- 无标题文档
查看论文信息

题名:

 化工园区LPG储罐泄漏多因素耦合 机制及风险管控研究    

作者:

 傅文    

学号:

 19120089016    

保密级别:

 保密(4年后开放)    

语种:

 chi    

学科代码:

 083700    

学科:

 工学 - 安全科学与工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2024    

学校:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 应急与安全管理    

导师姓名:

 罗振敏    

导师单位:

 西安科技大学    

第二导师姓名:

 张天军    

提交日期:

 2024-12-16    

答辩日期:

 2024-12-01    

外文题名:

 Study on Multi-factor Coupling Mechanism and Risk Management of LPG Storage Tank Leaks in Chemical Park    

关键词:

 化工园区 ; LPG储罐 ; 泄漏风险耦合 ; 风险演化机制 ; 风险管控    

外文关键词:

 Chemical parks ; LPG storage tank ; Coupling of leakage risk ; Evolution mechanism of risk ; Risk Control    

摘要:

液化石油气(LPG)作为一种环保型能源,在我国的能源消费结构中扮演着重要角色。化工园区LPG生产、储运过程具有规模大、流程长、工况复杂、扩散性强、易燃易爆,和应急救援复杂等特点,随着LPG产业需求规模的扩大,如何避免由LPG球罐泄漏导致的爆炸、火灾和中毒等次生多米诺灾害事故发生,不仅是技术层面的需求,更是公共安全和社会和谐的重要举措。本文构建了化工园区LPG球罐区域风险评价与动态风险预警模型,开发了化工园区LPG球罐泄漏耦合风险动态管控平台,实现了基于数据驱动的化工园区LPG球罐区泄漏耦合风险实时动态预警与精准管控,对于实现涉LPG企业安全长远发展具有重要意义。论文主要研究工作如下:

(1)分析了近10年LPG储罐事故的特征与规律。通过收集我国2014-2023年发生的1050起各类LPG储罐事故案例,分别从事故的储罐类型、时间分布、操作状态、耦合类型等方面进行分析,得到LPG储罐事故的特征与统计规律。基于ARMA模型对LPG储罐事故时间序列预测分析,预测各种类型的LPG储罐事故5年内每个季度事故起数和伤亡人数的变化趋势,为建立化工园区LPG球罐泄漏致因信息库提供理论基础。

(2)建立了化工园区LPG球罐泄漏致因信息库。依据5W2H分析法,基于事故统计分析和现场访谈,运用扎根理论,经过三级编码通过整理、归纳,建立了由7个核心范畴以及22个主范畴、74个范畴组成的基于系统性视角的化工园区LPG球罐泄漏事故致因信息集,并构建了化工园区LPG球罐泄漏致因因素概念模型,为后续LPG球罐泄漏致因演化机制与风险管控事故预测研究提供基础信息。

(3)揭示了化工园区LPG球罐泄漏致因层级关系、属性特征、耦合强关联规则。针对化工园区内的LPG球罐泄漏,综合采用DEMATEL(决策实验室分析)、ISM(解释结构模型)、MICMAC(相互依赖性矩阵分析)与关联规则Apriori算法方法,基于近10年发生的207起LPG储罐泄漏事故致因数据,得到了事故致因因素的五个不同的层级,明晰了致因的属性特征、耦合方式以及耦合关联规则。通过设置支持度等关联规则指标大小,得到了LPG储罐泄漏事故发生的强关联规则与高频风险因素集合,为后续LPG球罐泄漏致灾风险演化路径和风险评估与SD风险演化组合干预仿真模拟提供参数学习信息。

(4)建立了化工园区LPG球罐泄漏事故演化模型。使用基于结构方程模型-贝叶斯网络(SEM-BN)方法验证和修正了致因因素概念模型中LPG球罐安全水平与储罐泄漏事故之间影响关系的潜在变量路径;验证了应急救援水平在事故演化路径中的中介作用。结合专家经验知识、最大似然(EM)估计算法,实现了风险演化路径的量化,确定了风险演化过程中敏感性较高与风险传递过程中的关键路径,为构建LPG球罐区域风险评估模型与动态预警模型的指标体系建立提供理论依据。

(5)构建了基于数据驱动的化工园区LPG球罐区域风险评价模型。基于化工园区LPG球罐泄漏致因识别与风险演化路径量化研究,构建了包含物-人-机-环-管-应-监7个一级风险因素、22个二级风险因素、74个指标的区域风险评价指标体系。通过对比四种不同优化模型在误差分布、时间成本等方面的差异,确定了基于数据驱动的具有最高准确性的t-SNE和IGWO-MLP神经网络模型为化工园区LPG球罐安全风险评价模型,为储罐泄漏事故风险管控的组合干预策略提供了管控依据。

(6)构建了化工园区LPG球罐IGWO-LSSVM风险预警模型。选取具有时效性的17个预警指标作为LPG球罐动态风险预警模型指标,建立了最小二乘支持向量(LSSVM)多分类动态风险预警模型,采用改进的灰狼算法(IGWO)对模型的超参数进行自动优化,形成了一个动态高精度的LPG球罐IGWO-LSSVM风险预警模型。为后续风险管控平台的建立提供动态精准预判风险的理论基础。

(7)实现了化工园区LPG球罐泄漏耦合风险动态管控。通过前期的致因分析与风险演化机制研究,基于化工园区LPG球罐区域风险评估与动态预警模型,结合系统动力学理论运用组合干预方法干预风险演化路径的思路,借助SpringBoot+Vue前后端分离的Java快速开发框架开发了LPG球罐泄漏耦合风险动态管控平台。选取我国一家煤制油企业进行实证研究,通过储罐区域风险评价与储罐动态风险预警模型的结合,运用Vensim-PLE的仿真实现LPG球罐泄漏耦合风险组合干预动态管控,企业实现了从被动到主动、从分散到集中、从静态到动态的管理转变。全面增强风险管控和安全生产水平。以期为化工领域储罐泄漏事故的预先防控提供理论支撑。

外文摘要:

Liquefied petroleum gas (LPG), as an environmentally-friendly energy source, plays a significant role in the energy consumption structure of our country. The processes of production, storage, and transportation of LPG in chemical industrial parks are characterized by large scale, lengthy procedures, complex working conditions, strong diffusibility, flammability, explosiveness, challenges in emergency response. With the rising demand for LPG, addressing secondary disaster risks, such as explosions, fires, and poisonings resulting from LPG tank leaks, is essential for both technical safety and public well-being. This paper introduces a regional risk assessment and dynamic early-warning model for LPG spherical tanks in chemical industrial parks. Additionally, a dynamic risk control platform was developed to enable real-time monitoring and precise control over the coupled risks associated with LPG tank leaks, leveraging data-driven methodologies. This model contributes significantly to ensuring the long-term safety of LPG enterprises. The main research objectives of this paper are as follows:

(1) Analysis of LPG tank accident characteristics over the past decade. Based on data from 1,050 LPG tank accident cases in China between 2014 and 2023, an analysis was conducted covering accident types, timing, operational status, and coupling characteristics. Using the ARMA model for time-series prediction, trends in accident frequency and casualty rates across different tank types for the next five years were projected, offering a theoretical basis for risk mitigation planning.

(2) Development of a causal information database for LPG spherical tank leaks in chemical parks. A comprehensive database detailing the causes of LPG spherical tank leaks within chemical parks was created using 5W2H analysis and grounded theory. The data from LPG tank accidents and field interviewing underwent a systematic three-tier coding process, culminating in an information structure with 7 core categories, 22 main categories, and 74 subcategories. Additionally, a conceptual model was formulated to map the contributing factors to LPG tank leaks, providing critical data for deeper investigation into causal mechanisms and predictive risk control measures.

(3) Analysis of causal hierarchies and strong coupling associations in LPG tank leaks. Advanced methodologies, including DEMATEL, ISM, MICMAC, and the Apriori algorithm, were employed to reveal the layered causal relationships, attribute characteristics, and coupling association patterns of LPG tank leaks. Data from 207 LPG tank leak incidents over the past decade led to the identification of five accident-causation levels. This in-depth analysis highlighted specific coupling patterns and high-frequency risk factors, offering essential parameters for further simulation studies in disaster evolution pathways and integrated risk assessment.

(4) Development of a model of the evolution for LPG spherical tank leaks in chemical parks.Quantification of causal coupling evolution pathways for LPG tank leaks. The structural equation model–bayesian network (SEM-BN) approach was utilized to verify and refine latent-variable pathways, exploring the influence of safety measures on LPG tank leaks within the conceptual causal framework. This analysis confirmed the mediating impact of emergency response levels on accident progression. By integrating expert knowledge with the EM estimation algorithm, key, high-sensitivity paths were identified in both the risk evolution and transmission processes. These findings provide a theoretical framework for constructing regional risk assessment indices and dynamic early-warning models tailored to LPG tank safety.

(5) Formulation of a data-driven regional risk assessment model for LPG storage tanks in chemical parks. A specialized model was formulated to assess regional risks associated with LPG spherical storage tanks within chemical parks. This framework stems from in-depth research into the identification of causative factors and quantification of risk evolution paths in storage tank leakage scenarios. A comprehensive risk assessment index was constructed, covering seven primary risk dimensions—material, human, mechanical, environmental, managerial, response, and supervisory factors—alongside 22 secondary elements and 74 specific indicators. Upon examining error distribution, time efficiency, and other criteria across four distinct optimization approaches, the t-SNE and IGWO-MLP neural network models demonstrated superior accuracy for safety risk assessment, providing a structured basis for an integrated approach to mitigating tank leak risks.

(6) Formulation of an IGWO-LSSVM risk early-warning model for LPG storage tanks in chemical parks. A high-precision, early-warning framework was designed to enable dynamic risk monitoring for LPG storage tanks, utilizing seventeen key indicators. This multi-class dynamic risk early-warning model, based on least squares support vector machine (LSSVM) algorithms, underwent automated optimization via the improved grey wolf optimization (GWO) method. The resulting IGWO-LSSVM model offers a theoretically robust foundation for anticipatory risk management, with potential applications in a broader risk prediction platform for LPG storage facilities.

(7) A dynamic coupling risk management platform for LPG storage tank leaks in chemical industrial parks. Drawing from extensive causal analysis and risk evolution research, this system integrates regional risk assessments and dynamic early-warning mechanisms to manage the coupled risks associated with LPG tank leaks. Leveraging the SpringBoot + Vue framework, the platform renders a dynamic intervention structure based on system dynamics and combined intervention methods. In an empirical application within a coal-to-liquids enterprise in China, the platform demonstrated its capability by linking regional risk assessments with real-time warnings. Simulation through Vensim-PLE facilitated the proactive control of LPG tank leak risks, offering substantial theoretical and practical support for mitigating storage tank incidents in the chemical sector. Enterprises have realized the management transformation from passive to active, from decentralized to centralized, from static to dynamic. We will comprehensively strengthen risk management and control and work safety. To provide theoretical support for the prevention and control of tank leakage accidents in chemical industry.

参考文献:

[1] Hou J, Gai W, Cheng W, et al. Statistical analysis of evacuation warning diffusion in major chemical accidents based on real evacuation cases[J]. Process Safety and Environmental Protection, 2020, 138: 90-98.

[2] 孙长生.低温LPG储罐开罐安全技术研究[J].中国石油和化工标准与质量,2023,43(24):33-35.

[3] 董国香,张捡,罗金,等.液化石油气钢瓶燃爆原因分析[J].石油和化工设备,2023,26(8):136-143.

[4] Bubbico R, Mazzarotta B. Dynamic response of a tank containing liquefied gas under pressure exposed to a fire: A simplified model[J]. Process Safety and Environmental Protection, 2018, (113): 242-254.

[5] Virgil F, Marius N, Dragos B, et al. About Failure of the LPG Tank Fastening Welds on the Chassis of Trucks[J]. Romanian Journal of Transport Infrastructure, 2024, (1), 1-14.

[6] 郑逸翔,马艳龙,周世民,等.液化石油气罐车运输事故分析及应急救援[J].化学工程与装备,2023,(8):258-259+263.

[7] 张晓青.LPG供应站的布局优化模型研究[J].上海煤气,2023,(3):35-38.

[8] 朱磊,张占奎.液化石油气罐车应力腐蚀影响因素分析[J].中国设备工程,2023,(12):178-180.

[9] 罗旺.液化石油气灌装站安全风险管控和隐患治理双重预防机制的构建[J].石油库与加油站,2023,32(3):35-39+5.

[10] 曾瑜,陈司达,加永边巴.高原液化石油气管道的腐蚀现状与防护[J].中国特种设备安全,2023,39(S2):90-92.

[11] 秦宇毅,吕品,周朱晟,等.基于LPG储罐事故演化系统的个人风险分析[J].消防科学与技术,2023,42(5):615-621.

[12] 张志斌,叶继红.高速路上LPG罐车泄漏爆炸危险性分析[J].工业安全与环保,2023,49(4):5-10.

[13] 陶旭东,陈永良,赵奇,等.集成灶液化石油气微量泄漏扩散规律[J].科学技术与工程,2019,19(26):332-337.

[14] Scarponi GE, Cozzani V, Antonioni G, et al. Modeling the behavior of LPG tanks exposed to partially engulfing pool fires[J]. Process Safety and Environmental Protection, 2024, 182, 1072-1085.

[15] Yang D, Peng K, Zheng J, et al. Consequences analysis of the LPG tank truck traffic accident: A case study of the Wenling explosion accident[J]. Journal of Loss Prevention in the Process Industries, 2024, 87, 105228.

[16] 王媛原.LPG事故中消防救援人员伤亡案例分析及对策研究[J].山东化工,2024,53(03):232-234.

[17] 杨新顺.LPG需求量的影响因素分析及应用研究[J].现代商贸工业,2024,45(04):11-13.

[18] Wei CC, Li HT, Luo ZM, et al. Quantitative analysis of flame luminance and explosion pressure in liquefied petroleum gas explosion and inerting: grey relation analysis and kinetic mechanisms[J]. Energy, 2024, 304(30), 132046-132046.

[19] 范小猛,徐绍雄,冯玉超,等.液化石油气储配站作业人员职业暴露及应急救援重点分析[J].中国工业医学杂志,2023,36(6):554-555+569.

[20] 张晓清,郑永军,范家骧.液化石油气行业标准化的分析与思考[J].城市燃气,2023,(12):18-21.

[21] 刘勇.液化石油气钢瓶瓶体泄漏成因分析[J].中国化工装备,2023,25(06):17-20.

[22] 段仁武,李展,颜海春,等.火灾条件下敞开空间LPG储罐的BLEVE试验[J].爆炸与冲击,2023,43(12):156-167.

[23] 董姣姣,李路遥,徐晓华.液化石油气铁路罐车运输风险预警模型及应用[J].物流技术,2023,42(10):42-45.

[24] Trávníček P, Kotek L, Junga P, et al. Prevention of accidents to storage tanks for liquid products used in agriculture[J]. Process Safety and Environmental Protection, 2019, 128 193-202.

[25] Qiu SS, Li SA. Quantitative analysis of chemical plant safety based on bayesian network[J]. Processes, 2023, 11(2): 525-525.

[26] 徐栋,李淑慧.危险化学品事故分析与应对措施[J].化工管理,2023,(33):97-100.

[27] Shao J, Zhu Z, Xu B, et al. Triage and Evaluation of Blast-injured Patients in Wenling Liquefied Petroleum Gas Tanker Explosion[J]. Journal of burn care & research: official publication of the American Burn Association, 2023, 44(6): 1492-1501

[28] 孙逸林,郑小强,刘丹秀,等.我国城镇燃气管网生产安全事故统计与宏观规律分析[J].武汉理工大学学报(信息与管理工程版),2023,45(5):675-680.

[29] 朱家鑫,田宏,贾圣孔等.LPG储罐泄漏应急处理的安全防护间距研究[J].辽宁化工,2022,51(6):851-85.

[30] 万婧,容振乾,赵远飞,等.2010—2019年我国化工行业较大以上生产安全事故统计分析及启示[J].工业安全与环保,2021,47(5):59-63.

[31] 陈思强,王金玮,胡训军.50起危险化学品常压储罐事故分析[J].职业卫生与应急救援,2023,41(5):599-602.

[32] 韦婷艳,李青,黄荣添,等.2013-2019年我国危险化学品较大事故以上事故统计分析[J].云南化工,2020,47(12):167-171.

[33] 朱志萍,丁欣荣.当前危化品安全事故防控困境及对策研究—基于2013~2018年部分危化品安全事故的统计分析[J].上海城市管理,2020,28(1):53-61.

[34] 胡万吉.2009—2018年我国化工事故统计与分析[J].今日消防,2019,4(02):3-7.

[35] 沈洁,朱伶俐,宋丽炜,等.2012—2020年中国危险化学品仓储事故统计分析及防控措施[J].化工管理,2022,(19):125-128.

[36] 罗聪,徐克,刘潜,等.安全风险分级管控相关概念辨析[J].中国安全科学学报,2019,29(10):43-50.

[37] 陈国华,陶侠,周利兴.Natech事件油气管道脆弱性评估系统设计及实现[J].油气储运,2024,43(1):40-48.

[38] 黄孔星,陈国华,曾涛,等.化工园区Na-Tech事件定量风险评价与防控体系评述[J].化工进展,2019,38(7):3482-3494.

[39] 宋晓燕,苏含琴,谢中朋.LPG槽罐车泄漏爆炸数值模拟研究[J].工程爆破,2023,29(6):153-157.

[40] Li Z, Yao M, Luo Z, et al. Ultra-early prediction of the process parameters of coal chemical production[J]. Heliyon, 2024, 10(9), e30821.

[41] 吴易哲,刘溜,吴迎迎.液化石油气储运过程中的危害因素与应对措施[J].石油化工安全环保技术,2023,39(5):26-27+49+6.

[42] 张健伟.新能源发展对液化石油气市场格局的影响与应对策略[J].中国产经,2023,(19):161-163.

[43] 罗振敏,解超,王九柱,等.N2和CO2对液化石油气惰化抑爆效能对比分析[J].化工进展,2019,38(6):2574-2580.

[44] 黄丽蒂,刘双双,赵朝瑞,等.LPG储罐泄漏多事故场景下社区居民疏散仿真模拟与优化[J].河南科学,2024,42(4):476-483.

[45] 孙秉才,冉冉,顾晓敏,等.LPG低温储罐泄漏扩散数值模拟及影响因素分析[J].工业安全与环保,2022,48(9):26-30.

[46] 罗振敏,郝苗,王磊,等.天然气场站泄漏事故后果模拟与风险评估[J].消防科学与技术,2021,40(3):340-344.

[47] Heymes F, Aprin L, Birk AM, et al. An experimental study of an LPG tank at low filling level heated by a remote wall fire[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(6): 1484-1491.

[48] Luo ZM, Li DF, Su B. On the time coupling analysis of explosion pressure and intermediate generation for multiple flammable gases. Energy[J], 2020, 198, 117329.

[49] 吴壮.多变量下化工园区LPG储罐泄漏后果及可视化研究[D].北京:北京石油化工学院,2023.

[50] 王少杰.加油加气充电合建站危险源辨识与爆炸风险评价研究[D].西安:西安科技大学,2022.

[51] Kazem S, Omran A, Morteza JA. LPG storage tank accidents: initiating events, causes, scenarios, and consequences[J]. Journal of Failure Analysis and Prevention, 2021 (4), 1-10.

[52] Ma Q, Zhong M, Guo Y, et al. Study on the characteristic of boiling expansion process of superheated LPG and its vapor cloud explosion[J]. Journal of Loss Prevention in the Process Industries, 2022, 104831.

[53] Attia M, Sinha J. Improved quantitative risk model for integrity management of liquefied petroleum gas storage tanks: Mathematical basis, and case study[J]. Process Safety Progress, 2020, 3, 63-78.

[54] 褚新颖,刘阳,薛奕,等.基于FLACS模拟的液化石油气球罐区池火后果影响与消防对措施研究[J].南开大学学报(自然科学版),2022,55(4):92-96.

[55] 岳承军,陈力,李展,等.温岭“6·13”液化石油气槽罐车爆炸事故灾害效应分析[J].防灾减灾工程学报,2021,41(5):928-935.

[56] 孙宝平,张海英,吕淑然,等.LPG罐车泄漏爆炸事故验证及影响因素数值模拟[J].北京理工大学学报,2021,41(2):137-142.

[57] 戴俊岩,饶国宁,张方敏.某LPG槽罐车爆炸事故后果模拟分析[J].消防科学与技术,2021,40(2):287-292.

[58] Jiao Y, Chen R, Wang K, et al. Simulation of scenario characteristics of LPG tank explosion accident and its contribution to emergency planning: A case study[J]. Journal of Loss Prevention in the Process Industries, 2023, 83, 105066.

[59] Petre O. Research on the behaviour of a toroidal LPG storage tank under uniaxial traction loads[J]. Hidraulica, 2023 (1), 15-26.

[60] Wang K, Hu Q, Qian X et al. Cause analysis and damage mechanism of explosive destruction with case investigation involving LPG tank trailer[J]. Engineering Failure Analysis, 2022, 133, 1350-6307.

[61] Binti SS, Senanu AD, Fadzlina NN, et al. Liquefied petroleum gas monitoring and leakage detection system using nodemcu ESP8266 and wi-fi technology[J]. Indonesian Journal of Electrical Engineering and Computer Science, 2020, (1): 166-166.

[62] Li J, Wu J, Tu C, et al. Spatial positioning robotic system for autonomous inspection of LPG tanks[J]. The Industrial Robot, 2023, (1), 70-83.

[63] 熊伟.我国液化石油气行业发展关键问题研究(下篇)[J].城市燃气,2023, (10):1-5.

[64] 万宇飞,李立婉,王文光,等.基于Fluent的风向对LPG储罐泄漏扩散规律研究[J]. 石油与天然气化工,2021,50(5):98-103.

[65] 赵俊茹,白伟,陈靖,等.油气罐区人的不安全行为管控策略系统动力学研究[J].压力容器,2018,35(1):51-56.

[66] 许贵贤.液化石油气储罐事故后果分析[J].华北科技学院学报,2016,13(6):101-105.

[67] Hu Q, Qian X, Shen X, et al. Investigations on vapor cloud explosion hazards and critical safe reserves of LPG tanks[J]. Journal of Loss Prevention in the Process Industries, 2022, 80, 104904.

[68] 张洪涛.DF公司液化石油气储罐改造项目安全预评价研究[D].青岛:青岛大学,2019.

[69] Su B, Dong HW, Luo ZM, et al. Effects of H2/CO ratio and CO2 dilution on the explosion behavior and flame evolution of syngas/air mixtures[J]. International Journal of Hydrogen Energy, 2024, 69, 451-465.

[70] 李向欣,张浩.不同储存条件下储罐泄漏事故危害范围的对比分析[J].安全,2019,40(3):30-34.

[71] 张琥.我国食品企业氨泄漏事故致因研究[D].北京:中国矿业大学(北京),2018.

[72] 许素睿,胡广霞.行为安全视角下的氨泄漏事故分析[J].安全,2019,40(09):69-74+6.

[73] Chen H, Yang M, Tang X. Association rule mining of aircraft event causes based on the Apriori algorithm[J]. Scientific reports, 2024, (1), 13440-13440.

[74] Lu Y, Lu Y, Wang J, et al. Analysis on causative factors and evolution paths of blast furnace gas leak accident[J]. Energies, 2022. (15), 5622-5622.

[75] Wang K, Hu Q, Qian X, et al. Cause analysis and damage mechanism of explosive destruction with case investigation involving LPG tank trailer[J]. Engineering Failure Analysis, 2022, 133, 106002.

[76] Lyu S, Zhang S, Huang X, et al. Investigation and modeling of the LPG tank truck accident in Wenling, China[J]. Process Safety and Environmental Protection, 2022, 157, 493-508.

[77] Wang JH, Yan MW. Application of an improved model for accident analysis: a case study[J]. International Journal of Environmental Research and Public Health, 2019, (15), 2756-2756.

[78] 贾松蒙.基于安全结构理论的化工生产事故对策研究[D].阜新:辽宁工程技术大学,2016.

[79] Ni K, Ma Y. Simulation of LPG tank truck leakage and explosion accident based on CFD[J]. Journal of Physics: Conference Series, (2021). 2003, 012005.

[80] Men J, Ji H, Chen Z, et al. Study of the situation deduction of a domino accident caused by overpressure in LPG storage tank area[J]. Journal of Loss Prevention in the Process Industries, 2021, 72, 104525.

[81] 徐慧敏.LNG接收站储罐泄漏事故风险分析及防控方法研究[D].青岛:中国石油大学(华东),2021.

[82] 李修峰,陈国明,耿素花.FPSO油气泄漏燃爆连锁风险量化分析与屏障控制研究[J].石油化工安全环保技术,2018,34(1):5.

[83] 王春雪.城市燃气管道泄漏风险系统动力学仿真分析[J].消防科学与技术,2017,36(9):5.

[84] 廖天颖,杨斯博,窦润亮.基于贝叶斯网络的大数据安全动态风险评估模型研究 [J].网络空间安全,2023,14(1):60-68.

[85] 胡甚平,邹春,吴建军,等.多重防护机制下LNG动力船风险态势分析方法[J].安全与环境学报,2024,24(08):2895-2903.

[86] 肖容,袁利伟,邢志华,等.基于模糊DEMATEL-ISM模型的尾矿库事故影响因素研究[J].化工矿物与加工,2023,52(5):74-80.

[87] 向鹏成,张子薇,李卉,等.城市地下燃气管道泄漏事故致因因素系统分析[J].中国安全科学学报,2023,33(12):140-147.

[88] Qian XM, Huang ZR, Jiang JC, et al. Physical evidence and system theory based accident investigation of strongly constrained environments: A case study[J]. Process Safety and Environmental Protection, 2023, 173, 775-785.

[89] Ren C, Chen B, Xie F, et al. Understanding hazardous materials transportation accidents based on higher-order network theory[J]. International Journal of Environmental Research and Public Health. 2022, (20), 13337-13337.

[90] 孙逸林,郑小强,刘险峰,等.基于AcciMap模型的燃气管道泄漏爆炸事故分析[J].中国安全科学学报,2023,33(7):140-146.

[91] 孙富强,李艳宏,程圆圆.考虑冲击韧性的退化-冲击相依竞争失效建模[J].北京航空航天大学学报,2020,(12):046.

[92] Liu J, Yang G, Wang W, et al. Based on ISM—NK tunnel fire multi-factor coupling evolution game research[J]. Sustainability. 2022, (12), 7034-7034.

[93] Deng J, Liu S, Xie C, et al. Risk coupling characteristics of maritime accidents in chinese inland and coastal waters based on N-K model[J]. Journal of Marine Science and Engineering, 2021, (1), 4-4.

[94] Chen GH, Wu Y, Men J, et al. A novel approach for failure and consequence assessment considering multi-hazard coupling scenario in chemical industrial parks[J]. Engineering Failure Analysis, 2024, 156, 107867.

[95] Deng Y, Zhang Y, Yuan Z, et al. Analyzing subway operation accidents causations: apriori algorithm and network approaches[J]. International Journal of Environmental Research and Public Health, 2023, (4), 3386-3386.

[96] Luo ZM, Qi H, Su B, et al. A macroscopic and microscopic study of hydrogen-rich explosions under inert gas conditions[J]. International Journal of Hydrogen Energy, 2024, 61, 316-328.

[97] Li J, Ma G, Abdel-Jawad M, et al. Gas dispersion risk analysis of safety gap eff-ect on the innovating FLNG vessel with a cylindrical platform[J]. Journal of Loss Prevention in the Process Industries, 2016, 40:304-316.

[98] Fiates J, Santos R R C. An alternative CFD tool for gas dispersion modelling of heavy gas[J]. Journal of Loss Prevention in the Process Industries, 2016, 44:583-593.

[99] 杨凯.城市燃气输配管网耦合风险研究现状及展望[J].灾害学,2016,31(1):8.

[100] 张倩,杨应迪.基于耦合理论的城市燃气管网泄漏致灾模型研究[J].九江学院学报(自然科学版),2023,38(1):45-48.

[101] Laal F, Pouyakian M, Jafari M, et al. Technical, human, and organizational factors affecting failures of firefighting systems (FSs) of atmospheric storage tanks: Providing a risk assessment approach using Fuzzy Bayesian Network (FBN) and content validity indicators[J]. Journal of Loss Prevention in the Process Industries, 2020, 65, 104157.

[102] 王文和,刘林精,董传富,等.城市埋地燃气管道泄漏火灾致因耦合分析[J].消防科学与技术,2019,38(3):4.

[103] 王倩琳,胡瑾秋,张来斌,等.变压力工况下井口装置的疲劳失效演化规律研究[J].石油矿场机械,2017,46(5):5.

[104] 沈锴欣,贺治超,翁文国.化工多米诺事故中物理效应间的耦合作用[J].清华大学学报:自然科学版,2022,62(10):12.

[105] 张小良,宋慧娟,刘晓晨,等.液化石油气钢瓶爆炸事故后果及影响因素 [J].消防科学与技术,2018,37(3):401-405.

[106] 周宁,陈力,吕孝飞,等.大型LNG储罐泄漏扩散研究进展[J].油气储运,2019,38(8):8.

[107] 张德全.基于风险的石化装置失效频率评估技术应用研究[J].安全.健康和环境,2019,19(6):5.

[108] 田震,宋博达.基于HCNAM-BN的化工过程爆炸事故致因链分析[J].中国安全生产科学技术,2017,13(5):145-150.

[109] 叶雯静,徐亚博,谢昱姝,等.基于多米诺效应的石油罐区重大事故危害概率研究[J].安全,2023,44(11):19-25.

[110] Kazem S, Omran A, Morteza JA. LPG Storage Tank Accidents: Initiating Events, Causes, Scenarios, and Consequences[J]. Journal of Failure Analysis and Prevention, 2021, (4), 1-10.

[111] Zheng F, Zhang M, Song J, et al. Analysis on risk of multi-factor disaster and disaster control in oil and gas storage tank[J]. Procedia Engineering, 2018, 211, 1058-1064.

[112] 王春雪.基于贝叶斯网络的城市燃气管道泄漏风险研究[J].消防科学与技术,2017,36(04):539-542.

[113] 周乐,周廷鹤,张卫军.最不利储罐泄漏情形下燃气管廊的安全性评估[J].油气储运,2021(2):200-207.

[114] 彭伟,张俊,袁宏永,等.深埋储罐中泄漏孔对燃气泄漏影响的数值模拟[J].中国安全生产科学技术,2020(10):59-64.

[115] 成连华,郭阿娟,郭慧敏,等.煤矿瓦斯爆炸风险耦合演化路径研究[J].中国安全科学学报,2022,32(4):6.

[116] Lin Q, Liang Y, Luo X, et al. Spatial evolution of global petrochemical risk and the influence by industrialization[J]. Environmental science and pollution research international, 2023, (42), 95566-95578.

[117] Li R, Luo Z, Wang Tao, et al. Effect of initial temperature and H2 addition on explosion characteristics of H2 -poor/CH4 /air mixtures[J]. Energy, 2020, 213, 118979.

[118] 郑峰.基于复杂网络理论的地铁事故链网络关键事故源分析与评价研究[D].武汉:武汉科技大学,2020.

[119] Zhang Y L, Zhou C B. Structure optimization and flame barrier performance eval-uation of barrier explosion-proof materials based on FLAC[J]. Energy Technology & Environmental Science, 2020, 5, 4947-4960.

[120] 熊晓夏.基于马尔可夫链理论的道路交通事故链演化模型和阻断策略研究[D].镇江:江苏大学,2018.

[121] 姚浩,陈超逸,宋丹妮.基于复杂网络的超高层建筑施工安全风险耦合评估方法[J].安全与环境学报,2021,21(3):957-968.

[122] Liu H, Wang Y, Zhou X, et al. Question answering system for deterministic fault diagnosis of intelligent railway signal equipment[J]. Smart and Resilient Transport, 2021, (2), 202-214.

[123] 胡瑾秋,韩子从,董绍华.气象灾害下的油气站场设备脆弱节点辨识方法[J].石油科学通报,2024,9(02):297-306.

[124] 陈金岳.化工储罐区多灾害协同下动态个人风险评估方法研究[D].合肥:中国科学技术大学,2023.

[125] Lu Y, Liu J, Yu W. Social risk analysis for mega construction projects based on structural equation model and Bayesian network: a risk evolution perspective[J]. Engineering, Construction and Architectural Management, 2024, (7), 2604-2629.

[126] 陈文瑛,李启华.洪水诱发下化工园区储罐失效概率研究分析[J].安全,2019,40(12):48-53.

[127] Wang Y, Cui T, Gang X. Research on the Evolution Models and Risk of Disaster-Induced Storage Tank Explosions in a Smart City[J]. Electronics 2024, (11), 13.

[128] Men J, Chen G, Reniers G. Time-dependent earthquake-fire coupling fragility analysis under limited prior knowledge: A perspective from type-2 fuzzy probability[J]. Process Safety and Environmental Protection, 2024, 183, 274-292.

[129] Ding X, Shi G, Liu Z, et al. Risk chain mining of hazard sources in metro operation system safety: A new method to mine and control risk for safety management[J]. Urban Rail Transit, 2023, (2), 147-178.

[130] 王秋红,余承凤,汪雪繁,等.化工园区LPG蒸气云泄漏扩散影响因素数值模拟[J].西安科技大学学报, 2024,44(4):627-638.

[131] Wang L, Zou L, Abdel AM, et al. Expressway rear-end crash risk evolution mechanism analysis under different traffic states[J]. Transportmetrica B: Transport Dynamics, 2023 (1), 510-527.

[132] 陈朋超.油气管网安全状态监测传感系统构建与创新发展[J].油气储运,2023,42(9):998-1008.

[133] Wu S, Liu T, Zhang L, et al. Dynamic risk evolution analysis for in-situ combustion incidents of offshore heavy oil recovery[J]. Process Safety and Environmental Protection (PA), 2024, 190, 1355-1371.

[134] 吕辰.地震影响下危化品储罐及罐区综合风险量化模型研究[D].北京:中国矿业大学(北京),2018.

[135] 陈卓,魏锐,杜军威,等.危化品储运事故事理图谱构建与分析[J].安全与环境学报,2022,22(6):3190-3196.

[136] Liu Z, Zhang Z, Zeng X. Risk identification and management through knowledge Association: A financial event evolution knowledge graph approach[J]. Expert Systems With Applications (PA), 2024, 252, 123999.

[137] Lan H, Ma X. Risk evolution analysis of seafarers’ unsafe acts in maritime accidents based on directed weighted CN[J]. Applied Sciences, 2024. 14(6), 2595.

[138] Kang J, Wang Z, Wang Q, et al. Temporal assessment of emergency response and rescue capability for hybrid hydrogen-gasoline fueling stations based on dynamic scenario construction[J]. International Journal of Hydrogen Energy, 2024, 56, 358-368.

[139] Cheng L, Cao D. Evolution model and quantitative assessment of risk network in housing construction accidents[J]. Engineering, Constructionand Architectural Management, 2024, (1), 227-246.

[140] Zhong W, Cai J, Song Y, et al. Risk evolution of crude oil pipeline under periodic maintenance based on dynamic bayesian network[J]. Journal of Loss Prevention in the Process Industries, 2024, 87, 105229. Engineering, Constructionand Architectural Management, 2024, (1), 227-246.

[141] Wu Y, Zhang S, Zhang X, et al. Analysis on coupling dynamic effect of human errors in aviation safety[J]. Accident; analysis and prevention, 2023, 192, 1.1-1.17.

[142] 黄海玲.化工罐区地震—爆炸耦合致灾机理与防控技术研究[D].广州:华南理工大学,2023.

[143] 常林.LNG液化厂多灾种耦合机理与应急救援能力评估[D].武汉:武汉工程大学,2022.

[144] 王佳荟.基于随机网络的油储系统火灾事故情景推演研究[D].大连:大连海事大学,2022.

[145] 杨运锋.典型自然灾害诱发的化工园区多米诺效应事故链路概率预测与风险防控[D].广州:华南理工大学,2021.

[146] 李少鹏.LPG厂区爆炸灾害效应多参数时空演化规律及防控策略[D].广州:华南理工大学,2020.

[147] 华敏,蒋代,潘旭海,等.NaTech事件中泄漏致多米诺效应风险分析[J].南京工业大学学报(自然科学版),2019,41(5):561-569.

[148] 牟善军.以科技推动本质安全破解“化工围城”—“城市型”化工企业治理困局的解决策略[J].中国石化,2020,(04):73-75.

[149] He J, Huang L, Xiao Y, et al. Prediction model of continuous discharge coefficient from tank based on KPCA-DE-SVR[J]. Journal of Loss Prevention in the Process Industries, 2024, 89, 105316.

[150] 颜会珠,张杰,王伟,等.丙酮储罐泄漏事故的定量风险评估[J].化工管理,2024,(13):103-106.

[151] 张迁,刘鑫,王冰,等.复杂风速风向与事件树下储罐区多米诺事故分析[J].化工进展,2024,(4)1-20.

[152] 刘清徽.危险品储罐泄漏的事故分析及环境风险防治策略研究[J].皮革制作与环保科技,2023,4(21):56-58.

[153] Sheng Q, Jian S, Lei S, et al. Quantitative risk assessment of leakage accident of crude oil storage tank based on fuzzy Bayesian network and improved AHP[J]. Journal of Loss Prevention in the Process Industries, 2024, 90, 105341.

[154] 何汶静,唐秀叶,褚新颖,等.基于CASST-QRA定量评估的液化天然气加气站爆炸事故后果研究[J].南开大学学报(自然科学版),2022,55(04):81-86.

[155] 陈欣维,陈袁袁.油气处理终端环境风险评估与防范对策[J].油气田环境保护,2022,32(01):46-49.

[156] 门金龙,纪红兵,蔡冲冲,等.LNG槽车瞬态泄漏特性及事故后果研究[J].过程工程学报,2022,22(09):1287-1296.

[157] 杨凌鹏,耿孝恒,王卫强,等.基于QRA角度评价LNG储罐类型的选择[J].工业安全与环保,2020,46(02):49-53.

[158] 高玉格,关磊,王琛,等.铁路沿线可燃重气储罐最小隔离区域划分探讨[J].中国安全生产科学技术,2020,16(09):140-146.

[159] 张涛.基于风险的LPG储配站储罐防火间距的确定[J].煤气与热力,2020,40(03):18-19+45.

[160] Keyvan S, Naser H, Moslem A, et al. Using fuzzy cognitive map in bow tie method for dynamic risk assessment of spherical storage tanks: A case study[J]. Heliyon, 2024, 10(5): e26830.

[161] Zhang C, Wang Z, Chen X, et al. Risk assessment of liquid ammonia tanks based on Bayesian network and Probit model[J]. Process Safety Progress, 2023, 43(2): 287-298.

[162] Ma Q, Guo Y, Zhong M, et al. Numerical simulation of hydrogen explosion characteristics and disaster effects of hydrogen fueling station[J]. International Journal of Hydrogen Energy, 2024, 51 (PD): 861-879.

[163] Bae S, Lee J, Wilailak S, et al. Design‐based risk assessment on an ammonia‐derived urban hydrogen refueling station[J]. International Journal of Energy Research, 2022, 46 (9): 12660-12673.

[164] Ge Y, Yang Z, He H, et al. Risk evaluation of Ammonia Leakage based on Modified Probability Calculation Formulas[J]. Journal of Thermal Science, 2023, 32 (2): 854-865.

[165] 张浩天,杨红,薛家铖,等.液氢槽车氢泄漏风险分析[J].武汉工程大学学报,2024,46(03):325-329.

[166] Luo ZM, Zhang S, Gao S. Numerical simulation analysis of leakage gas cloud explosion in LPG tank farm[J]. IOP Conference Series: Earth and Environmental Science, 2021, (1), 012057.

[167] 闫星月.基于结构方程模型的化工园区风险因素分析[D].天津:天津理工大学,2022.

[168] 张秋花.化工企业储罐区大气环境风险评价及风险管理措施研究[J].化学工程与装备,2019,(10):300-304+299.

[169] Peng S, Zhou D Xie B, et al. Analysis of LNG storage tank safety: a comprehensive model approach with ANP and normal cloud[J]. Applied Sciences, 2022, 12 (23): 11941-11941.

[170] Lang Y, Zheng L, Chen H, et al. Aftereffect calculation and prediction of methanol tank leak’s environmental risk accident[J]. IOP Conference Series: Earth and Environmental Science, 2018, 108 (4): 042038-042038.

[171] Xie S, Chen Y, Dong S, et al. Risk assessment of an oil depot using the improved multi-sensor fusion approach based on the cloud model and the belief Jensen-Shannon divergence[J]. Journal of Loss Prevention in the Process Industries, 2020, 67, 104214.

[172] Ikwan F, Sanders D, Hassan M. Safety evaluation of leak in a storage tank using fault tree analysis and risk matrix analysis[J]. Journal of Loss Prevention in the Process Industries, 2021, (73): 104597.

[173] Kim, MU, Byeon, SH. Use and limitations of offsite consequence analysis tools from South Korea and the United States in hydrogen fluoride accidental release[J]. Integrated environmental assessment and management, 2018, 14 (2): 205-211.

[174] Ravi KS, Nirupama G, Bhola RG, et al. Assessment of failure and consequences analysis of an accident: A case study[J]. Engineering Failure Analysis, 2020, 109, 104192-104192.

[175] Trávníček P, Junga P, Kudělka J, et al. Prevention of an atmospheric storage tank bund failure[J]. Journal of Loss Prevention in the Process Industries, 2021, 70, 104438-104438.

[176] Abderraouf B, Mohammed B, Mounira R, et al. Safety risk analysis and accidents modeling of a major gasoline release in petrochemical plant[J]. Journal of Failure Analysis and Prevention, 2020, 20 (2): 1-12.

[177] Luo ZZ, Wei CC, Wang T, et al. Effects of N2 and CO2 dilution on the explosion behavior of liquefied petroleum gas (LPG)-air mixtures[J]. Journal of Hazardous Materials, 2021, 403, 123843.

[178] Cheng LH, Guo HM, Wang CH, et al. Research on multilevel information loss of the sharing process for safety information[J]. Journal of Loss Prevention in the Process Industries 2020, 67, 104223.

[179] 胡馨升,肖丽芳.LPG储罐个人风险计算方法及应用[J].工业技术创新,2019,06(02):85-89.

[180] Terzioglu L, Iskender H. Modeling the consequences of gas leakage and explosion fire in liquefied petroleum gas storage tank in Istanbul technical university, Maslak campus[J]. Process Safety Progress, 2021, (4), 319-326.

[181] 杨继星,佘笑梅,黄玉钏,等.基于BP神经网络的苯储罐泄漏事故风险评价模型研究[J].中国安全生产科学技术,2019,15(01):157-162.

[182] Tian S, Ma L, Li H, et al. Research on a Coal Seam Gas Content Prediction Method Based on an Improved Extreme Learning Machine[J]. Applied Sciences, 2023, (15), 8753.

[183] Cheng LH, Guo HM, Lin HF. The influence of leadership behavior on miners’ work safety behavior[J]. Safety Science, 2020, 132, 104986.

[184] Yang R, Gai K, Yang F, et al. Simulation analysis of propylene storage tank leakage based on ALOHA software[J]. IOP Conference Series: Earth and Environmental Science, 2019, 267 (4): 042038.

[185] 李威臻,李继繁,段继伟,等.基于L-R型模糊故障树的石化企业罐区泄漏环境风险评价[J].南开大学学报(自然科学版),2019,52(05):77-85.

[186] 杨艳,王瑞琪,郝郁,等.LOPA场景识别与筛选在油气站场中的应用[J].石油化工自动化,2022,58(06):58-62+94.

[187] Benikhlef T, Benazzouz D. Damage domains of chemically reacting industrial facilities. Application to Bhopal: like scenarios[J]. International Journal of System Assurance Engineering and Management, 2023, 14 (4): 1387-1394.

[188] Yuan XF, Li L, Shardt YAW, et al. Deep learning with spatiotemporal attention–based LSTM for industrial soft sensor model development[J]. IEEE Transactions on Industrial Electronics, 2021, 68(5): 4404-4414.

[189] Yang W, Liu W, Gao Q. Prediction of dissolved oxygen concentration in aquaculture based on attention mechanism and combined neural network[J]. Mathematical Biosciences and Engineering, 2023, 20(1): 998-1017.

[190] Ma M, Mao Z. Deep–convolution–based LSTM network for remaining useful life prediction[J]. IEEE Transactions on Industrial Informatics, 2021, 17(3): 1658-1667.

[191] Wang BK, Liu DT, Peng Y, et al. Multivariate regression–based fault detection and recovery of UAV flight data[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(6): 3527-3537.

[192] Kumari K, Dey P, Kumar C, et al. UMAP and LSTM based fire status and explosibility prediction for sealed–off area in underground coal mine[J]. Process Safety and Environmental Protection, 2021, 146: 837-852.

[193] 刘天伟.制冷气云成像技术在化工企业泄漏管理中的应用[J].石油化工技术与经济,2023,39(3):31-35.

[194] Luca L, Stefano P, Riccardo M, et al. In-depth analysis of the burst of a liquefied petroleum gas tank in gravedona, Italy[J]. Energies, 2024, (15), 3741-3741.

[195] 胡瑾秋,董绍华,徐康凯,等.基于红外热成像的LNG接收站关键设施漏冷缺陷智能监测方法[J].石油科学通报,2022,7(2):242-251.

[196] Chen A, Jiao HQ, Wang XJ, et al. Policy analysis and technical path research on the ecological development of the new coal chemical industry[J]. Coal Chemical Industry, 2023, 51(3): 1-5.

[197] Amin MT, Khan F, Ahmed S, et al. A data–driven Bayesian network learning method for process fault diagnosis[J]. Process Safety and Environmental Protection, 2021, 150: 110-122.

[198] Yuan XF, Ou C, Wang Y, et al. A novel semi–supervised pre–training strategy for deep networks and its application for quality variable prediction in industrial processes[J]. Chemical Engineering Science, 2020, 217: 115509.

[199] Zhong K, Han M, Han B. Data–Driven Based Fault Prognosis for Industrial Systems: A Concise Overview[J]. IEEE–CAA Journal of Automatica Sinica, 2020, 7: 330-345.

[200] 蔡永军.油气管道系统安全状态监测技术研究进展[J].油气与新能源,2022,34(2):65-70.

[201] 杨志华,宋佩月,付建民,等.原油储罐区可燃气体探测器布置优化方案研究[J].中国安全生产科学技术,2021,17(1):85-89.

[202] He J, Yang L, Ma Y, et al. Simulation and application of a detecting rapid response model for the leakage of flammable liquid storage tank[J]. Process Safety and Environmental Protection, 2020, 141, 390-401.

[203] 杨佃强,裴存锋.小型LPG储罐火灾超压预警研究[J].石油和化工设备,2018,21(4):87-89+94.

[204] Yao K. Bayesian inference with uncertain data of imprecise observations[J]. Communications in Statistics–Theory and Methods, 2022, 51(15): 5330-5341.

[205] Qi F, Zhang L, Zhou K, Ma X. Early Waning for Manufacturing Supply Chain Resilience Based on Improved Grey Prediction Model[J]. Sustainability, 2022, 14(20): 215-226.

[206] Abid A, Khan MT, Iqbal J. A review on fault detection and diagnosis techniques: basics and beyond[J]. Artificial Intelligence Review, 2021, 54(5): 3639-3664.

[207] Liu Y, Yang C, Gao Z.L, et al. Ensemble deep kernel learning with application to quality prediction in industrial polymerization processes[J]. Chemometrics and Intelligent Laboratory Systems, 2018, 174: 15-21.

[208] Liu LS, Chen LQ, Wang ZL, et al. Early fault detection of planetary gearbox based on acoustic emission and improved variational mode decomposition[J]. IEEE Sensors Journal, 2021, 21 (2): 1735-1745.

[209] Dorgo G, Palazoglu A, Abonyi J. Decision trees for informative process alarm definition and alarm–based fault classification[J]. Process Safety and Environmental Protection, 2021, 149: 312-324

[210] Mozaffari S, Javadi S, Moghaddam HK, et al. Forecasting groundwater levels using a hybrid of support vector regression and particle swarm optimization[J]. Water Resources Management, 2022, 36(6): 1955-1972.

[211] Lin HF, Li WJ, Li SG, et al. Coal mine gas emission prediction based on multifactor time series method[J]. Reliability Engineering and System Safety, 2024, 252, 110443.

[212] Xu J, Zhao Y, Chen H, et al. ABC–GSPBFT: PBFT with grouping score mechanism and optimized consensus process for flight operation data–sharing[J]. Informing Science, 2023, 624: 110-127.

[213] Steven M, Eleni I. Time series modeling in traffic safety research[J]. Accident Analysis and Prevention, 2018, 117: 368-380.

[214] Moiseev G. Forecasting oil tanker shipping market in crisis peri-ods: exponential smoothing model application[J]. The Asian Jour-nal of Shipping and Logistics, 2021, 37(3): 239-244.

[215] Li X, Liu Y. Research on the prediction of hazardous materials acci-dents during highway transportation based on the ARMA model[J]. Journal of Loss Prevention in the Process Industries, 2021, 72: 104583.

[216] Tian S, Wang Y, Li H, et al. Analysis of the causes and safety countermeasures of coal mine accidents: A case study of coal mine accidents in China from 2018 to 2022[J]. Process Safety and Environmental Protection, 2024, 187, 864-875.

[217] 刘仁杰.基于扎根理论和ISM-MICMAC的石油化工事故致因因素研究[J].工业安全与环保,2024,50(5):22-27.

[218] 李美玲,李子辉,陈雪珲,等.基于关联规则的高速公路交通事故风险识别[J].山东建筑大学学报,2024,39(03):99-106.

[219] Fa H, Shuai B, Yang Z, et al. Mining the accident causes of railway dangerous goods transportation: A Logistics-DT-TFP based approach[J]. Accident Analysis and Prevention 2024, 195, 107421.

[220] Shao L, Guo S, Dong Y, et al. Cause analysis of construction collapse accidents using association rule mining. Engineering[J]. Construction and Architectural Management, 2023, (9), 4120-4142.

[221] 中国标准化委员会.企业职工伤亡事故分类:GB/T 6441-1986[S].北京:中国标准出版社,1986.

中图分类号:

 X937    

开放日期:

 2028-12-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式