论文中文题名: |
冻融砂岩裂隙扩展演化及加卸载破坏特征研究
|
姓名: |
李晨婧
|
学号: |
20204228135
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
0852
|
学科名称: |
工学 - 工程
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2023
|
培养单位: |
西安科技大学
|
院系: |
建筑与土木工程学院
|
专业: |
土木水利
|
研究方向: |
岩土力学与工程应用
|
第一导师姓名: |
宋勇军
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2023-06-12
|
论文答辩日期: |
2023-06-05
|
论文外文题名: |
Research on Fracture Propagation Evolution and Loading-unloading Failure Characteristics of Freeze-thawed Sandstone
|
论文中文关键词: |
冻融循环 ; 循环加卸载 ; CT三维重构 ; 能量演化 ; 细观破坏特征
|
论文外文关键词: |
Freeze-thaw cycles ; Cyclic loading and unloading ; CT three-dimensional reconstruction ; Energy evolution ; Mesoscopic failure characteristics
|
论文中文摘要: |
︿
岩体作为一种天然地质结构,内部常存有褶皱、节理、断层等结构面,而且寒区岩体工程受循环冻融作用易在这些弱面引发细观损伤扩展,并由于阶段性开挖、运输等重复性荷载导致岩体变形失稳,对寒区工程施工建设及运营维护产生严重隐患。针对在冻融及循环荷载作用下的岩石裂隙扩展演化及破坏特征问题,本文以白砂岩为研究对象,对饱和完整岩样和饱和预制双裂隙岩样开展冻融循环试验,而后进行单轴压缩及循环加卸载试验,分析其力学性质及加卸载能量演化与分配规律;并利用CT技术,获得不同冻融次数与不同加卸载应力状态下的三维裂隙结构图像,结合细观参数,分析砂岩冻融细观损伤演化规律,评估加卸载过程中裂隙扩展及破坏特征;分析冻融砂岩加卸载损伤演化机理。主要研究结论如下:
(1)揭示裂隙砂岩冻融损伤演化特征。冻融循环促进岩石裂隙连通主要发生在冻融前期,冻融后期主要表现为孔喉等效半径增大,孔喉结构分布范围越来越广,裂隙砂岩孔喉结构发育更为剧烈。冻融产生的孔/裂隙成为支配异质性的主要因素,峰值强度及弹性模量随孔隙率增大而降低,当孔隙率较小时,峰值强度随异质系数增大而降低,其余情况异质系数的影响较小。
(2)研究冻融砂岩加卸载力学性能及能量演化规律。随着冻融次数的增加,试件单轴加卸载峰值强度不断降低,同时变形不断增大,相同冻融次数下,裂隙试件单轴加卸载峰值应变小于完整试件。能量密度随加载比呈非线性增长,未冻融砂岩弹性能相对耗散能迅速增长,随着冻融循环次数增大,弹性能与耗散能的累积速率差值逐渐减小;应变储能指数与冻融次数呈线性负相关,且完整与裂隙砂岩敏感性相当。砂岩损伤能呈二次多项式函数增长,而不同冻融次数间差异较小。
(3)分析冻融砂岩加卸载裂隙扩展及破坏特征。完整砂岩各层面孔隙率增量较为均匀,裂隙砂岩在岩桥区域及预制裂隙尖端所在层易出现损伤集中区。破坏阶段完整砂岩分形维数介于2.19~2.44之间,裂隙砂岩介于2.35~2.40之间。未冻融完整砂岩加卸载后呈斜穿中部的剪切破坏,冻融后完整砂岩两侧发生拉剪混合破坏,形成X状共轭斜面剪切,破坏模式受冻融循环影响显著。裂隙砂岩的裂纹首先在预制裂隙之间拉伸,其次预制裂隙周围形成外翼裂纹,最后整体发生滑移破坏,冻融对裂隙岩石加卸载破坏模式影响甚微。随着应力加载等级增加,损伤逐渐加剧,相同加载比下高冻融次数砂岩损伤程度更大,不同冻融次数砂岩加载至最后一级时损伤变量Dm 均小于1,岩样破坏但未丧失承载能力。
﹀
|
论文外文摘要: |
︿
As a natural geological structure, rock mass often has structural planes such as folds, joints, and faults. Moreover, rock mass engineering in cold regions is easy to cause meso-damage expansion on these weak surfaces due to cyclic freezing and thawing. Due to repetitive loads such as staged excavation and transportation, rock mass deformation and instability have serious hidden dangers for construction, operation and maintenance in cold regions. Therefore, aiming at the propagation evolution and failure characteristics of rock cracks under freeze-thaw and cyclic loading, this paper takes white sandstone as the research object, and carries out freeze-thaw cycle tests on saturated intact rock samples and prefabricated double-crack rock samples. Then, uniaxial compression and cyclic loading and unloading tests are carried out to analyze the mechanical properties and the evolution and distribution of loading and unloading energy; The three-dimensional fracture structure images under different freeze-thaw times and different loading and unloading stress states were obtained by CT technology. Combined with the microscopic parameters, the microscopic damage evolution law of sandstone freeze-thaw was analyzed, and the fracture propagation and failure characteristics during loading and unloading were evaluated. The damage evolution mechanism of freeze-thaw sandstone under loading and unloading is analyzed.The conclusions are as follows:
(1) The freeze-thaw damage evolution characteristics of fractured sandstone were revealed. The freeze-thaw cycle promotes the connection of rock fissures mainly in the early stage of freeze-thaw. In the later stage of freeze-thaw, the equivalent radius of pore throat increases, and the distribution range of pore throat structure is wider and wider. The pore throat structure of fractured sandstone is more intense. The pores / cracks generated by freezing and thawing become the main factor governing heterogeneity. The peak strength and elastic modulus decrease with the increase of porosity. When the porosity is small, the peak strength decreases with the increase of heterogeneity coefficient.
(2) The mechanical properties and energy evolution of freeze-thaw sandstone under loading and unloading were studied. With the increase of the number of freeze-thaw cycles, the peak strength of the uniaxial loading and unloading of the specimen decreases continuously, while the deformation increases continuously. Under the same number of freeze-thaw cycles, the peak strain of the uniaxial loading and unloading of the fractured specimen is smaller than that of the complete specimen. The energy density increases nonlinearly with the loading ratio. The elastic energy of no freeze-thaw sandstone increases rapidly relative to the dissipated energy. With the increase of freeze-thaw cycles, the difference between the cumulative rate of elastic energy and dissipated energy gradually decreases. The strain energy storage index is linearly negatively correlated with the number of freeze-thaw cycles, and the integrity is equivalent to the sensitivity of fractured sandstone. The damage energy of sandstone increases in a quadratic polynomial function, and the difference between different freeze-thaw times is small.
(3) The fracture propagation and failure characteristics of freeze-thaw sandstone under loading and unloading are analyzed. The porosity increment of each layer of intact sandstone is relatively uniform, and the fractured sandstone is prone to damage concentration in the rock bridge area and the layer where the prefabricated crack tip is located. The fractal dimension of intact sandstone is between 2.19 and 2.44, and that of fractured sandstone is between 2.35 and 2.40. After loading and unloading, the intact sandstone without freeze-thaw shows shear failure obliquely through the middle. After freeze-thaw, the tensile-shear mixed failure occurs on both sides of the intact sandstone, forming X-shaped conjugate inclined plane shear, and the failure mode is significantly affected by freeze-thaw cycles. The cracks of the fractured sandstone first stretch between the prefabricated cracks, then the outer wing cracks are formed around the prefabricated cracks, and finally the overall slip failure occurs. The freeze-thaw has little effect on the loading and unloading failure mode of the fractured rock. With the increase of stress loading level, the damage gradually intensifies. Under the same loading ratio, the damage degree of sandstone with high freeze-thaw times is greater. The damage variable Dm of sandstone with different freeze-thaw times is less than 1 when it is loaded to the last time, and the rock sample is destroyed but does not lose its bearing capacity.
﹀
|
参考文献: |
︿
[1] 陈卫忠, 谭贤君, 于洪丹, 等. 低温及冻融环境下岩体热、水、力特性研究进展与思考[J]. 岩石力学与工程学报, 2011, 30(07): 1318–1336. [2] Deprez M, De Kock T, De Schutter G, et,al. A review on freeze-thaw action and weathering of rocks[J]. Earth-Science Reviews, 2020, 203: 103143. [3] Elsevier, Strength and failure characteristics of rock-like material containing single crack under freeze-thaw and uniaxial compression[J]. Cold Regions Science and Technology, 2019, 162: 1-10. [4] Wang Y, Deng H, Deng Y, et,al. Study on crack dynamic evolution and damage-fracture mechanism of rock with pre-existing cracks based on acoustic emission location[J]. Journal of Petroleum Science and Engineering, 2021, 201: 108420. [5] Wong L N Y, Einstein H H. Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(2): 239–249. [6] Jiang R, Dai F, Liu Y, et,al. Fast Marching Method for Microseismic Source Location in Cavern-Containing Rockmass: Performance Analysis and Engineering Application[J]. Engineering, 2021, 7(7): 1023–1034. [7] Zhou L, Zhu Z, Dong Y, et,al. Investigation of dynamic fracture properties of multi-crack tunnel samples under impact loads[J]. Theoretical and Applied Fracture Mechanics, 2020, 109: 102733. [8] Li Y, Cai W, Li X, et,al. Multidisciplinary Digital Publishing Institute, 2019. Experimental and DEM Analysis on Secondary Crack Types of Rock-Like Material Containing Multiple Flaws Under Uniaxial Compression[J]. Applied Sciences, 2019, 9(9): 1749. [9] Bieniawski Z T. Time-dependent behaviour of fractured rock[J]. Rock mechanics, 1970, 2(3): 123–137. [10] 刘慧. 基于CT图像处理的冻结岩石细观结构及损伤力学特性研究[D]. 西安科技大学, 2013. [11] Winkler E M. Frost damage to stone and concrete: geological considerations[J]. Engineering Geology, 1968, 2(5): 315–323. [12] Martínez-Martínez J, Benavente D, Gomez-Heras M, et,al. Non-linear decay of building stones during freeze–thaw weathering processes[J]. Construction and Building Materials, 2013, 38: 443–454. [13] Matsuoka N. Mechanisms of rock breakdown by frost action: An experimental approach[J]. Cold Regions Science and Technology, 1990, 17(3): 253–270. [14] 裴向军, 蒙明辉, 袁进科, 等. 干燥及饱水状态下裂隙岩石冻融特征研究[J]. 岩土力学, 2017, 38(07): 1999–2006. [15] 韩铁林, 师俊平, 陈蕴生. 砂岩在化学腐蚀和冻融循环共同作用下力学特征劣化的试验研究[J]. 水利学报, 2016, 47(05): 644–655. [16] Zhang H, Yuan C, Yang G, et,al. A novel constitutive modelling approach measured under simulated freeze–thaw cycles for the rock failure[J]. Engineering with Computers, 2021, 37(1): 779–792. [17] 谭贤君, 陈卫忠, 伍国军, 等. 低温冻融条件下岩体温度-渗流-应力-损伤(THMD)耦合模型研究及其在寒区隧道中的应用[J]. 岩石力学与工程学报, 2013, 32(02): 239–250. [18] 王震, 朱珍德, 陈会官, 等. 冻融作用下岩石力-热-水耦合本构模型研究[J]. 岩土力学, 2019, 40(07): 2608–2616. [19] Yang S Q, Huang Y H, Tian W L, et,al. An experimental investigation on strength, deformation and crack evolution behavior of sandstone containing two oval flaws under uniaxial compression[J]. Engineering Geology, 2017, 217: 35–48. [20] 杨圣奇, 戴永浩, 韩立军, 等. 断续预制裂隙脆性大理岩变形破坏特性单轴压缩试验研究[J]. 岩石力学与工程学报, 2009, 28(12): 2391–2404. [21] 肖维民, 邓荣贵, 付小敏, 等. 单轴压缩条件下柱状节理岩体变形和强度各向异性模型试验研究[J]. 岩石力学与工程学报, 2014, 33(05): 957–963. [22] Zhou X P, Wang Y T, Zhang J Z, et,al. Fracturing Behavior Study of Three-Flawed Specimens by Uniaxial Compression and 3D Digital Image Correlation: Sensitivity to Brittleness[J]. Rock Mechanics and Rock Engineering, 2019, 52(3): 691–718. [23] Niu Y, Zhou X P, Zhang J Z, et,al. Experimental study on crack coalescence behavior of double unparallel fissure-contained sandstone specimens subjected to freeze-thaw cycles under uniaxial compression[J]. Cold Regions Science and Technology, 2019, 158: 166–181. [24] Lu Y, Li X, Chan A. Damage constitutive model of single flaw sandstone under freeze-thaw and load[J]. Cold Regions Science and Technology, 2019, 159: 20–28. [25] 乔趁, 李长洪, 王宇, 等. 冻融循环作用下中部锁固岩桥破坏试验研究[J]. 岩石力学与工程学报, 2020, 39(06): 1094–1103. [26] 王强. 循环加卸载下硬岩力学特性研究[J]. 煤矿机械, 2018, 39(01): 48–51. [27] 周元超. 单轴循环加卸载条件下砂岩能量演化规律及声发射特征研究[D]. 山东农业大学, 2019. [28] 尤明庆, 苏承东. 大理岩试样循环加载强化作用的试验研究[J]. 固体力学学报, 2008(01): 66–72. [29] Gordon R B, Davis L A. Velocity and attenuation of seismic waves in imperfectly elastic rock[J]. Journal of Geophysical Research (1896-1977), 1968, 73(12): 3917–3935. [30] Heap M J, Faulkner D R. Quantifying the evolution of static elastic properties as crystalline rock approaches failure[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(4): 564–573. [31] 李成杰, 徐颖, 娄培杰, 等. 等荷载循环加卸载下砂岩变形滞回环特性[J]. 科学技术与工程, 2017, 17(20): 139–143. [32] 赵闯, 武科, 李术才, 等. 循环荷载作用下岩石损伤变形与能量特征分析[J]. 岩土工程学报, 2013, 35(05): 890–896. [33] 郭印同, 赵克烈, 孙冠华, 等. 周期荷载下盐岩的疲劳变形及损伤特性研究[J]. 岩土力学, 2011, 32(05): 1353–1359. [34] 王大明, 周宗红, 付斌, 等. 大理岩单轴循环加卸载碎屑分形研究[J]. 矿冶, 2018, 27(04): 25-29+60. [35] 詹可亮, 薛俊华, 刘之喜. 岩石循环加卸载作用下能量的演化规律[J]. 煤矿安全, 2019, 50(03): 49–52. [36] 申艳军, 杨更社, 王铭, 等. 冻融–周期荷载下单裂隙类砂岩损伤及断裂演化试验分析[J]. 岩石力学与工程学报, 2018, 37(3): 709–717. [37] 刘杰, 雷岚, 王瑞红, 等. 冻融循环中低应力水平加卸载作用下砂岩动力特性研究[J]. 岩土力学, 2017, 38(9): 2539–2550. [38] 俞缙, 傅国锋, 陈旭, 等. 冻融循环后砂岩三轴卸围压力学特性试验研究[J]. 岩石力学与工程学报, 2015, 34(10): 2001–2009. [39] Zhang L, Chen S, Zhang C, et,al. The characterization of bituminous coal microstructure and permeability by liquid nitrogen fracturing based on μCT technology[J]. Fuel, 2020, 262: 116635. [40] Sun Y, Zhai C, Xu J, et,al. Characterisation and evolution of the full size range of pores and fractures in rocks under freeze-thaw conditions using nuclear magnetic resonance and three-dimensional X-ray microscopy[J]. Engineering Geology, 2020, 271: 105616. [41] De Kock T, Boone M A, De Schryver T, et,al. American Chemical Society, 2015. A Pore-Scale Study of Fracture Dynamics in Rock Using X-ray Micro-CT Under Ambient Freeze–Thaw Cycling[J]. Environmental Science & Technology, 2015, 49(5): 2867–2874. [42] Park J, Hyun C U, Park H D. Changes in microstructure and physical properties of rocks caused by artificial freeze–thaw action[J]. Bulletin of Engineering Geology and the Environment, 2015, 74(2): 555–565. [43] Shields Y, Garboczi E, Weiss J, et,al. Freeze-thaw crack determination in cementitious materials using 3D X-ray computed tomography and acoustic emission[J]. Cement and Concrete Composites, 2018, 89: 120–129. [44] Liu B, Ma Y, Liu N, et,al. Investigation of pore structure changes in Mesozoic water-rich sandstone induced by freeze-thaw process under different confining pressures using digital rock technology[J]. Cold Regions Science and Technology, 2019, 161: 137–149. [45] Maji V, Murton J B. Micro‐computed tomography imaging and probabilistic modelling of rock fracture by freeze–thaw[J]. Earth Surface Processes and Landforms, 2020, 45(3): 666–680. [46] 张淑娟, 赖远明, 苏新民, 等. 风火山隧道冻融循环条件下岩石损伤扩展室内模拟研究[J]. 岩石力学与工程学报, 2004(24): 4105–4111. [47] 刘慧, 杨更社, 贾海梁, 等. 裂隙(孔隙)水冻结过程中岩石细观结构变化的实验研究[J]. 岩石力学与工程学报, 2016, 35(12): 2516–2524. [48] 田威, 韩女, 张鹏坤. 基于CT技术的混凝土孔隙结构冻融损伤试验[J]. 中南大学学报(自然科学版), 2017, 48(11): 3069–3075. [49] 杨鸿锐, 刘平, 孙博, 等. 冻融循环对麦积山石窟砂砾岩微观结构损伤机制研究[J]. 岩石力学与工程学报, 2021, 40(03): 545–555. [50] 赵星光, 李鹏飞, 马利科, 等. 循环加、卸载条件下北山深部花岗岩损伤与扩容特性[J]. 岩石力学与工程学报, 2014, 33(09): 1740–1748. [51] 任建喜. 冻结裂隙岩石加卸载破坏机理CT实时试验[J]. 岩土工程学报, 2004(05): 641–644. [52] 宋勇军, 杨慧敏, 张磊涛, 等. 冻结红砂岩单轴损伤破坏CT实时试验研究[J]. 岩土力学, 2019, 40(S1): 152–160. [53] 刘顺桂, 刘海宁, 王思敬, 等. 断续节理直剪试验与PFC~2D数值模拟分析[J]. 岩石力学与工程学报, 2008(09): 1828–1836. [54] Huang D, Cen D, Ma G, et,al. Step-path failure of rock slopes with intermittent joints[J]. Landslides, 2015, 12(5): 911–926. [55] 陈新, 廖志红, 李德建. 节理倾角及连通率对岩体强度、变形影响的单轴压缩试验研究[J]. 岩石力学与工程学报, 2011, 30(04): 781–789. [56] Li C, Kong L, Shu R, et,al. Dynamic three-dimensional imaging and digital volume correlation analysis to quantify shear bands in grus[J]. Mechanics of Materials, 2020, 151: 103646. [57] Shi H L, Hosdez J, Rougelot T, et,al. Influences of structural anisotropy and heterogeneity on three-dimensional strain fields and cracking patterns of a clay-rich rock[J]. Acta Geotechnica, 2021, 16(7): 2175–2187. [58] Lenoir N, Bornert M, Desrues J, et,al. Volumetric Digital Image Correlation Applied to X-ray Microtomography Images from Triaxial Compression Tests on Argillaceous Rock[J]. Strain, 2007, 43(3): 193–205. [59] 张朝宗. 工业CT技术和原理[M]. 科学出版社. 2009. [60] Deprez M, De Kock T, De Schutter G, et,al. The role of ink-bottle pores in freeze-thaw damage of oolithic limestone[J]. Construction and Building Materials, 2020, 246: 118515. [61] Wildenschild D, Vaz C M P, Rivers M L, et,al. Using X-ray computed tomography in hydrology: systems, resolutions, and limitations[J]. Journal of Hydrology, 2002, 267(3): 285–297. [62] Hermanek P, Rathore J S, Aloisi V, et,al. Springer, Cham, 2018. Principles of X-ray Computed Tomography[J]. Industrial X-Ray Computed Tomography, 2018: 25–67. [63] Buades A, Coll B, Morel J-M. Non-Local Means Denoising[J]. Image Processing On Line, 2011, 1: 208–212. [64] Park H S, Hwang D, Seo J K. Metal Artifact Reduction for Polychromatic X-ray CT Based on a Beam-Hardening Corrector[J]. IEEE Transactions on Medical Imaging, 2016, 35(2): 480–487. [65] Engel K J, Spies L, Vogtmeier G, et al. Impact of CT detector pixel-to-pixel crosstalk on image quality[C]//Medical Imaging 2006: Physics of Medical Imaging. SPIE, 2006: 835-846. [66] Gostick J T. American Physical Society, 2017. Versatile and efficient pore network extraction method using marker-based watershed segmentation[J]. Physical Review E, 2017, 96(2): 023307. [67] Zhang J, Yu L, Jing H, et al. Estimating the Effect of Fractal Dimension on Representative Elementary Volume of Randomly Distributed Rock Fracture Networks[J]. Geofluids, 2018, 2018。 [68] Bear J. Dynamics of fluids in porous media[M]. Courier Corporation, 2013. [69] Liu W, Han D, Wang G, et al. Representative elementary volume evaluation of coal microstructure based on CT 3D reconstruction[J]. Fuel, 2023, 336: 126965. [70] Li J H, Zhang L M, Wang Y, et al. Permeability tensor and representative elementary volume of saturated cracked soil[J]. Canadian Geotechnical Journal, 2009, 46(8): 928-942. [71] 刘泉声, 黄诗冰, 康永水, 等. 裂隙岩体冻融损伤研究进展与思考[J]. 岩石力学与工程学报, 2015, 34(03): 452–471. [72] Fan L F, Gao J W, Du X L. Thermal Cycling Effects on Micro-property Variation of Granite by a Spatial Micro-observation[J]. Rock Mechanics and Rock Engineering, 2020, 53(6): 2921–2928. [73] Silin D B, Jin G, Patzek T W. Robust determination of the pore space morphology in sedimentary rocks[C]//SPE Annual Technical Conference and Exhibition. OnePetro, 2003. [74] Dong H, Blunt M J. American Physical Society, 2009. Pore-network extraction from micro-computerized-tomography images[J]. Physical Review E, 2009, 80(3): 036307. [75] Zhang K, Wang S, Wang L, et al. 3D visualization of tectonic coal microstructure and quantitative characterization on topological connectivity of pore-fracture networks by Micro-CT[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109675. [76] Song Y, Tan H, Yang H, et al. Fracture evolution and failure characteristics of sandstone under freeze-thaw cycling by computed tomography[J]. Engineering Geology, 2021, 294: 106370. [77] Wang J, Zhao J, Zhang Y, et al. Analysis of the effect of particle size on permeability in hydrate-bearing porous media using pore network models combined with CT[J]. Fuel, 2016, 163: 34–40. [78] Fan L F, Gao J W, Wu Z J, et al. An investigation of thermal effects on micro-properties of granite by X-ray CT technique[J]. Applied Thermal Engineering, 2018, 140: 505–519. [79] 王焕. 基于CT图像处理技术的冻融岩石细观损伤研究[D]. 西安科技大学, 2020. [80] Powers T C. A Working Hypothesis for Further Studies of Frost Resistance of Concrete[J]. Journal Proceedings, 1945, 41(1): 245–272. [81] Derjaguin B V, Churaev N V. On the question of determining the concept of disjoining pressure and its role in the equilibrium and flow of thin films[J]. Journal of Colloid and Interface Science, 1978, 66(3): 389–398. [82] Scherer G W. Crystallization in pores[J]. Cement and Concrete Research, 1999, 29(8): 1347–1358. [83] Wang P, Xu J, Liu S, et al. Static and dynamic mechanical properties of sedimentary rock after freeze-thaw or thermal shock weathering[J]. Engineering Geology, 2016, 210: 148–157. [84] Zhou X P, Li C Q, Zhou L S. The effect of microstructural evolution on the permeability of sandstone under freeze-thaw cycles[J]. Cold Regions Science and Technology, 2020, 177: 103119. [85] Wang Y, Han J Q, Li C H. Acoustic emission and CT investigation on fracture evolution of granite containing two flaws subjected to freeze–thaw and cyclic uniaxial increasing-amplitude loading conditions[J]. Construction and Building Materials, 2020, 260: 119769. [86] Xu L, Gong F, Luo S. Effects of pre-existing single crack angle on mechanical behaviors and energy storage characteristics of red sandstone under uniaxial compression[J]. Theoretical and Applied Fracture Mechanics, 2021, 113: 102933. [87] Sun Y, Zhai C, Xu J, et al. Characterisation and evolution of the full size range of pores and fractures in rocks under freeze-thaw conditions using nuclear magnetic resonance and three-dimensional X-ray microscopy[J]. Engineering Geology, 2020, 271: 105616. [88] Liu Y, Dai F. A review of experimental and theoretical research on the deformation and failure behavior of rocks subjected to cyclic loading[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13(5): 1203–1230. [89] Zhang Q, Liu Y, Dai F, et al. Experimental assessment on the fatigue mechanical properties and fracturing mechanism of sandstone exposed to freeze-thaw treatment and cyclic uniaxial compression[J]. Engineering Geology, 2022, 306: 106724. [90] Tan H, Song Y, Guo X. Analysis of porosity, permeability, and anisotropy of sandstone in freeze–thaw environments using computed tomography and fractal theory[J]. Fractals, 2021, 29(08): 2150239. [91] Gong F, Zhang P, Luo S, et al. Theoretical damage characterisation and damage evolution process of intact rocks based on linear energy dissipation law under uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 146: 104858. [92] Wang J, Li J, Shi Z, et al. Energy evolution and failure characteristics of red sandstone under discontinuous multilevel fatigue loading[J]. International Journal of Fatigue, 2022, 160: 106830. [93] Gao F, Cao S, Zhou K, et al. Damage characteristics and energy-dissipation mechanism of frozen–thawed sandstone subjected to loading[J]. Cold Regions Science and Technology, 2020, 169: 102920. [94] Chen W, Konietzky H, Tan X, et al. Pre-failure damage analysis for brittle rocks under triaxial compression[J]. Computers and Geotechnics, 2016, 74: 45–55. [95] Yang D, Hu J, Zhou T, et al. American Society of Civil Engineers, 2022. Cross-Scale Characteristics of Damage Evolution in Granite under High-Confining Pressure Cyclic Loading[J]. International Journal of Geomechanics, 2022, 22(2): 04021286. [96] Li X, Yao Z, Huang X, et al. Multidisciplinary Digital Publishing Institute, 2022. Mechanical Properties and Energy Evolution of Fractured Sandstone under Cyclic Loading[J]. Materials, 2022, 15(17): 6116. [97] 谢和平, 张振康. 《岩石力学中的分形》[J]. 矿山压力与顶板管理, 1995(1): 64. [98] Cannon J W. The Fractal Geometry of Nature . By Benoit B. Mandelbrot[J]. The American Mathematical Monthly, 1984, 91(9): 594–598. [99] Wang G, Qin X, Shen J, et al. Quantitative analysis of microscopic structure and gas seepage characteristics of low-rank coal based on CT three-dimensional reconstruction of CT images and fractal theory[J]. Fuel, 2019, 256: 115900. [100] 贾敬锎, 黄滚, 汪龙, 等. 单轴压缩试验中减弱端部效应新型方法研究[J]. 黄金科学技术, 2021, 29(3): 382–391. [101] Li T, Pei X, Wang D, et al. Nonlinear behavior and damage model for fractured rock under cyclic loading based on energy dissipation principle[J]. Engineering Fracture Mechanics, 2019, 206: 330–341. [102] 张全胜, 杨更社, 任建喜. 岩石损伤变量及本构方程的新探讨[J]. 岩石力学与工程学报, 2003(1): 30–34. [103] 张超, 杨期君, 曹文贵. 考虑初始缺陷与弹性模量的岩石变形破坏过程模拟方法[J]. 应用力学学报, 2020, 37(1): 286-292+488. [104] 陈旭, 林键, 曹广勇, 等. 循环加卸载下砂岩能量演化特性与损伤表征[J]. 科学技术与工程, 2022, 22(14): 5792–5799.
﹀
|
中图分类号: |
TU458
|
开放日期: |
2023-06-13
|