- 无标题文档
查看论文信息

论文中文题名:

 膨胀型温敏水凝胶协效褪黑素阻化煤自燃特性研究    

姓名:

 段夏丹    

学号:

 19220214113    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 煤火灾害防治    

第一导师姓名:

 邓军    

第一导师单位:

 西安科技大学    

第二导师姓名:

 王彩萍    

论文提交日期:

 2022-06-20    

论文答辩日期:

 2022-06-01    

论文外文题名:

 Characteristic study on inhibition of coal spontaneous combustion by intumescent thermosensitive hydrogel co-acting melatonin    

论文中文关键词:

 煤自燃 ; 膨胀型温敏水凝胶 ; 褪黑素 ; 氧化动力学 ; 协效阻化    

论文外文关键词:

 Coal spontaneous combustion ; Intumescent thermosensitive hydrogel ; Melatonin ; Oxidation kinetics ; Inhibtition mechanism    

论文中文摘要:

我国煤自然发火现象频发,造成了严重的资源浪费和环境污染。因此,研究高效、经济的煤自燃阻化剂十分重要。针对物理、化学阻化剂阻化效果单一,复合阻化剂制备复杂等问题。本论文制备物理阻化剂(膨胀型温敏水凝胶(HPMC-CS-EM))、优选化学阻化剂(褪黑素(MT)),完成了复合阻化剂(膨胀型温敏水凝胶协效褪黑素(HPMC-CS-EM/MT))的制备。采用实验测试和数学计算的方法,研究了复合阻化剂对煤氧化过程的阻化特性,揭示了HPMC-CS-EM/MT阻化煤自燃的微观作用过程。

首先,采用壳聚糖(CS)、羟丙基甲基纤维素(HPMC)和膨胀微球(EM)制备了膨胀型温敏水凝胶,系统研究了EM含量、HPMC黏度对HPMC-CS-EM的性能影响。EM含量为0.5%、HPMC黏度为50mPa•s的HPMC-CS-EM具有良好的流动性、在加热过程中不会出现分层现象且膨胀能力最强(1.33倍)。因此,最终选择A50(HPMC:50 mPa•s、EM:0%)、B50(HPMC: 50 mPa•s、EM:0.5%)作为复合阻化剂的物理阻化部分。

将A50、B50与褪黑素按照不同比例进行混合,完成了HPMC-CS-EM/MT阻化煤的制备。对原煤、单一阻化煤与复合阻化煤进行了顺磁共振波谱实验与热重实验,运用普适积分与微分相结合的方法,计算了多升温速率下煤样在初始失重阶段与缓慢氧化阶段的表观活化能,并采用Bagchi法确定了最概然机理函数。A50与MT复配可延缓煤的氧化,但与单一阻化煤相比,协效作用不强。B50与MT复配的阻化煤自由基浓度和种类增长趋势有明显的减缓,并且在B50含量较多时,协效作用明显。阻化煤的最大失水速率温度(T1)、着火温度点(T3)与平均表观活化能均提高。综合自由基浓度、线宽、特征温度及平均表观活化能参数,对B50:MT(1:1、3:1、5:1)复合阻化煤的阻化作用进行了评估,最终选择了B50:MT(5:1)为最优阻化配比,该配比下煤样的T1从88.6 ℃增加至100.1 ℃、干裂温度由205.74 ℃增加至229.8 ℃、T3从346.0 ℃增加至358.2 ℃。两阶段的 平均活化能分别增加了49、115 kJ/mol。

利用原位漫反射红外光谱实验,研究了原煤、最佳阻化煤氧化过程中脂肪烃与含氧官能团的变化趋势,HPMC-CS-EM/MT可减少煤中甲基、亚甲基、羟基、羧基等的含量,提高较为稳定的醚键含量。同时结合阻化特性提出了HPMC-CS-EM/MT抑制煤氧化的作用过程,MT在内部捕获煤中羟基、脂过氧等自由基、降低脂肪烃、羟基等的含量、惰化了煤反应活性中心;HPMC-CS-EM则逐渐在相变、膨胀过程中析出水分、降低煤体的温度,并凝结覆盖在煤体表面隔氧,延长MT的作用时间、延缓煤氧化进程。最终通过内部惰化、外部隔氧降温的协同作用达到抑制煤自燃的效果,研究结果对高效绿色防控煤自燃具有重要的科学价值和实际指导意义。

论文外文摘要:

Coal spontaneous combustion (CSC) occurs frequently in China, resulting in serious waste of resources and environmental pollution. Therefore, it's of importance to study efficient and economical coal self-ignition inhibitors. Aiming at the problems of single inhibition effect of physical or chemical inhibitors and complex preparation of composite inhibitors. This paper prepared a physical inhibitor (Intumescent Thermosensitive Hydrogel, HPMC-CS-EM), preferred chemical inhibitor (Melatonin, MT), the preparation of composite inhibitor (intumesent thermosensitive hydrogel co-acting melatonin, HPMC-CS-EM/MT) was completed. By means of experimental test and mathematical calculation, the characteristics of compound inhibitors on coal oxidation were studied, and the action process of HPMC-CS-EM/MT on CSC was revealed.

First, HPMC-CS-EM were prepared by using chitosan (CS), hydroxypropyl methylcellulose (HPMC) and expanded microspheres (EM). The effects of EM content and HPMC viscosity on HPMC-CS-EM were systematically studied. The HPMC-CS-EM that EM content of 0.5% and the HPMC viscosity of 50 mPa·s have good fluidity, no delamination during heating, and the highest expansion ability (1.33 times). Therefore, A50 and B50 were finally selected as the physical inhibition part of the composite inhibitor.

A50, B50 and MT were mixed in different proportions to complete the preparation of HPMC-CS-EM/MT inhibited coal. The paramagnetic resonance spectroscopy experiment and thermogravimetric experiment were carried out on the raw coal, single inhibited coal and composite inhibited coal. The method of combining universal integration and differential was used to calculate the initial weight loss and slow oxidation of coal samples under multiple heating rates. The apparent activation energies of the phases were determined, and the most probable mechanism function was determined by the Bagchi method. The combination of A50 and MT was not strong compared with single inhibited coal. The growth trend of free radical concentration and species in the composite inhibiting coal compounded with B50 and MT is obviously slowed down, and the synergistic effect is obvious when the content of B50 is high. The maximum water loss rate temperature (T1), the ignition temperature point (T3) and the average apparent activation energy of the compound inhibited coal were all increased. Based on the parameters of free radical concentration, line width, characteristic temperature and average apparent activation energy, the inhibition effect of B50:MT (1:1, 3:1, 5:1) composite inhibitory coal was evaluated, and the final choice was B50:MT (5:1) is the optimal ratio of compound inhibitor. Under this ratio, the T1, the dry cracking temperature and T3 of coal samples increased from 88.6 ℃ to 100.1 ℃, 205.7 ℃ to 229.8 ℃, and 346.0 ℃ to 358.2 ℃, respectively. The average apparent activation energy in two stages increased 49 and 115 kJ/mol, respectively.

The change trend of aliphatic hydrocarbons and oxygen-containing functional groups in the oxidation process of raw coal and optimally inhibited coal was studied by in-situ diffuse reflectance infrared spectroscopy experiments. HPMC-CS-EM/MT can reduce the -CH2, -CH3, -OH, etc., increase the content of -C-O-. The process of HPMC-CS-EM/MT in inhibiting coal oxidation is proposed. MT internally captures free radicals, reduces the content of aliphatic hydrocarbons and hydroxyl groups, and inerts the coal reactive center; HPMC-CS-EM gradually separates out moisture in the process of phase change and expansion, lowers the temperature of the coal body, and condenses and covers the surface of the coal body to block oxygen, prolonging the action time of MT and delaying the process of coal oxidation. The research results have important scientific value and practical guiding significance for efficient and green prevention and control of coal spontaneous combustion.

参考文献:

[1] 王德明, 邵振鲁, 朱云飞. 煤矿热动力重大灾害中的几个科学问题[J]. 煤炭学报, 2021, 46(01): 57-64.

[2] 秦波涛, 仲晓星, 王德明, 等. 煤自燃过程特性及防治技术研究进展[J]. 煤炭科学技术, 2021, 49(01): 66-99.

[3] Wang HY, Chen C. Experimental study on greenhouse gas emissions caused by spontaneous coal combustion[J]. Energy and fuels, 2015, 29: 5213-5221.

[4] 陆新晓. 防治大空间煤炭自燃的泡沫高效制备技术及应用研究[D]. 徐州: 中国矿业大学, 2016.

[5] 姬玉成. 抗氧化凝胶泡沫防遗煤自燃机理研究[D]. 北京: 北京科技大学, 2022.

[6] 邓军, 白祖锦, 肖旸, 等. 煤自燃灾害防治技术现状与挑战[J]. 煤矿安全, 2020, 51(10): 118-125.

[7] Li QW, Xiao Y, Zhong KQ, et al. Overview of commonly used materials for coal spontaneous combustion prevention[J]. Fuel, 2020, 275: 117981.

[8] 蔡佳文. 基于煤理化特性演变规律的协效阻化机制研究[D]. 徐州: 中国矿业大学, 2021.

[9] 许红英. 复合阻化剂抑制煤自燃的热重动力学实验研究[J]. 矿业研究与开发, 2019, 39(06): 79-84.

[10] 王婕, 张玉龙, 王俊峰, 等. 无机盐类阻化剂和自由基捕获剂对煤自燃的协同抑制作用[J]. 煤炭学报, 2020, 45(12): 4132-4143.

[11] 宋明光, 王群英, 张雪芳. 一种复合型煤炭自燃阻化剂的制备及性能研究[J]. 煤炭加工与综合利用, 2020, 4: 70-74+79.

[12] Ma LY, Wang DM, Wang Y, et al. Experimental investigation on a sustained release type of inhibitor for retarding the spontaneous combustion of coal[J]. Energy & Fuels, 2016, 30(11): 8904-8914.

[13] Huang Z, Liu XH, Gao YK, et al. Experimental study on the compound system of proanthocyanidin and polyethylene glycol to prevent coal spontaneous combustion[J]. Fuel, 2019, 254: 115610.

[14] Zhong Y, Yang SQ, Hu XC, et al. Whole Process Inhibition of a composite superabsorbent polymer-based antioxidant on coal spontaneous combustion[J]. Arabian Journal for Science and Engineering, 2018, 43: 5999-6009.

[15] 郜孟南. 基于自由基消减的煤自燃阻化剂及其阻化特性[D]. 徐州: 中国矿业大学, 2020.

[16] 孙雯倩. 复合阻化剂抑制煤自燃过程的阶段阻化特性[D]. 兰州: 兰州理工大学, 2021.

[17] 薛海波. 抑制煤自燃过程关键活性基团的抗氧化型复合阻化剂研究[D]. 徐州: 中国矿业大学, 2018.

[18] Xue D, Hu XM, Dong H, et al. Examination of characteristics of anti-oxidation compound inhibitor for preventing the spontaneous combustion of coal[J]. Fuel, 2022, 310: 122160.

[19] 张俊朋, 胡相明, 程卫民. 煤矿防灭火壳聚糖温敏水凝胶的制备及性能研究[J]. 中国安全科学学报, 2015, 25(01): 85-90.

[20] 马砺, 黄霄, 杨元博, 等. 温敏性水凝胶制备及阻燃性能研究[J]. 消防科学与技术, 2020, 39(06): 821-824.

[21] 杨漪. 基于氧化特性的煤自燃阻化剂机理及性能研究[D]. 西安: 西安科技大学, 2015.

[22] 徐精彩, 薛韩玲, 文虎, 等. 煤氧复合热效应的影响因素分析[J]. 中国安全科学学报. 2001, 11(02): 31-35.

[23] 陆伟, 胡千庭, 仲晓星, 等. 煤自燃逐步自活化理论[J]. 中国矿业大学学报, 2007, 36(01): 111-115.

[24] Li ZH, Kong B, Wei AZ, et al. Free radical reaction characteristics of coal low-temperature oxidation and its inhibition method[J]. Environmental Science and Pollution Research, 2016, 23(23): 23593-23605.

[25] 位爱竹, 李增华, 杨永良. 破碎、氧化和光照对煤中自由基的影响分析[J]. 湖南科技大学学报(自然科学版), 2006(04): 19-22.

[26] 仲晓星, 王德明, 徐永亮, 等. 煤氧化过程中的自由基变化特性[J]. 煤炭学报, 2010, 35(06): 960-963.

[27] 张嬿妮, 舒盼, 赵婧昱, 等. 烟煤持续耗氧过程中自由基变化规律研究[J]. 煤矿安全, 2021, 52(01): 42-46+52.

[28] 朱令起, 刘聪, 王福生. 煤自燃过程中自由基变化规律特性研究[J]. 煤炭科学技术, 2016, 44(10): 44-47.

[29] 王德明, 辛海会, 戚绪尧, 等. 煤自燃中的各种基元反应及相互关系:煤氧化动力学理论及应用[J]. 煤炭学报, 2014, 39(08): 1667-1674.

[30] Wang CP, Xiao Y, Li QW, et al. Free radicals, apparent activation energy, and functional groups during low-temperature oxidation of Jurassic coal in Northern Shaanxi[J]. International Journal of Mining Science and Technology, 2018(28): 469-475.

[31] 邓军, 赵婧昱, 张嬿妮, 等. 不同变质程度煤二次氧化自燃的微观特性试验[J]. 煤炭学报, 2016, 41(05): 1164-1172.

[32] Wang K, Deng J, Zhang YN, et al. Kinetics and mechanisms of coal oxidation mass gain phenomenon by TG–FTIR and in situ IR analysis[J]. Journal of Thermal Analysis and Calorimetry, 2018(132): 591–598.

[33] 邓军, 李亚清, 张玉涛, 等. 羟基(-OH)对煤自燃侧链活性基团氧化反应特性的影响[J]. 煤炭学报, 2020, 45(01): 232-240.

[34] 单亚飞, 王继仁, 邓存宝, 等. 不同阻化剂对煤自燃影响的实验研究[J]. 辽宁工程技术大学学报(自然科学版), 2008, 1(27): 1-4.

[35] Lv HP, Li B, Deng J, et al. A novel methodology for evaluating the inhibitory effect of chloride salts on the ignition risk of coal spontaneous combustion[J]. Energy, 2021, 231:121093.

[36] Lu W, Guo BL, Qi GS, et al. Experimental study on the effect of preinhibition temperature on the spontaneous combustion of coal based on an MgCl2 solution[J]. Fuel, 2020, 265: 117032.

[37] Du WZ, Zhang J, Xie QX, et al. Experimental study on optimizing the inhibition effect of pre-injection inhibitor on coal spontaneous combustion[J]. Energy Sources Part A Recovery Utilization and Environmental Effects, 2020, 1-18.

[38] Du WZ, Niu K, Wang HW, et al. Experiment and field application of inhibitior liquid in spontaneous combustion process of coal based on thermogravimetric analysis[J]. Journal of Energy Resources Technology, 2020, 143(02): 1-11.

[39] 肖辉, 杜翠凤. 新型高聚物煤自燃阻化剂的试验研究[J]. 安全与环境学报, 2006, 6(01): 46-48.

[40] 王立芹. 防治煤层自燃的聚乙酸乙烯酯乳液的合成及其性能研究[D]. 青岛:山东科技大学, 2007.

[41] 王德明. 矿井防灭火新技术—三相泡沫[J]. 煤矿安全, 2004, 35(07): 16-18.

[42] 鲁义, 王涛, 田兆君, 等. 水泥基泡沫形成机理及抑制煤堆自燃试验研究[J]. 中国安全生产科学技术, 2017, 13(07): 87-91.

[43] 鲁义, 陈立, 邹芳芳, 等. 防控高温煤岩裂隙的膏体泡沫研制及应用[J]. 中国安全生产科学技术, 2017, 13(04): 70-75.

[44] Shi QL, Qin BT. Experimental research on gel-stabilized foam designed to prevent and control spontaneous combustion of coal[J]. Fuel, 2019, 254: 115558.

[45] Xue D, Hu XM, Cheng WM, et al. Fire prevention and control using gel-stabilization foam to inhibit spontaneous combustion of coal: characteristics and engineering applications[J]. Fuel, 2020, 264: 116903.

[46] 孟献梁, 褚睿智, 吴国光, 等. 防止煤炭自燃用聚乙烯醇隔氧凝胶的实验室制备及性能研究[J]. 煤炭工程, 2009, 9: 102-105.

[47] 王开胜, 陆伟, 杜云峰, 等. 防治煤自燃塑性水玻璃凝胶研究[J]. 矿业安全与环保, 2016,1: 8-11.

[48] 韩福志, 邵和, 司俊鸿, 等. 矿用堵漏无机触变防灭火凝胶的流变特性研究[J]. 矿业安全与环保, 2022, 49(01): 1-7.

[49] Cheng JW, Wu YH, Dong ZW, et al. A novel composite inorganic retarding gel for preventing coal spontaneous combustion[J]. Case Studies in Thermal Engineering, 2021, 28: 108648.

[50] 董凯丽, 王俊峰, 梁择文, 等. 矿用CMC/ZrCit/GDL防灭火凝胶特性研究[J]. 中国安全科学学报, 2020, 30(01): 114-120.

[51] Cheng WM, Hu XM, Xie J, et al. An intelligent gel designed to control the spontaneous combustion of coal Fire prevention and extinguishing properties[J]. Fuel, 2017, 210: 826-835.

[52] Tsai YT, Yang Y, Wang CP, et al. Comparison of the inhibition mechanisms of five types of inhibitors on spontaneous coal combustion[J]. International Journal of Energy Research, 2017, 42(03): 1158-1171.

[53] Zou G, Li SL, Meng QZ, et al. Synthesis and performance of a new temperature-sensitive and super-absorbent fire prevention hydrogel based on ultrasonic method[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 640: 128399.

[54] 窦国兰. 预防煤自燃化学阻化剂研究[M]. 徐州: 中国矿业大学出版社, 2014.

[55] Xi ZL, Gao K, Guo XY, et al. Mechanistic study of the inhibition of active radicals in coal by catechin[J]. Combustion Science and Technology, 2020, 2: 1-18.

[56] Li JH, Li ZH, Yang YL, et al. Inhibitive effects of antioxidants on coal spontaneous combustion[J]. Energy &Fuels, 2017, 31(12): 14180-14190.

[57] Guo SL, Yan Z, Yuan SJ, et al. Inhibitory effect and mechanism of L-ascorbic acid combined with tea polyphenols on coal spontaneous combustion[J]. Energy, 2021, 229(11): 120651.

[58] 李金亮, 陆伟, 徐俊. 化学阻化剂防治煤自燃及其阻化机理分析[J]. 煤炭科学技术, 2012, 1(40): 50-53.

[59] 王烽. 绿色环保型复合阻化剂抑制煤自燃实验研究[D]. 徐州: 中国矿业大学, 2018.

[60] Dou GL, Jiang ZW. Sodium humate as an effective inhibitor of low-temperature coal oxidation[J]. Thermochimica Acta, 2019, 673: 53-59.

[61] Wang LY, Xu YL, Jiang SG, et al. Imidazolium based ionic liquids affecting functional groups and oxidation properties of bituminous coal[J]. Safety Science, 2012, 50(07): 1528-1534.

[62] Wang LY, Jiang SG, Xu YL, et al. Effect of imidazolium based ionic liquids on coal exothermic oxidation by thermal analysis experiments[J]. Procedia Engineering, 2011, 26: 647-651.

[63] 肖旸, 李达江, 吕慧菲, 等. 咪唑类离子液体抑制煤氧化热动力学参数的研究[J]. 煤炭学报, 2019, 44(S1): 187-194.

[64] 肖旸, 尹岚, 吕慧菲, 等. 咪唑类离子液体处理煤热失重以及传热特性[J]. 煤炭学报, 2019, 44(02): 520-527.

[65] 邓军, 吕慧菲, 李达江, 等. [BMIM][BF4]对不同变质程度煤自燃热行为的影响研究[J]. 煤炭学报, 2019, 44(01): 254-262.

[66] 肖旸, 吕慧菲, 任帅京, 等. 咪唑类离子液体抑制煤自燃特性的研究[J]. 中国矿业大学学报, 2019, 48(01): 175-181.

[67] Bai ZJ, Wang CP, Deng J, et al. Effects of ionic liquids on the chemical structure and exothermic properties of lignite[J]. Journal of Molecular Liquids, 2020, 309: 113019.

[68] Bai ZJ, Wang CP, Deng J, et al. Experimental investigation on using ionic liquid to control spontaneous combustion of lignite[J]. Process Safety and Environmental Protection, 2020, 142: 138-149.

[69] Chi KY, Wang J, Ma LY, et al. Synergistic Inhibitory Effect of free radical scavenger/inorganic salt compound inhibitor on spontaneous combustion of coal[J]. Combustion Science and Technology, 2020: 1-17.

[70] Guo SL, Yuan SJ, Geng WL, et al. Preparation and optimization of thermosensitive hydrogels for inhibiting coal oxidation[J]. International Journal of Energy Research, 2021, 45(05): 7783-7796.

[71] 唐立宗, 张琳, 董云生, 等. 响应性水凝胶及其在生物医药领域应用研究进展[J]. 应用化学, 2021, 38(07): 743-753.

[72] Tang L, Wang L, Yang X, et al. Poly(Nisopropylacrylamide)-based smart hydrogels: design, properties and applications[J]. Progress in Materials Science,2020, 115: 100702.

[73] 刘程, 乔丽媛, 柳承德, 等. 智能水凝胶及其在生物方向的应用[J]. 中国材料进展, 2019, 38(10): 981-989+1016.

[74] 吴诗雯, 陈小婷, 任豪, 等. 第三单体结构对温敏水凝胶相转变温度的影响[J]. 东华大学学报(自然科学版), 2020, 46(02): 248-253.

[75] 王毓, 赵君, 任俊鹏, 等. 温敏互穿网络水凝胶/改性膨润土复合吸水保水材料的制备及表征[J]. 材料导报, 2020, 34(12): 12178-12184.

[76] 杨毅, 李丽霞, 吕保和, 等. 多孔半互穿温敏水凝胶的制备及其性能研究[J]. 现代化工, 2017, 37(08): 104-108.

[77] Zhu ZC, Li Y, Xu H, et al. Tough and thermossensitive poly (N-isopropylacrylamide) /graphene oxide hydrogels with macroscopically oriented liquid crystalline structures[J]. Acs Applied Materials and Interfaces, 2016, 8(24): 15637-15644.

[78] Yao C, Liu Z, Yang C, et al. Smart hydrogels with inhomogeneous structures assembled using nanoclay-cross-linked hydrogel subunits as building blocks[J]. Acs Applied Materials and Interfaces, 2016, 8(33): 21721-21730.

[79] Li YH, Zhao DH, Li YW, et al. Synthesis of water-soluble and thermoresponsive phthalocyanine ended block copolymers as potential photosensitizer[J]. Dyes & Pigments, 2017, 142: 88-99.

[80] 强正. 混合酸制备壳聚糖温敏水凝胶的研究[J]. 化学世界, 2010, 51(08): 470-472.

[81] Chenite A, Buschmann M, Wang D, et al. Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions[J]. Carbohyd Polym, 2001, 46: 39-47.

[82] 康传真, 程晓杰, 陈西广. 壳聚糖及其衍生物温敏水凝胶研究进展及其应用[J]. 天然产物研究与开发, 2010, 22(05): 919-927.

[83] 王雅倩, 洪莹莹, 宋健, 等. 壳聚糖/氧化石墨烯/透明质酸钠复合温敏性水凝胶的制备及理化性质[J]. 暨南大学学报(自然科学与医学版), 2021, 42(05): 516-522.

[84] Tong JA, Zhou HY, Zhou JJ, et al. Design and evaluation of chitosan-amino acid thermosensitive hydrogel[J]. Maring Life Science and Technology, 2022, 4(01): 74-87.

[85] 李征征, 徐子扬, 高留意, 等. 温敏性乙二醇壳聚糖水凝胶的制备及药物缓释性能[J]. 高等学校化学学报, 2016, 37(12): 2299-2305.

[86] Barros SC, Silva MM. Seeking the lowest phase transition temperature in a cellulosic system for textile applications[J]. Cellulose, 2018, 25: 3163-3178.

[87] 刘晓倩, 楚晖娟, 魏宏亮, 等. 基于纤维素的温敏性互穿网络水凝胶的制备与表征[J]. 河南工业大学学报(自然科学版), 2015, 36(2): 42-46.

[88] 程金梁, 殷鸿尧, 冯玉军, 等. 具有可调溶胀性能的纤维素基温敏水凝胶[J]. 高分子材料科学与工程, 2016, 32(6): 118-123.

[89] Tan J, Xie SB, Wang GH, et al. Fabrication and optimization of the thermo- sensitive hydrogel carboxymethyl cellulose/poly (N-isopropylacrylamide-co-acrylic acid) for U(VI) removal from aqueous solution[J]. Polymers, 2020, 12(1): 151.

[90] 陈丽嫚, 汪涛, 李康. 壳聚糖/羟丙基甲基纤维素温敏水凝胶的制备[J]. 高分子材料科学与工程, 2016, 32(11): 156-161.

[91] 吴俊红. 壳聚糖/羟丙基甲基纤维素包装薄膜及其改性研究[D]. 杭州: 浙江理工大学, 2010.

[92] 贾晓辉. 羟丙基甲基纤维素热引发水凝胶的制备与性能研究[D]. 上海: 东华大学, 2008.

[93] 刘颖健. 煤氧化过程中自由基—活性基团作用机理[D].唐山: 华北理工大学, 2016.

[94] Wang DM, Xin HH, Qi XY, et al. Reaction pathway of coal oxidation at low temperatures: a model of cyclic chain reactions and kinetic characteristics[J]. Combustion and Flame, 2016, 163: 447-460.

[95] Deng J, Yang Y, Zhang YN, et al. Inhibiting effects of three commercial inhibitors in spontaneous coal combustion[J]. Energy, 2018, 160: 1174-1185

[96] Zhang YT, Zhang J, Li YQ, et al. Oxidation characteristics of functional groups in relation to coal spontaneous combustion[J] ACS Omega, 2021, 6(11): 7669-7679.

[97] 艾晴雪. 煤自燃过程活性基团与自由基反应特性研究[D]. 唐山: 华北理工大学, 2018.

[98] Yin YC, Zhang YH, Huang Z, et al. Influence of temperature change on the change law of free radicals in coal[J]. ACS Omega, 2021 6(49): 33685-33693.

[99] Deng J, Zhao JY, Huang AC, et al. Thermal behavior and microcharacterization analysis of second-oxidized coal[J]. Journal of Thermal Analysis & Calorimetry, 2017, 127: 439-448.

[100] 吕慧菲. 咪唑类离子液体抑制煤自燃热效应及动力学研究[D]. 西安: 西安科技大学, 2018.

[101] 王德明. 煤氧化动力学理论及应用[M]. 科学出版社, 2012.

[102] 胡荣祖, 高胜利, 赵凤起, 等. 热分析动力学[M]. 北京: 科学出版社, 2008.

[103] 许芹. 氧化煤表面吸氧能力演化及分子活性结构二次氧化特性研究[D]. 徐州: 中国矿业大学, 2021.

[104] 许涛. 煤自燃过程分段特性及机理的实验研究[D]. 徐州: 中国矿业大学, 2012.

[105] 王德明, 辛海会, 戚绪尧, 等. 煤自燃中的各种基元反应及相互关系:煤氧化动力学理论及应用[J]. 煤炭学报, 2014, 39(08): 1667-1674.

[106] 王凯. 陕北侏罗纪煤低温氧化反应性及动力学研究[D]. 西安:西安科技大学, 2015.

[107] 马圣月. 低阶煤着火机理研究[D]. 北京: 华北电力大学, 2021.

[108] 钮志远. 典型煤的官能团热解机理、动力学分析及影响因素研究[D]. 合肥: 中国科学技术大学, 2017.

中图分类号:

 TD752.2    

开放日期:

 2022-06-21    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式