.

[46]MAJANO R E, O’NEILL M W, HASSAN K M. Perimeter load transfer in model drilled shafts formed under slurry[J]. Journal of Geotechnical Engineering, ASCE, 1994, 120(12): 2136-2154.

[47]李俊超. 饱和粉土-泥皮-混凝土界面环剪试验及边界面模型参数分析[D]. 郑州:郑州大学, 2022.

[48]GB/T 50123-2019. 土工试验方法标准[S]. 北京:中国计划出版社,2019.

[49]李永辉,王卫东,黄茂松,等. 超长灌注桩桩-土界面剪切试验研究[J].岩土力学,2015,36(07):1981-1988.

[50]杨明. 护壁泥浆对钻孔灌注桩承载性能影响研究分析[D]. 合肥:安徽建筑大学, 2021.

[51]杨彦丽. 泥皮对灌注桩竖向承载性状影响的数值模拟及试验研究[D]. 天津:天津大学, 2012.

[52]彭凯,朱俊高,冯树荣,等. 水泥土泥皮下土与结构接触面的单剪特性[J].重庆大学学报,2013,36(08):127-135.

[53]吕擎峰,潘松杰,李策策,等. 重塑黄土-混凝土接触面直剪试验研究[J].兰州大学学报(自然科学版),2020,56(05):601-605+614.

[54]汪优,李奕金,谭伟,等. 考虑结构表层粗糙度的混凝土桩-黏土界面剪切特性试验研究[J].中南大学学报(自然科学版),2019,50(10):2502-2509.

[55]魏巍. 粉质砂土与混凝土结构接触面力学特性试验研究[D]. 阿拉尔:塔里木大学, 2021.

[56]杨有莲,朱俊高,余挺,等. 土与结构接触面力学特性环剪试验研究[J].岩土力学,2009,30(11):3256-3260.

[57]何鹏飞,马巍,穆彦虎,等. 黄土-砂浆块界面剪切特性试验及本构模型研究[J].岩土力学,2019,40(S1):82-90+98.

[58]JGJ/T 98-2010. 砌筑砂浆配合比设计规程[S]. 北京:中国建筑工业出版社,2010.

[59]王佳,曾国东,成浩. 界面粗糙度对桩土界面剪切特性的影响研究[J].公路工程,2018,43(05):205-208+247.

[60]Potyondy J G. Skin Friction between Various Soils and Construction Materials[J]. Géo technique, 1961, 11(4):339-353.

[61]殷勇,李富荣.滨海土体与钢材接触面剪切特性试验[J].土工基础,2014,28(06):123-125.

[62]苗帅升. 黄土-三趾马红土接触界面剪切力学特性试验研究[D]. 西安:长安大学,2020.

[63]吴悦,赵春风,刘帆,等. 不同注浆工况对砂土-混凝土接触面剪切特性影响[J].哈尔滨工业大学学报,2021,53(05):95-103.

[64]王俊杰,马伟,梁越,等. 钢板与砂泥岩混合填土接触面力学特性试验研究[J].水运工程,2014,(01):182-187.

[65]Hossain A ,Yin J H .Behavior of a Pressure-Grouted Soil-Cement Interface in Direct Shear Tests[J].International Journal of Geomechanics, 2014, 14(1):101-109.

[66]李登华,郦能惠. 土与结构接触面试验仪的研制与应用[J].武汉大学学报(工学版),2010,43(03):390-393.

[67]成浩,陈晓斌,张家生,等. 红黏土-混凝土结构接触面残余强度特性试验研究[J].中南大学学报(自然科学版),2017,48(09):2458-2464.

[68]陈海康,梁海安,胡清波,等. 土-结构物接触面试验研究进展综述[J].重庆建筑,2019,18(09):51-54.

[69]高俊合,于海学,赵维炳. 土与混凝土接触面特性的大型单剪试验研究及数值模拟[J].土木工程学报,2000,47(04):42-46.

[70]彭凯,朱俊高,张丹,等. 粗粒土与混凝土接触面特性单剪试验研究[J].岩石力学与工程学报,2010,29(09):1893-1900.

[71]刘方成,尚守平,王海东. 粉质黏土-混凝土接触面特性单剪试验研究[J].岩石力学与工程学报,2011,30(08):1720-1728.

[72]冯大阔,张建民. 粗粒土与结构接触面静动力学特性的大型单剪试验研究[J].岩土工程学报,2012,34(07):1201-1208.

[73]周小文,龚壁卫,丁红顺,等. 砾石垫层—混凝土接触面力学特性单剪试验研究[J].岩土工程学报,2005,27(08):876-880.

[74]丁树云,毕庆涛,蔡正银,等. 环剪仪的试验方法研究[J].岩土工程学报,2013, 35(S2):197-201.

[75]丁红丽,骆亚生. 环剪试验条件下不同地区黄土的残余强度研究[J].地下空间与工程学报,2017,13(06):1511-1516.

[76]张忠苗,张广兴,吴庆勇,等. 钻孔桩泥皮土与桩间土性状试验研究[J].岩土工程学报,2006,28(06):695-699.

[77]王强,赵春风,赵程,等. 钻孔灌注桩正反循环泥浆护壁对孔径的影响研究[J].岩土工程学报,2011,33(S2):205-208.

[78]戚蓝,于泳. 泥皮对灌注桩承载能力的影响研究[J].中国农村水利水电,2015,57(06): 133-138.

[79]阮文禄. 后注浆钻孔灌注桩的承载力研究[D]. 长春:吉林大学, 2014.

[80]汪优,任加琳,李赛,等. 土-结构接触面剪切全过程本构关系研究[J].湖南大学学报(自然科学版),2021,48(03):144-152.

[81]JGJ94-2008. 建筑桩基技术规范[S]. 北京:中国建筑工业出版社,2008.

[82]GB50007-2011. 建筑地基基础设计规范[S]. 北京:中国建筑工业出版社,2011.

[83]JGJ72-2004. 高层建筑岩土工程勘察规程[S]. 北京:中国建筑工业出版社,2004.

[84]JTG63-2007. 公路桥涵地基与基础设计规范[S]. 北京:人民交通出版社,2007.

[85]JGJ94-94. 建筑桩基技术规范[S]. 北京:中国建筑工业出版社,1995.

[86]JGJ106-2014. 建筑基桩检测技术规范[S]. 北京:中国建筑工业出版社,2014

中图分类号:

 TU473    

开放日期:

 2024-06-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式