论文中文题名: | 斜齿面齿轮齿面的可展原理与线接触加工仿真 |
姓名: | |
学号: | 19205201047 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 0855 |
学科名称: | 工学 - 机械 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 齿轮传动 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-07-15 |
论文答辩日期: | 2022-06-01 |
论文外文题名: | Tooth Surface Developable Principle and Line Contact Machining Simulation of Helical Face Gear |
论文中文关键词: | |
论文外文关键词: | Helical gear ; Face gear ; Gear shaping ; Developable ruled surface ; Cone face tool |
论文中文摘要: |
面齿轮机构具有独特的结构和性能优势,国外已经用面齿轮机构逐步替代某些锥齿轮机构,这不仅可以简化安装、缩小传动机构体积,而且可以提高传动系统可靠性。为了扩大面齿轮在传动领域的应用优势,本文以斜齿面齿轮为研究对象,建立了斜齿面齿轮齿面数值模型,研究了斜齿面齿轮的插齿加工方法。在对常规斜齿面齿轮齿形曲面研究基础上,提出了一种新的可展直纹面斜齿面齿轮,并研究了锥面刀具线接触加工可展直纹面斜齿面齿轮的方法。本文的主要研究内容与相应结论如下: (1) 建立螺旋插齿刀齿面方程,结合齿轮啮合原理,完成斜齿面齿轮齿面方程的推导。由斜齿面齿轮轮齿齿根根切、齿顶变尖的限制条件,确定了斜齿面齿轮的工作齿宽,并研究了螺旋角、传动比对斜齿面齿轮齿宽的影响规律,数值算例显示:斜齿面齿轮齿宽随传动比增大而增大,不考虑旋向的情况下,斜齿面齿轮齿宽随螺旋角增大而减小。借助MATLAB将斜齿面齿轮齿面点离散化,完成对斜齿面齿轮齿面的数值建模。 (2) 设计了插齿加工斜齿面齿轮的螺旋刀具,通过分析螺旋刀具加工斜齿面齿轮所需的运动,设计了加工斜齿面齿轮的五轴数控插齿机床模型,建立五轴数控插齿机床的坐标变换系统,推导出螺旋刀具的数控运动规律。在VERICUT中建立插齿加工仿真机床模型,使用不同的刀具分度角、刀具轴向进给步长对斜齿面齿轮进行插齿加工仿真,插齿仿真加工齿面偏差结果显示,斜齿面齿轮插齿仿真加工中刀具分度角越小、刀具轴向进给步长越小,插齿仿真加工齿面偏差越小。 (3) 通过面齿轮齿面齿顶线上的点、面齿轮齿面齿根线上的点和面齿轮齿面脊线上的点,设置特定的约束条件,在斜齿面齿轮齿面上构建了空间直线簇。在对常规斜齿面齿轮齿面分析的基础上,提出了一种新的可展直纹面斜齿面齿轮,并针对可展直纹面提出了修正方法。对可展直纹面与常规斜齿面齿轮齿面进行数值分析,结果显示,二者偏差属于微观量,可以用可展直纹面代替常规斜齿面齿轮齿面。 (4) 根据可展直纹面的特性,设计了线接触加工可展直纹面斜齿面齿轮的锥面刀具几何参数,根据锥面刀具铣削可展直纹面所需运动,设计了五轴数控铣床模型,推导了锥面刀具铣削面齿轮的数控运动规律,使用不同直径的锥面刀具,在VERICUT中完成可展直纹面斜齿面齿轮线接触加工仿真,可展直纹面斜齿面齿轮仿真加工齿面偏差结果显示,锥面刀具直径越小,仿真加工齿面与可展直纹面斜齿面齿轮齿面的偏差越小。 |
论文外文摘要: |
The face gear mechanism has unique structure and performance advantages. Some bevel gear mechanisms have been gradually replaced by face gear mechanisms in foreign countries, which not only can simplify the installation and reduce the volume of the transmission mechanism, but also can improve the reliability of the transmission system. In order to expand the application advantages of face gear in the field of transmission, this paper takes the helical face gear as the research object, establishes a numerical model of the helical face gear tooth surface, and studies the gear shaping method of the helical face gear, based on the research on the tooth profile and surface of conventional helical face gear, a new developable ruled surface helical face gear is proposed, and studies the method of machining the developable ruled surface helical face gear by line contact with a cone face tool. The main research contents and corresponding results of this paper are as follows: (1) The tooth surface equation of the helical gear shaper is established. Based on combining the principle of gear meshing, the derivation of the helical face gear tooth surface equation is completed. The working tooth width of the helical face gear is determined by the limiting conditions of undercutting the tooth root and sharpening of the tooth tip of the helical face gear tooth, the influence of helical angle and transmission ratio on the tooth width of helical face gear is studied. The numerical example shows that the tooth width of the helical face gear increase with the increase of the transmission ratio; without considering the direction of rotation, the tooth width of the helical face gear decreases with the increase of the helical angle. The helical face gear tooth surface points are discretized by MATLAB, and the numerical modeling of the helical face gear tooth surface is completed. (2) The helical tool for gear shaping to process helical face gear is designed. By analyzing the motion required by the helical tool to process helical face gear, a five-axis CNC gear shaping machine model for processing helical face gear is designed, and a five-axis CNC gear shaping machine tool is established. The coordinate transformation system is used to deduce the numerical control motion law of the helical tool. A gear shaping simulation machine tool model is established in VERICUT, and different tool indexing angles and tool axial feed step lengths are used to simulate the gear shaping processing of the helical face gear. In the processing of gear shaping simulation, the smaller the tool indexing angle, the smaller the tool axial feed step, and the smaller the tooth surface deviation in gear shaping simulation processing. (3) By setting specific constraints, the point on the tooth top line of the face gear, on the tooth root line of the face gear and on the ridge line of the face gear, a space line clusters are constructed on the tooth surface of the helical face gear. Based on the analysis of the tooth surface of conventional helical face gear, a new developable ruled helical face gear is proposed, and a correction method is proposed for the developable ruled surface. Numerical analysis of developable ruled surface and conventional helical face gear tooth surface is carried out. The results show that the deviation between the two is a microscopic quantity, and the developable ruled surface can be used to replace the conventional helical face gear tooth surface. (4) According to the characteristics of the developable ruled surface, the geometric parameters of the tapered tool for line contact machining of the developable ruled surface helical face gear are designed. According to the motion required by the tapered cutter to mill the developable ruled surface, a five-axis CNC milling machine model is designed. The numerical control motion law of conical cutter milling face gear is deduced. Using conical cutters with different diameters, the line contact machining simulation of developable ruled surface helical face gear is completed in VERICUT. The results of the tooth surface deviation of the developable ruled surface helical face gear simulation show that the smaller the diameter of the conical surface tool is, the smaller the deviation between the simulated machining tooth surface and the developable ruled surface helical face gear tooth surface. |
参考文献: |
[2]姬存强. 正交面齿轮的啮合仿真与插齿加工[D]. 河南科技大学, 2009. [3]Buckingham. Analytical mechanics of gears[M]. McGraw-Hill Book Co, 1949. [6]彭学玉. 曲线齿端面齿轮的建模方法与接触仿真研究[D]. 天津大学, 2014. [7]何国旗. 面齿轮齿面创成方法及啮合特性研究[D]. 中南大学, 2014. [8]徐文通. 面齿轮行星高速传输机构设计与啮合分析[D]. 重庆大学, 2020. [9]韩天泉. 章动减速器优化设计的研究及样机研制[D]. 哈尔滨工业大学, 2018. [10]彭先龙, 郭卫. 面齿轮制造技术综述及未来发展趋势[J]. 制造技术与机床, 2017(9): 36-42. [12]Cuypers M H, Seroo J M. Hob for generating face gears: U. S. Patent 5, 288. 179[P]. 1994 -2-22. [13]张广, 张丰收, 靳园园等. 面齿轮加工进展综述[J]. 机械传动, 2021, 45(11): 1-10. [18]南耀仕, 张满栋, 吕明等. 面齿轮插齿仿真加工及分析[J]. 工具技术, 2018, 52(03): 77-80. [19]赵宁, 靳永先. 非正交面齿轮插齿加工仿真及误差分析[J]. 机械传动, 2020, 44(02): 88-97. [20]王延忠, 吴灿辉, 葛旭阳等. 面齿轮滚刀基本蜗杆的设计方法[J]. 北京航空航天大学学报, 2009, 35(02): 166-169. [21]王延忠, 唐文, 殷永耀等. 基于球形滚刀的面齿轮滚齿加工方法[J]. 北京航空航天大学学报, 2017, 43(03): 441-448. [24]郭辉, 赵宁, 张淑艳等. 基于标准锥面滚轮的面齿轮蜗杆砂轮少轴数控修整方法[J]. 机械工程学报, 2017, 53(07): 23-29. [25]张猛. 蜗杆面齿轮传动设计理论及飞刀法加工研究[D]. 天津大学, 2018. [26]李清, 徐伟俊, 张猛等. 飞刀法加工蜗杆面齿轮的理论研究与实践[J]. 中国机械工程, 2019, 30(23): 2835-2843. [30]李国龙, 冉全福, 何坤等. 基于虚拟中心距原理的鼓形蜗杆砂轮成形修整方法研究[J]. 计算机集成制造系统: 1-15[2022-04-10]. [31]郭辉, 赵宁, 张淑艳. 基于碟形砂轮磨齿的面齿轮包络残差研究[J]. 航空动力学报, 2014, 29(11): 2743-2750. [34]明兴祖, 罗旦, 刘金华等. 面齿轮磨削加工工艺参数的优化[J]. 中国机械工程, 2016, 27(19): 2569-2574. [38]王延忠, 初晓孟, 苏国营等. 机床误差对面齿轮齿面形貌的影响规律[J]. 北京工业大学学报, 2018, 44(07): 1017-1023. [39]王延忠, 殷永耀, 兰州等. 面齿轮磨削砂轮修整工艺参数试验研究[J]. 机械设计与制造, 2019(01): 80-83. [42]李大庆, 邓效忠, 魏冰阳. 蝶形砂轮安装误差对面齿轮齿面几何误差影响规律[J]. 机械设计与研究, 2019, 35(05): 59-62+74. [43]李大庆, 赵让乾, 王振. 基于通用数控加工中心的面齿轮磨齿加工分析仿真及试验[J]. 现代制造工程, 2021(04): 79-82. [44]彭先龙, 赵朋辉, 胡锡文等. 基于四轴数控机床面齿轮磨削方法[J]. 航空动力学报, 2021, 36(05): 1113-1120. [48]明兴祖, 王红阳, 申警卫等. 面齿轮高速铣削数控加工方法研究[J]. 机械传动, 2019, 43(04): 1-6. [49]王红阳. 面齿轮高速铣削加工原理与齿面粗糙度研究[D]. 湖南工业大学, 2019. [50]明兴祖, 王红阳, 金磊等. 面齿轮高速铣削表面粗糙度建模与实验分析[J]. 组合机床与自动化加工技术, 2020(01): 6-9+13. [53]彭先龙, 张乐, 郭卫. 平面刀具加工面齿轮的理论分析[J]. 航空动力学报, 2017, 32(04): 1018-1024. [55]赵朋辉. 直刃刀具加工面齿轮的方法及其啮合性能预控[D]. 西安科技大学, 2021. [56]彭先龙, 候艳艳, 张乐等. 可展直纹面面齿轮的加工原理与方法[J]. 西北工业大学学报, 2020, 38(06): 1299-1307. [57]王文轩, 冯占荣, 盛伟等. 弧线齿面齿轮成形原理及3D成形[J]. 制造技术与机床, 2019(12): 25-28. [58]张浩, 白瑀, 黄亮. 熔模铸造钛合金直齿面齿轮快速成形工艺[J]. 特种铸造及有色合金, 2018, 38(02): 183-185. [59]林嘉剑, 明瑞, 李学坤等. 飞秒激光烧蚀面齿轮材料的形貌特征研究[J]. 中国激光, 2021, 48(14): 175-185. [60]明瑞, 申警卫, 赖名涛等. 面齿轮材料18Cr2Ni4WA的飞秒激光精微烧蚀特性研究[J]. 激光与光电子学进展, 2021, 58(09): 253-263. [61]肖勇波, 明瑞, 赖名涛等. 面齿轮材料的飞秒激光烧蚀动能量热模型与齿面形貌研究[J]. 激光与光电子学进展, 2021, 58(17): 256-264. [62]明兴祖, 肖勇波, 刘克非等. 飞秒激光精修面齿轮的扫描烧蚀特征控制研究[J]. 中国机械工程: 1-12[2022-04-11]. [63]肖勇波. 面齿轮的飞秒激光烧蚀能量模型与齿面精修工艺研究[D]. 湖南工业大学, 2021. [64]陈勇, 冯占荣, 盛伟等. 非正交弧线齿面齿轮齿面设计及根切研究[J]. 航空动力学报, 2020, 35(05): 1081-1088. |
中图分类号: | TH132.41 |
开放日期: | 2022-07-15 |