- 无标题文档
查看论文信息

论文中文题名:

 非等温黏弹性复杂流动的改进SPH模拟研究    

姓名:

 赵雨婷    

学号:

 21208049013    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0812    

学科名称:

 工学 - 计算机科学与技术(可授工学、理学学位)    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 计算机科学与技术学院    

专业:

 计算机科学与技术    

研究方向:

 复杂流体建模与计算    

第一导师姓名:

 许晓阳    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-14    

论文答辩日期:

 2024-05-30    

论文外文题名:

 Improved SPH Simulation Study of Non-isothermal Viscoelastic Complex Flows    

论文中文关键词:

 光滑粒子流体动力学 ; 非等温流动 ; 黏弹性流体 ; 传热机理 ; 复杂流变特性    

论文外文关键词:

 Smoothed particle hydrodynamics ; Non-isothermal flow ; Viscoelastic fluid ; Heat transfer mechanism ; Complex rheological property    

论文中文摘要:

      非等温黏弹性流动广泛存在于自然界和工业生产中,准确预测黏弹性流体的非等温流动机理和复杂流变特性具有重要的应用价值。光滑粒子流体动力学(Smoothed Particle Hydrodynamics, SPH)方法作为一种典型的拉格朗日型无网格方法,能够避免网格类方法中的网格畸变、网格缠结等问题,适用于具有自由表面、大变形等复杂流动的求解。本文应用改进SPH方法对非等温黏弹性流体进行数值模拟,主要工作内容如下:

      (1)应用改进SPH方法对等温黏弹性泊肃叶流进行数值模拟,其中流体的黏弹特性通过Oldroyd-B本构模型来表征。为了提高模拟结果的精度,采用了改进的核梯度修正技术;为了灵活地施加边界条件,提出了改进的固壁边界处理方法。通过将改进SPH结果与传统SPH结果和解析解进行比较,表明了采用改进的核梯度修正技术具有更高的计算精度;随后将模拟扩展到非等温流动,通过将改进SPH方法模拟的数值结果与有限体积方法的结果进行比较,验证了本文提出的改进固壁边界处理方法的有效性。讨论了等温流动与非等温流动的不同流动特征,深入分析了温度依赖系数、Péclet数等热流变参数对黏弹性流动过程的影响。

      (2)为了更合理地描述黏弹性流体的剪切稀化行为,将Oldroyd-B本构模型扩展到由支化聚合物分子理论推导得出的eXtended Pom-Pom(XPP)本构模型,并对非等温XPP库埃特流动进行数值模拟。首先,模拟了等温情况下基于XPP模型的黏弹性库埃特流动;然后,将其扩展到非等温流动进行模拟,通过与有限体积方法解的比较和对数值收敛性的评价验证了改进SPH方法模拟非等温XPP黏弹性流动问题的有效性和准确性,并在此基础上,探讨了XPP黏弹流变参数对流动过程的影响。

      (3)为了更好地理解和预测流体在复杂流动中的行为,将模拟由泊肃叶流和库埃特流扩展到自由表面流,运用改进SPH方法对非等温黏弹性自由表面流问题进行数值模拟。为了消除流动过程中的拉伸不稳定性,施加了改进的粒子迁移技术。首先,以非等温Oldroyd-B液滴撞击固壁问题作为研究对象,给出了运用改进SPH方法的模拟结果,并将其与传统SPH结果进行比较,结果表明本文改进的粒子迁移技术可有效解决拉伸不稳定性问题;随后,应用改进SPH方法模拟非等温XPP注塑成型问题,深入分析了温度依赖系数、熔体与冷壁的温差、Weissenberg数等流变参数对黏弹性自由表面流动过程的影响。数值结果表明,本文改进SPH方法可稳定、准确地描述非等温黏弹性复杂流动的传热机理、复杂流变特性和自由面变化特性。

论文外文摘要:

      Non-isothermal viscoelastic flows widely exist in nature and industrial productions. It is important to accurately predict the non-isothermal flow mechanism and complex rheological properties of viscoelastic fluids. As a typical Lagrangian meshless method, Smoothed Particle Hydrodynamics (SPH) can avoid mesh distortion and entanglement problems in mesh-like methods, and is suitable for solving complex flows with free surfaces and large deformations. In this paper, the improved SPH method is applied to numerical simulation of non-isothermal viscoelastic fluids. The main work is as follows:

      (1) The improved SPH method is used to simulate isothermal viscoelastic poiseuille flow. The viscoelastic properties of the fluid are characterized by the Oldroyd-B constitutive model. In order to improve the accuracy of simulation results, an improved kernel gradient correction technique is used. In order to enforce the boundary conditions flexibly, an improved solid wall boundary treatment method is proposed. By comparing the improved SPH results with the traditional SPH results and analytical solutions, it is shown that the improved kernel gradient correction technique has higher calculation accuracy; then the simulation is extended to non-isothermal flow, and the numerical results of the improved SPH method are compared with those of the finite volume method, and the effectiveness of the improved solid boundary treatment method is verified. The different flow characteristics of isothermal flow and non-isothermal flow are discussed, and the influence of heat rheological parameters such as temperature dependence coefficient and Péclet number on viscoelastic flow process is analyzed.

      (2) In order to better describe the shear thinning behavior of viscoelastic fluids, the Oldroyd-B constitutive model is extended to the eXtended Pom-Pom(XPP) constitutive model derived from the branched polymer molecular theory, and the non-isothermal XPP couette flow is numerically simulated. Firstly, the viscoelastic couette flow based on XPP model is simulated under isothermal conditions. Then, it is extended to non-isothermal flow simulation, and the effectiveness and accuracy of the improved SPH method in simulating non-isothermal XPP viscoelastic flow are verified by comparing the solution with the finite volume method and evaluating the numerical convergence. On this basis, the influence of XPP viscoelastic rheological parameters on the flow process was discussed.

      (3) In order to better understand and predict the behavior of fluid in complex flows, the simulation is extended from poiseuille flow and couette flow to free surface flow. The improved SPH method is used to simulate the non-isothermal viscoelastic free surface flow. In order to eliminate the tensile instability in the flow process, an improved particle shifting technique is applied. Firstly, the problem of non-isothermal Oldroyd-B droplet impact on the solid wall is taken as the research object, and the simulation results using the improved SPH method are given, and the results are compared with the traditional SPH results. The results show that the improved particle shifting technique introduced in this paper can effectively solve the problem of tensile instability. Then, the improved SPH method was used to simulate the non-isothermal XPP injection molding, and the influence of rheological parameters such as temperature dependence coefficient, temperature difference between melt and cold wall, Weissenberg number on the viscoelastic free surface flow were analyzed. The numerical results show that the improved SPH method can stably and accurately describe the heat transfer mechanism, complex rheological properties and free surface variation characteristics of non-isothermal viscoelastic complex flows.

参考文献:

[1] 关新燕, 富庆飞, 刘虎等. Oldroyd-B黏弹性液滴碰撞过程的数值模拟[J]. 力学学报, 2022, 54(03): 644-652.

[2] 张仕环, 庞明军, 郑智颖. 低Weissenberg数黏弹性流体中单气泡上浮运动特性研究[J]. 应用数学和力学, 2023, 44(06): 629-642.

[3] Li Y, Li Y, Feng Z. Extension of decoupled finite particle method to simulate non-isothermal free surface flow[J]. International Journal of Multiphase Flow, 2023, 167: 104532.

[4] 庄昕, 刘付军, 孙艳萍等. 非等温黏弹性聚合物流体圆柱绕流的高精度数值模拟[J].应用数学和力学, 2022, 43(12): 1380-1391.

[5] 徐永浩. 无网格SPH方法在粘性不可压缩流体中的应用研究[D]. 哈尔滨工业大学, 2008.

[6] Gingold R A, Monaghan J J. Smoothed particle hydrodynamics: theory and application to non-spherical stars[J]. Monthly Notices of the Royal Astronomical Society, 1977, 181(3): 375-389.

[7] Lucy L B. A numerical approach to the testing of the fission hypothesis[J]. Astronomical Journal, 1977, 82: 1013-1024.

[8] 王平平, 张阿漫, 彭玉祥等. 近场水下爆炸瞬态强非线性流固耦合无网格数值模拟研究[J]. 力学学报, 2022, 54(08): 2194-2209.

[9] Wang P, Zhang A M, Peng Y, et al. Numerical simulation of transient strongly-nonlinear fluid-structure interaction in near-field underwater explosion based on meshless method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2194-2209.

[10] Chen J Y, Feng D L, Liu J H, et al. Numerical modeling of the damage mechanism of concrete-soil multilayered medium subjected to underground explosion using the GPU-accelerated SPH[J]. Engineering Analysis with Boundary Elements, 2023, 151: 265-274.

[11] 黄晓婷, 孙鹏楠, 彭玉祥等. 基于新型轴对称无网格方法的水下爆炸冲击波和气泡运动数值模拟[J]. 同济大学学报(自然科学版), 2023, 51(06): 818-826.

[12] Sun W K, Zhang L W, Liew K M. A coupled SPH-PD model for fluid-structure interaction in an irregular channel flow considering the structural failure[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 401: 115573.

[13] 姚学昊, 陈丁, 武立伟等. 流固耦合破坏分析的多分辨率PD-SPH方法[J]. 力学学报, 2022, 54(12): 3333-3343.

[14] Yao X, Zhang X, Huang D. An improved SPH-FEM coupling approach for modeling fluid-structure interaction problems[J]. Computational Particle Mechanics, 2023, 10(2): 313-330.

[15] 姚学昊, 黄丹. 流固耦合问题的PD-SPH建模与分析[J]. 工程力学, 2022, 39(10): 17-25.

[16] 汪飞, 李伟鸿, 杨彧等. 动脉粥样硬化斑块生成的高效流固耦合不可压缩SPH模拟方法[J]. 浙江大学学报(理学版), 2023, 50(06): 711-721.

[17] He F, Zhang H, Huang C, et al. A stable SPH model with large CFL numbers for multi-phase flows with large density ratios[J]. Journal of Computational Physics, 2022, 453: 110944.

[18] 刘号, 金阿芳, 买买提明·艾尼. 圆柱周围湍流和含沙多相流的SPH数值模拟[J]. 计算力学学报, 2023, 40(03): 403-410.

[19] De Padova D, Mossa M, Sibilla S. A multi-phase SPH simulation of oil spill diffusion in seawater currents[J]. Acta Mechanica Sinica, 2023, 39(2): 722230.

[20] 杨秋足, 徐绯, 王璐等. 一种基于黎曼解处理大密度比多相流SPH的改进算法[J].力学学报, 2019, 51(03): 730-742.

[21] 徐衍睿, 王笑琨, 班晓娟等. 面向多相流模拟的体积通量无散度SPH方法[J]. 计算机辅助设计与图形学学报, 2022, 34(11): 1637-1646.

[22] Chen D, Huang W, Huang D, et al. An adaptive multi-resolution SPH approach for three-dimensional free-surface flow with fluid impacting[J]. Engineering Analysis with Boundary Elements, 2023, 155: 642-651.

[23] Zhao Z X, Hong Y, Gong Z X, et al. Numerical analysis of cavity deformation of oblique water entry using a multi-resolution two-phase SPH method[J]. Ocean Engineering, 2023, 269: 113456.

[24] Zhang G, Liang G, Yang X, et al. Numerical investigations on water entry and/or exit problems using a multi-resolution Delta-plus-SPH model with TIC[J]. Ocean Engineering, 2024, 292: 116560.

[25] 饶登宇. 基于多孔介质孔隙尺度的溶质运移及传热过程的SPH模拟研究[D]. 北京交通大学, 2020.

[26] 裴静娴, 热合买提江·依明. 基于有限差分法的SPH边界处理算法及其应用[J]. 计算物理, 2023, 40(03): 343-352.

[27] Zhang F, Yang P, Liu M. An improved continuum surface tension model in SPH for simulating free-surface flows and heat transfer problems[J]. Journal of Computational Physics, 2023, 490: 112322.

[28] Yoo H S, Jo Y B, Kim J W, et al. A simple Eulerian-Lagrangian weakly compressible smoothed particle hydrodynamics method for fluid flow and heat transfer[J]. International Journal for Numerical Methods in Engineering, 2023, 124(4): 928-958.

[29] 杨朋英, 张帆, 黄灿等. 基于SPH方法的激光选区熔化数值模拟研究[J]. 中国科学:物理学 力学 天文学, 2022, 52(10): 64-77.

[30] Zhang G M, Batra R C. Modified smoothed particle hydrodynamics method and its application to transient problems[J]. Computational Mechanics, 2004, 34(2): 137-146.

[31] Colagrossi A, Bouscasse B, Antuono M, et al. Particle packing algorithm for SPH schemes[J]. Computer Physics Communications, 2012, 183(8): 1641-1653.

[32] Huang C, Lei J M, Liu M B, et al. An improved KGF‐SPH with a novel discrete scheme of Laplacian operator for viscous incompressible fluid flows[J]. International Journal for Numerical Methods in Fluids, 2016, 81(6): 377-396.

[33] Zhang Z L, Liu M B. A decoupled finite particle method for modeling incompressible flows with free surfaces[J]. Applied Mathematical Modelling, 2018, 60: 606-633.

[34] Francomano E, Paliaga M. The smoothed particle hydrodynamics method via residual iteration[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 352: 237-245.

[35] Wang P P, Zhang A M, Meng Z F, et al. A new type of WENO scheme in SPH for compressible flows with discontinuities[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 381: 113770.

[36] Meng Z F, Zhang A M, Wang P P, et al. A targeted essentially non-oscillatory (TENO) SPH method and its applications in hydrodynamics[J]. Ocean Engineering, 2022, 243: 110100.

[37] Xue B, Wang S P, Peng Y X, et al. A novel coupled Riemann SPH-RKPM model for the simulation of weakly compressible fluid-structure interaction problems[J]. Ocean Engineering, 2022, 266: 112447.

[38] Ng K C, Alexiadis A, Ng Y L. An improved particle method for simulating fluid-structure interactions: The multi-resolution SPH-VCPM approach[J]. Ocean Engineering, 2022, 247: 110779.

[39] Yildiz M, Rook R A, Suleman A. SPH with the multiple boundary tangent method[J]. International Journal for Numerical Methods in Engineering, 2009, 77(10): 1416-1438.

[40] Gong K, Liu H, Wang B. Water entry of a wedge based on SPH model with an improved boundary treatment[J]. Journal of Hydrodynamics, 2009, 21(6): 750-757.

[41] Liu M B, Shao J R, Chang J Z. On the treatment of solid boundary in smoothed particle hydrodynamics[J]. Science China Technological Sciences, 2012, 55: 244-254.

[42] Huang C, Lei J M, Liu M B, et al. A kernel gradient free (KGF) SPH method[J]. International Journal for Numerical Methods in Fluids, 2015, 78(11): 691-707.

[43] Long T, Hu D, Wan D, et al. An arbitrary boundary with ghost particles incorporated in coupled FEM-SPH model for FSI problems[J]. Journal of Computational Physics, 2017, 350: 166-183.

[44] Nguyen M T, Aly A M, Lee S W. ISPH modeling of natural convection heat transfer with an analytical kernel renormalization factor[J]. Meccanica, 2018, 53: 2299-2318.

[45] Chen C, Zhang A M, Chen J Q, et al. SPH simulations of water entry problems using an improved boundary treatment. Ocean Engineering, 2021, 238: 109679.

[46] Wang L, Xu F, Yang Y. Research on water entry problems of gas-structure-liquid coupling based on SPH method[J]. Ocean Engineering, 2022, 257: 111623.

[47] Xiao Y, Liu K. Penalty-based surface-to-surface contact algorithm for SPH method[J]. Applied Mathematical Modelling, 2023, 117: 359-377.

[48] Monaghan J J. SPH without a tensile instability[J]. Journal of Computational Physics, 2000, 159(2): 290-311.

[49] Xu R, Stansby P, Laurence D. Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach[J]. Journal of Computational Physics, 2009, 228(18): 6703-6725.

[50] Lind S J, Xu R, Stansby P K, et al. Incompressible smoothed particle hydrodynamics for free-surface flows: A generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves[J]. Journal of Computational Physics, 2012, 231(4): 1499-1523.

[51] Adami S, Hu X Y, Adams N A. A transport-velocity formulation for smoothed particle hydrodynamics[J]. Journal of Computational Physics, 2013, 241: 292-307.

[52] Khayyer A, Gotoh H, Shimizu Y. Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context[J]. Journal of Computational Physics, 2017, 332: 236-256.

[53] Sun P N, Colagrossi A, Marrone S, et al. The δplus-SPH model: simple procedures for a further improvement of the SPH scheme[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 315: 25-49.

[54] Huang C, Zhang D H, Shi Y X, et al. Coupled finite particle method with a modified particle shifting technology[J]. International Journal for Numerical Methods in Engineering, 2018, 113(2): 179-207.

[55] Sun P N, Colagrossi A, Marrone S, et al. Multi-resolution Delta-plus-SPH with tensile instability control: Towards high Reynolds number flows[J]. Computer Physics Communications, 2018, 224: 63-80.

[56] Lyu H G, Sun P N, Huang X T, et al. On removing the numerical instability induced by negative pressures in SPH simulations of typical fluid-structure interaction problems in ocean engineering[J]. Applied Ocean Research, 2021, 117: 102938.

[57] Gao T, Fu L. A new particle shifting technique for SPH methods based on Voronoi diagram and volume compensation[J]. Computer Methods in Applied Mechanics and Engineering, 2023, 404: 115788.

[58] Ellero M, Tanner R I. SPH simulations of transient viscoelastic flows at low Reynolds number[J]. Journal of Non-newtonian Fluid Mechanics, 2005, 132(1-3): 61-72.

[59] Fang J, Owens R G, Tacher L, et al. A numerical study of the SPH method for simulating transient viscoelastic free surface flows[J]. Journal of Non-newtonian Fluid Mechanics, 2006, 139(1-2): 68-84.

[60] Rafiee A, Manzari M T, Hosseini M. An incompressible SPH method for simulation of unsteady viscoelastic free-surface flows[J]. International Journal of Non-Linear Mechanics, 2007, 42(10): 1210-1223.

[61] Murashima T, Taniguchi T. Multiscale simulation of history-dependent flow in entangled polymer melts[J]. Europhysics Letters, 2011, 96(1): 18002.

[62] 杨波, 欧阳洁, 蒋涛,等. PTT黏弹性流体的光滑粒子动力学方法模拟. 力学学报, 2011, 43(4): 667-673.

[63] Hashemi M R, Fatehi R, Manzari M T. SPH simulation of interacting solid bodies suspended in a shear flow of an Oldroyd-B fluid[J]. Journal of Non-newtonian Fluid Mechanics, 2011, 166(21-22): 1239-1252.

[64] Zainali A, Tofighi N, Shadloo M S, et al. Numerical investigation of newtonian and non-newtonian multiphase flows using ISPH method[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 254: 99-113.

[65] Sadek S H, Yildiz M. Modeling die swell of second-order fluids using smoothed particle hydrodynamics[J]. Journal of Fluids Engineering, 2013, 135(5): 051103.

[66] Ren J L, Jiang T. Simulation of the 3D viscoelastic free surface flow by a parallel corrected particle scheme[J]. Chinese Physics B, 2015, 25(2): 020204.

[67] Kamyabi M M, Ramazani Ahmad S A, Kamyabi A. Transient analysis of falling cylinder in non-newtonian fluids: further opportunity to employ the benefits of SPH method in fluid-structure problems[J]. Chemical Product and Process Modeling, 2017, 12(1): 20160044.

[68] Xu X Y. Three-dimensional simulation of two viscoelastic droplets impacting onto a rigid plate using smoothed particle hydrodynamics[J]. Journal of Applied Mechanics and Technical Physics, 2017, 58: 318-327.

[69] King J R C, Lind S J. High weissenberg number simulations with incompressible smoothed particle hydrodynamics and the log-conformation formulation[J]. Journal of Non-newtonian Fluid Mechanics, 2021, 293: 104556.

[70] Vahabi M, Hadavandmirzaei H, Kamkari B, et al. Interaction of a pair of in-line bubbles ascending in an Oldroyd-B liquid: A numerical study. European Journal of Mechanics-B/Fluids, 2021, 85: 413-429.

[71] Jiang T, Li Y, Sun P N, et al. A corrected WCSPH scheme with improved interface treatments for the viscous/viscoelastic two-phase flows[J]. Computational Particle Mechanics, 2021: 1-21.

[72] Duque-Daza C, Alexiadis A. A simplified framework for modelling viscoelastic fluids in discrete multiphysics[J]. Chem Engineering, 2021, 5(3): 61.

[73] Moinfar Z, Vahabi S, Vahabi M. Numerical simulation of drop deformation under simple shear flow of Giesekus fluids by SPH[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2023, 33(1): 263-281.

[74] Monaghan J J. Simulating free surface flows with SPH[J]. Journal of Computational Physics, 1994, 110(2): 399-406.

[75] Gray J P, Monaghan J J, Swift R P. SPH elastic dynamics[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(49-50): 6641-6662.

[76] Monaghan J J. On the problem of penetration in particle methods[J]. Journal of Computational Physics, 1989, 82(1): 1-15.

[77] Libersky L D, Petschek A G, Carney T C, et al. High strain Lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response[J]. Journal of Computational Physics, 1993, 109(1): 67-75.

[78] Morris J P, Fox P J, Zhu Y. Modeling low Reynolds number incompressible flows using SPH[J]. Journal of Computational Physics, 1997, 136(1): 214-226.

[79] Monaghan J J. Smoothed particle hydrodynamics[J]. Annual Review of Astronomy and Astrophysics, 1992, 30(1): 543-574.

[80] Shao S, Lo E Y M. Incompressible SPH method for simulating newtonian and non-newtonian flows with a free surface[J]. Advances in Water Resources, 2003, 26(7): 787-800.

[81] Xu X, Deng X L. An improved weakly compressible SPH method for simulating free surface flows of viscous and viscoelastic fluids[J]. Computer Physics Communications, 2016, 201: 43-62.

[82] Zhang G M, Batra R C. Symmetric smoothed particle hydrodynamics (SSPH) method and its application to elastic problems[J]. Computational Mechanics, 2009, 43: 321-340.

[83] Waters N D, King M J. Unsteady flow of an elastico-viscous liquid[J]. Rheologica Acta, 1970, 9(3): 345-355.

中图分类号:

 O35    

开放日期:

 2024-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式