- 无标题文档
查看论文信息

论文中文题名:

 黄土高原采煤沉陷区土壤水分变化的时空特征与机理研究    

姓名:

 马婷    

学号:

 20110010004    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0816    

学科名称:

 工学 - 测绘科学与技术    

学生类型:

 博士    

学位级别:

 工学博士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘科学与技术    

研究方向:

 矿山沉陷与生态修复    

第一导师姓名:

 汤伏全    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-17    

论文答辩日期:

 2024-06-03    

论文外文题名:

 Temporal and spatial characteristics and mechanism of soil moisture variation in coal mining subsidence area of Loess Plateau    

论文中文关键词:

 矿山沉陷 ; 土壤水分 ; 动态监测 ; 遥感反演 ; 黄土高原    

论文外文关键词:

 Mine subsidence ; Soil moisture ; Dynamic monitoring ; Remote sensing inversion ; Loess plateau    

论文中文摘要:

      黄土高原地处黄河流域生态脆弱区,是我国煤炭主要产区,大规模地下采煤已引起严重的地面沉陷及损害,造成资源开发与环境保护之间的矛盾突出,成为影响国家能源安全和黄河流域生态文明建设的主要问题之一。开采引起的地表沉陷对土壤水分的扰动效应是驱动煤矿区生态环境演变的关键因素,研究和揭示开采沉陷对土壤水分扰动的时空特征与机理是开展矿区生态修复与治理环境的基础和前提。本文以黄土高原彬长矿区为例,研究煤矿开采区土壤水分变化的时空特征和机理。通过光学和雷达影像相结合改进现有的土壤水分遥感反演方法,开展黄土高原煤矿区土壤水分遥感反演;结合现场采样数据从矿区尺度和工作面尺度揭示开采区土壤水分变化的时空特征;利用连续监测数据分析开采区土壤水分变化的驱动因素,阐明土壤水分变化与开采沉陷变形之间的量化关系;进一步通过土体试验和物理模拟构建沉陷区地表裂缝土壤水分运移模型,初步揭示开采沉陷对于土壤水分变化的扰动机理。主要研究内容与结果如下:

    (1)结合光学和雷达影像提出了一种适用于黄土高原煤矿区土壤水分遥感反演的改进方法。考虑矿区开采沉陷对微地形和地表粗糙度的扰动影响,通过耦合地形校正模型(Terrain Correction,TC)和入射角校正模型(Incident Angle Correction,IACM),修正了地形起伏造成的雷达图像扭曲及入射角偏差问题,减弱了黄土高原矿区复杂地形对雷达后向散射的影响;利用随机森林算法结合水云模型(Water-Cloud Model,WCM)降低了植被散射对雷达信号的干扰;基于雷达后向散射和光学反射率模型提出了RBCM(Reflectance Backscatter Couple Model)土壤水分参数模型,结合粒子群优化算法,解决了对实测地表粗糙度的依赖。该方法反演的土壤水分在精度上优于目前常用的高级积分方程模型(Advanced Integrated Equation Model,AIEM)、OH和Dubois模型,适用于黄土高原复杂地形矿区土壤水分遥感定量反演。

  (2)结合现场采样和遥感反演研究了近10年煤矿开采区土壤水分时空分布特征和不同开采阶段土壤水分的变化特征。结果表明:研究区在近10年间土壤水分呈现出轻微下降趋势,下降率为0.0312m3m-3/yr,其中开采区地表土壤水分下降速率最快且最显著,达到0.203 m3m-3/yr。随着开采面积的逐年扩大,开采区与非开采区土壤水分差异逐渐变大。在工作面推进过程中,开采对土壤水分一直表现为负面影响,但在不同开采阶段影响程度不同。研究发现,地表沉陷对土壤水分的影响存在一定的时滞性,平均滞后时间大约为沉降发生后90天左右,开采活跃期和开采后期对土壤水分扰动尤为显著;在生态自然恢复作用下,开采结束后120天左右,开采活动对土壤水分的影响逐渐减小。随着地表沉陷逐渐稳定,土壤水分的恢复逐渐变缓,但难以达到开采前的状态。

  (3)通过连续监测数据分析揭示了开采区土壤水分时空变化规律。结果表明:受开采沉陷和采动裂缝的影响,开采区土壤水分呈现出不均匀分布,变异性相比于非开采区显著提高。在降雨充沛时期,开采扰动明显提高了土壤水分的入渗率,导致开采区土壤含水量显著高于非开采区;在非降雨或降雨较少时期,开采扰动提高了土壤水分的蒸发率,导致开采区土壤含水量明显低于非开采区;经验正交函数(Empirical Orthogonal Function,EOF)分析表明,自然强迫和人为活动共同主导了开采区土壤水分的变异性。EOF模式下的空间特征和EC模式下的时间特征均表明,季风降雨是影响开采区土壤水分空间格局分布的主导因素,该结果与土壤水分时空分布相吻合。在季节性降水影响下该区域土壤水分表现出季节性“干-湿-干”现象,但开采活动加剧了区域土壤水分变异性和不均匀分布,是影响土壤水分时间变异性的主要因素,导致“干-湿-干”现象加剧。

   (4)通过偏最小二乘结构方程模型(The Partial Least Squares-Structural Equation Model,PLS-SEM)结合聚类分析和克里金插值分析了开采区土壤水分变化的主要驱动因素。在PLS-SEM中,气象因子和沉陷变形因子是影响开采区土壤水分变化的最主要因素。其中气象因子是土壤水分变化的主导因素,对土壤水分变化贡献率达到47.69%。沉陷变形因子是开采区土壤水分变化的关键因素,也是影响该区域土壤水分的唯一负向因素。其中,沉陷变形因子对土壤水分的直接影响占比85.49%,通过土壤-植被和土壤养分对土壤水分的间接影响仅占比14.51%。在沉陷变形因子中,地表下沉和水平移动值是对土壤水分变化影响最主要的关键指标。

   (5)在利用野外监测、扫描电镜试验、土壤特征曲线测定和物理模拟分析采煤沉陷区土体特性变化的基础上,通过构建地表裂缝扰动下土壤水分运移模型分析揭示了沉陷区地表裂缝对土壤水分的扰动机理。结果表明:开采裂缝导致土壤颗粒排列更加松散,片状骨架颗粒的粒径减小且更加不均匀,颗粒之间由线-线接触多转变为点-点和点-线接触形式。随着地表裂缝的发育,土壤中微小孔隙和小孔隙减少,大孔隙和特大孔隙明显增加。随着裂缝宽度的增加和裂缝间距的减少,导致土壤中毛管重力水增多,土壤持水能力减弱,造成水分散失量的增加;研究发现在土壤持水能力方面,微小型裂缝>小型裂缝>中型裂缝>大型裂缝。同时,利用 Hydrus 模拟分析了不同裂缝尺度周围土壤水分入渗过程,初步揭示了开采裂缝引起的土壤水分运移规律。

论文外文摘要:

    The Loess Plateau is located in the ecologically fragile area of the Yellow River basin and is the main coal-producing area in China. Large-scale underground coal mining has caused serious ground subsidence and damage, resulting in prominent contradictions between resource development and environmental protection. This has become one of the main difficulties affecting national energy security and the construction of ecological civilization in the Yellow River basin. The effect of mining subsidence on soil water disturbance is a key factor driving the evolution of the ecological environment in coal mining areas. Studying and revealing the temporal and spatial characteristics and mechanisms of soil water disturbance caused by mining subsidence are the basis and premise for ecological restoration and environmental management in mining areas. In this paper, a typical mining area covered by loess is as the study area. Firstly, this study enhances the existing soil moisture retrieval method by integrating optical and radar images, enabling the quantitative estimation of soil moisture through remote sensing in the coal mine area of the Loess Plateau. Secondly, the spatial-temporal characteristics of soil moisture change in mining area were revealed from mining area scale and working face scale based on remote sensing inversion method and field sampling data. Then, the driving factors of soil moisture change in mining area were analyzed by using field continuous monitoring data, and the quantitative relationship between soil moisture change and mining subsidence deformation was clarified. Finally, a model of soil water transport was established through scanning electron microscope and simulation tests to reveal the disturbance mechanism of soil moisture change caused by mining subsidence. The main research results are as follows:

    (1) An improved remote sensing retrieval method for soil moisture in coal mine area of Loess Plateau is proposed by combining optical and radar images. First, the radar image distortion and incident angle deviation caused by Terrain relief were corrected by coupling Terrain Correction (TC) and Incident Angle Correction (IACM) models, which weakens the influence of complex terrain on radar backscattering in loess mining area. Secondly, the effect of vegetation scattering on radar signals is reduced by using the random forest algorithm combined with the Water-Cloud Model (WCM). Finally, based on radar backscattering and optical reflectance model, a soil moisture parameter model called Reflectance Backscatter Couple Model (RBCM) was proposed, which combined with particle swarm optimization algorithm to remove the measured surface roughness parameters. The accuracy of soil moisture retrieval using this method surpasses that of the existing Advanced Integrated Equation Model (AIEM), OH, and Dubois model.

   (2) Combined with field sampling and remote sensing inversion, the spatial and temporal distribution characteristics of soil water in mining areas and the variation characteristics of soil water in different mining stages in recent 10 years were studied. The results showed that the soil moisture showed a slight decreasing trend in recent 10 years, with a decreasing rate of 0.0312 m3m-3 /yr, and the decrease rate of surface soil moisture in the mining area was the fastest, reaching 0.203m3m-3 /yr. With the expansion of mining area year by year, the difference of soil moisture between mining area and non-mining area is gradually increasing. Mining has a negative effect on soil moisture in the process of mining, but the degree of influence is different in different mining stages. It is found that there is a certain time lag in the effect of subsidence on soil moisture. The average time lag is about 90 days after the subsidence, and the disturbance of soil moisture is significant in the active period and later period of mining. Under the action of natural ecological restoration, the influence of mining activities on soil moisture gradually decreased about 120 days after the end of mining. With the gradual stability of surface, the recovery of soil water gradually slows down, but it is difficult to reach the state before mining.

    (3) The spatial-temporal variation of soil moisture in the mining area was revealed through the analysis of continuous monitoring data. The results show that the soil moisture in the mining area presents uneven distribution and the variability is significantly higher. In the rainfall period, mining disturbance obviously increased the infiltration rate, resulting in soil water content in mining area was higher than that in non-mining area. In the non-rainfall period, the mining disturbance increased the evaporation rate, resulting in the soil water content in the mining area was lower than that in the non-mining area. Empirical Orthogonal Function (EOF) showed that natural forcing and anthropogenic activities jointly dominated the variability of soil water in the mining area. The EOF model and the EC model showed that rainfall was the dominant factor affecting the spatial pattern distribution of soil water in the mining area, which was consistent with the temporal and spatial distribution of soil water. Under the influence of seasonal precipitation, soil moisture showed a seasonal "dry-wet-dry" phenomenon, but mining activities intensified the variability of soil moisture, which was the main factor affecting the temporal variability of soil moisture, leading to the intensification of the "dry-wet-dry" phenomenon.

    (4) The Partial Least Squares Structural Equation Model (PLS-SEM) combined with cluster analysis and Kriging interpolation were used to analyze the main driving factors of soil water change in the mining area. In PLS-SEM, meteorological factors and subsidence deformation factors are the most important factors affecting soil water change in mining area. The meteorological factor is the main factor of soil water change, and the contribution rate of soil water change reaches 47.69%. Subsidence deformation factor is the key factor of soil water change in mining area, and it is also the only negative factor affecting soil water in this area. The direct influence of subsidence and deformation factors on soil water accounted for 85.49%, while the indirect influence of soil-vegetation and soil nutrients on soil water accounted for only 14.51%. Among the subsidence deformation factors, surface subsidence and horizontal movement are the most important key indexes affecting soil water change.

    (5) On the basis of field monitoring, scanning electron microscopy test, soil characteristic curve determination and physical simulation analysis of soil property changes in coal mining subsidence area, the disturbance mechanism of soil water caused by surface fractures in subsidence area was revealed through the construction of soil water transport model. The results show that the distribution of soil particles is looser, the particle size of lamellar skeleton particles is less and more uneven, and the contact between particles changes from line-line contact to point-point contact and point-line contact. With the development of surface cracks, the small pores in soil decrease, and the large pores and large pores increase significantly. With the increase of crack width, capillary gravity water in soil increases, soil water holding capacity weakens, and water loss increases. It was found that in terms of soil water holding capacity, micro cracks > small cracks > medium cracks > large cracks. At the same time, the infiltration process of soil water around different fracture scales was analyzed by Hydrus simulation, and the soil water transport law caused by mining fractures was initially revealed.

参考文献:

[1] 梁玲. 从BP能源统计数据看世界能源消费趋势[J]. 世界石油工业, 2019, 26(3): 5-11.

[2] 卞正富, 于昊辰, 雷少刚, 等. 黄河流域煤炭资源开发战略研判与生态修复策略思考[J]. 煤炭学报, 2021, 46(5): 1378-1391.

[3] 康亚明, 刘长武. 煤炭绿色开采技术及其在西北矿区的应用前景研究[J]. 中国矿业, 2011, 20(10): 77-80.

[4] 程爱国, 宁树正, 袁同兴. 中国煤炭资源综合区划研究[J]. 中国煤炭地质, 2011, 23(8): 5-8.

[5] Denise M, Axel P. Use of the area of main influence to fix a relevant boundary for mining damages in Germany[J]. International Journal of Mining Science and Technology, 2018, 28(1): 79-83.

[6] Chi SS, Wang L, Yu XX, et al. Research on Prediction Model of Mining Subsidence in Thick Unconsolidated Layer Mining Area[J]. IEEE Access, 2021, 9: 23996-24010.

[7] 屈婷婷. 榆北矿区煤矿采动裂缝发育电性特征研究[D]. 西安: 西安科技大学, 2021.

[8] Li TT, Zhang Q, Singh VP, et al. Identification of Degradation Areas of Ecological Environment and Degradation Intensity Assessment in the Yellow River Basin[J]. Frontiers in Earth Science, 2022, 07(10): 4155-4162.

[9] 彭苏萍, 毕银丽. 西部干旱半干旱煤矿区生态环境损伤特征及修复机制[J]. 煤炭学报, 2024, 49(1): 57-64.

[10] Dong SN, Wang H, Guo XM, et al. Characteristics of Water Hazards in China’s Coal Mines: A Review[J]. Mine Water and the Environment, 2021, 40(2): 325-333.

[11] 张楠, 张岩, 王佳希, 等. 黄土丘陵沟壑区小流域侵蚀沟数量及形态特征[J]. 水土保持学报, 2023, 37(03): 109-115.

[12] 宋世杰, 孙涛, 郑贝贝, 等. 陕北黄土沟壑区采煤沉陷对黄土坡面形态的影响及土壤侵蚀效应[J]. 煤炭科学技术, 2023, 51(02): 422-435.

[13] 曹美晨, 辛艳, 任正龑, 等. 半干旱黄土丘陵沟壑区不同土地利用坡面的降雨侵蚀特征[J]. 泥沙研究, 2022, 47(06): 43-50.

[14] 徐尚昭, 陈斌, 周阳阳, 等. 矿区植被覆盖度时空变化遥感监测研究——以广东省大宝山矿区为例[J]. 安徽农业科学, 2023, 51(05): 46-50.

[15] Guo YC, Huang YL, Li JM, et al. Study on the influence of mining disturbance on the variation characteristics of vegetation index: A case study of Lingwu Mining Area[J]. Environmental Development, 2023, 45: 100811.

[16] Ma K, Zhang YX, Ruan MY, et al. Land Subsidence in a Coal Mining Area Reduced Soil Fertility and Led to Soil Degradation in Arid and Semi-Arid Regions[J]. International Journal of Environmental Research and Public Health, 2019, 16(20): 3929.

[17] Yang DJ, Bian ZF, Lei SG. Impact on soil physical qualities by the subsidence of coal mining: a case study in Western China[J]. Environmental Earth Sciences, 2016, 75(08): 652.

[18] 汤伏全. 西部厚黄土层矿区开采沉陷预计模型[J]. 煤炭学报, 2011, 36(S1): 74-78.

[19] 杨帆, 麻凤海, 刘书贤, 等. 采空区岩层移动的动态过程与可视化研究[J]. 中国地质灾害与防治学报, 2005(01): 86-90.

[20] 郭文兵, 邓喀中, 邹友峰. 我国条带开采的研究现状与主要问题[J]. 煤炭科学技术, 2004(08): 7-11.

[21] 卞正富. 国内外煤矿区土地复垦研究综述[J]. 中国土地科学, 2000(01): 6-11.

[22] 于广明, 孙洪泉, 赵建锋. 采矿引起地表点动态下沉的分形增长规律研究[J]. 岩石力学与工程学报, 2001(01): 34-37.

[23] 杜善周. 神东矿区大规模开采的地表移动及环境修复技术研究[D]. 北京:中国矿业大学(北京), 2010.

[24] Cui XQ, Peng SP, Lines LR, et al. Understanding the Capability of an Ecosystem Nature-Restoration in Coal Mined Area[J]. Scientific Reports, 2019, 9(01): 19690.

[25] 钱鸣高, 缪协兴, 许家林. 岩层控制中的关键层理论研究[J]. 煤炭学报, 1996(03): 2-7.

[26] A⸱W⸱Khair,杨凌. 长壁开采时地形对岩层移动的影响[J]. 中州煤炭, 1990(02): 44-46.

[27] 杨硕, 贺祖琪, 黄国纲, 等. 开采沉陷机制与系列生产发展[J]. 中州煤炭, 1994(03): 9-13+26.

[28] 余学义, 李邦帮, 李瑞斌, 等. 西部巨厚湿陷性黄土层开采损害程度分析[J]. 中国矿业大学学报, 2008(01): 43-47.

[29] 郭文兵, 黄成飞, 陈俊杰. 厚湿陷黄土层下综放开采动态地表移动特征[J]. 煤炭学报, 2010, 35(S1): 38-43.

[30] 许延春, 刘世奇, 高玉兵, 等. 厚松散层内部微变形规律研究[J]. 煤炭科学技术, 2014, 42(10): 10-13+23.

[31] 刘义新, 戴华阳, 郭文兵. 巨厚松散层下深部宽条带开采地表移动规律[J]. 采矿与安全工程学报, 2009, 26(03): 336-340.

[32] 吴侃, 胡振琪, 常江, 等. 开采引起的地表裂缝分布规律[J]. 中国矿业大学学报, 1997(02): 56-59.

[33] 胡振琪, 王新静, 贺安民. 风积沙区采煤沉陷地裂缝分布特征与发生发育规律[J]. 煤炭学报, 2014, 39(01): 11-18.

[34] 侯恩科, 冯栋, 谢晓深, 等. 浅埋煤层沟道采动裂缝发育特征及治理方法[J]. 煤炭学报, 2021, 46(4): 1297-1308.

[35] 谢晓深, 侯恩科, 龙天文, 等. 浅埋缓倾斜煤层开采覆岩及地表裂缝发育规律与形成机理[J]. 西安科技大学学报, 2022, 42(02): 200-209.

[36] 刘辉. 西部黄土沟壑区采动地裂缝发育规律及治理技术研究[D]. 徐州:中国矿业大学, 2014.

[37] 侯恩科, 谢晓深, 王双明, 等. 中埋深煤层综采地表裂缝发育规律研究[J]. 采矿与安全工程学报, 2021, 38(06): 1178-1188.

[38] 王双明, 侯恩科, 谢晓深, 等. 中深部煤层开采对地表生态环境的影响及修复提升途径研究[J]. 煤炭科学技术, 2021, 49(01): 19-31.

[39] 王云广, 郭文兵. 采空塌陷区地表裂缝发育规律分析[J]. 中国地质灾害与防治学报, 2017, 28(01): 89-95.

[40] 郭文兵, 白二虎, 赵高博. 高强度开采覆岩地表破坏及防控技术现状与进展[J]. 煤炭学报, 2020, 45(02): 509-523.

[41] 薛东杰, 周宏伟, 任伟光, 等. 浅埋深薄基岩煤层组开采采动裂隙演化及台阶式切落形成机制[J]. 煤炭学报, 2015, 40(8): 1746-1752.

[42] Mason TJ, Krogh M, Popovic GC, et al. Persistent effects of underground longwall coal mining on freshwater wetland hydrology[J]. Science of The Total Environment, 2021, 772: 144772.

[43] 卞正富, 张国良. 矿山开采沉陷对潜水环境的影响与控制[J]. 有色金属, 1999(01): 4-7.

[44] 张发旺, 侯新伟, 韩占涛, 等. 采煤塌陷对土壤质量的影响效应及保护技术[J]. 地理与地理信息科学, 2003(03): 67-70.

[45] 赵红梅, 张发旺, 宋亚新, 等. 大柳塔采煤塌陷区土壤含水量的空间变异特征分析[J]. 地球信息科学学报, 2010, 12(06): 753-760.

[46] 李惠娣, 杨琦, 聂振龙, 等. 土壤结构变化对包气带土壤水分参数的影响及环境效应[J]. 水土保持学报, 2002(06): 100-102+106.

[47] 张延旭, 毕银丽, 陈书琳, 等. 半干旱风沙区采煤后裂缝发育对土壤水分的影响[J]. 环境科学与技术, 2015, 38(03): 11-14.

[48] 汤伏全, 贾晓卉, 侯恩科, 等. 黄土覆盖区采动地表裂缝对土壤水分扰动影响的模拟试验研究[J]. 水土保持通报, 2023, 43(06): 40-48.

[49] Chen GJ, Guo JT, Song ZL, et al. Soil water transport and plant water use patterns in subsidence fracture zone due to coal mining using isotopic labeling[J]. Environmental Earth Sciences, 2022, 81(11): 1-8.

[50] 毕银丽, 邹慧, 彭超, 等. 采煤沉陷对沙地土壤水分运移的影响[J]. 煤炭学报, 2014, 39(S2): 490-496.

[51] 张健. 采动地裂缝土壤水分运移规律及伤根微生物修复机理[D]. 北京:中国矿业大学(北京), 2020.

[52] 胡振琪, 陈超. 风沙区井工煤炭开采对土地生态的影响及修复[J]. 矿业科学学报, 2016, 1(02): 120-130.

[53] Xiao W, Zhang WK, Ye YM, et al. Is underground coal mining causing land degradation and significantly damaging ecosystems in semi-arid areas? A study from an Ecological Capital perspective[J]. Land Degradation & Development, 2020, 31(15): 1969-1989.

[54] 王一淑, 张凯, 王顺洁, 等. 采煤扰动下矿区土壤质量时空变化规律研究[J]. 煤炭工程, 2023, 55(02): 134-139.

[55] 王炎强, 毕如田, 张吴平, 等. 黄土丘陵区煤矿开采对土壤理化性质的影响——以晋城市长河流域为例[J]. 中国农学通报, 2017, 33(36): 111-118.

[56] Wu ZY, Cui F, Nie JL. Surface Soil Water Content Before and After Coal Mining and its Influencing Factors—A Case Study of the Daliuta Coal Mine in Shaanxi Province, China[J]. Mine Water and the Environment, 2022, 41(03): 790-801.

[57] 温欣, 尚海丽, 黄显武, 等. 不同沉陷应力区土壤水分和溶质运移的模拟试验[J].干旱区地理, 2023, 46(09): 1481-1492.

[58] Zhang K, Yang K, Wu XT, et al. Effects of Underground Coal Mining on Soil Spatial Water Content Distribution and Plant Growth Type in Northwest China[J]. ACS Omega, 2022, 7(22): 18688-18698.

[59] Huang H, Guo J, Zhang YX. The Response of Arbuscular Mycorrhizal Fungal Communities to the Soil Environment of Underground Mining Subsidence Area in Northwest China[J]. International Journal of Environmental Research and Public Health, 2020, 17(24): 9157.

[60] Vishwakarma AK, Behera T, Rai R, et al. Impact assessment of coal mining induced subsidence on native soil of South Eastern Coal Fields: India[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2020, 06(01): 31-52.

[61] Zhang X, Li F, Li XJ. Evolution of soil quality on a subsidence slope in a coal mining area: a complex network approach[J]. Arabian Journal of Geosciences, 2022, 15(06): 549.

[62] Wu ZY, Xia TX, Nie JL, et al. The shallow strata structure and soil water content in a coal mining subsidence area detected by GPR and borehole data[J]. Environmental Earth Sciences, 2020, 79(22): 500.

[63] 谢鹏宇, 刘泽鑫. 土壤水分测量原理与技术方法研究[J]. 现代农业科技, 2020(23): 166-168.

[64] 郑涵, 王海峰. 土壤水分计量技术的研究进展[J]. 计量科学与技术, 2022, 66(11): 31-36+40.

[65] 周策, 罗光强, 吴陶. FDR型岩土多层含水量监测仪的研究[J]. 探矿工程(岩土钻掘工程), 2020, 47(06): 60-66.

[66] 刘鹏, 姜月华, 杨海, 等. 高盐土壤环境对土壤水分传感器的影响及校正研究[J]. 西北农业学报, 2023, 32(01): 109-116.

[67] 田子晗, 张勇勇, 赵文智, 等. 宇宙射线中子技术的中尺度土壤水研究进展及在荒漠绿洲区的应用[J]. 地球科学进展, 2022, 37(9): 979-990.

[68] 吴琦, 孙雅婷, 王金国. 野外模拟降雨条件下径流产流特征分析[J]. 地下水, 2023, 45(01): 228-230.

[69] 李广才, 李培, 姜春香, 等. 我国城市地球物理勘探方法应用进展[J]. 地球物理学进展, 2023, 38(04): 1799-1814.

[70] 丁瑞, 邓亚平, 钱家忠, 等. 基于电阻率法的充填裂隙-基质中盐热运移试验研究[J]. 水文地质工程地质, 2023, 50(01): 51-59.

[71] Schoener G, Stone MC. Impact of antecedent soil moisture on runoff from a semiarid catchment[J]. Journal of Hydrology, 2019, 569: 627-636.

[72] Wang Y, Zhang X, Liu Y, et al. Impacts and sensitivity analysis of imperviousness area and connectivity on surface runoff under a plot-scale rainfall simulation experiment[J]. JAWRA Journal of the American Water Resources Association, 2022, 58(06): 1279-1292.

[73] Li XY, Long D, Slater LJ, et al. Soil Moisture to Runoff (SM2R): A Data-Driven Model for Runoff Estimation Across Poorly Gauged Asian Water Towers Based on Soil Moisture Dynamics[J]. Water Resources Research, 2023, 59(03): 33597.

[74] Imamovic A, Schlemmer L, Schar C. Collective Impacts of Orography and Soil Moisture on the Soil Moisture-Precipitation Feedback[J]. Geophysical Research Letters, 2017, 44(22): 682-691.

[75] Grzegorz S, Shawan D, Gerald F.M. P, et al. Unique stable isotope signatures of large cyclonic events as a tracer of soil moisture dynamics in the semiarid subtropics[J]. Journal of Hydrology, 2019, 578: 124124.

[76] Jackson TJ, Schmugge TJ, O’Neill P. Passive microwave remote sensing of soil moisture from an aircraft platform[J]. Remote Sensing of Environment, 1984, 14(01): 135-151.

[77] Jackson RD. Soil Moisture Inferences from Thermal-Infrared Measurements of Vegetation Temperatures[J]. IEEE Transactions on Geoscience and Remote Sensing, 1982, 20(03): 282-286.

[78] Amani M, Salehi B, Mahdavi S, et al. Temperature-Vegetation-soil Moisture Dryness Index (TVMDI)[J]. Remote Sensing of Environment, 2017, 197: 1-14.

[79] Amani M, Mobasheri MR, Mahdavi S. Contemporaneous estimation of Leaf Area Index and soil moisture using the red-NIR spectral space[J]. Remote Sensing Letters, 2018, 9(03): 264-273.

[80] Liu Y, Qian JX, Yue H. Comprehensive Evaluation of Sentinel-2 Red Edge and Shortwave-Infrared Bands to Estimate Soil Moisture[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 7448-7465.

[81] Yang GJ, Zhao CJ, Huang WJ, et al. Extension of the Hapke bidirectional reflectance model to retrieve soil water content[J]. Hydrology and Earth System Sciences, 2011, 15(07): 2317-2326.

[82] Yuan J, Wang X, Yan CX, et al. Soil Moisture Retrieval Model for Remote Sensing Using Reflected Hyperspectral Information[J]. Remote Sensing, 2019, 11(03): 366.

[83] Yang MY, Wang HQ, Tong C, et al. Soil Moisture Retrievals Using Multi-Temporal Sentinel-1 Data over Nagqu Region of Tibetan Plateau[J]. Remote Sensing, 2021, 13(10): 1913.

[84] Singh A, Gaurav K, Meena GK, et al. Estimation of Soil Moisture Applying Modified Dubois Model to Sentinel-1; A Regional Study from Central India[J]. Remote Sensing, 2020, 12(14): 2266.

[85] Lei JJ, Yang WN, Yang X. Soil Moisture in a Vegetation-Covered Area Using the Improved Water Cloud Model Based on Remote Sensing[J]. Journal of the Indian Society of Remote Sensing, 2022, 09(50): 1-11.

[86] Song KJ, Zhou XB, Fan Y. Multilayer soil model for improvement of soil moisture estimation using the small perturbation method[J]. Journal of Applied Remote Sensing, 2009, 03(01): 033567.

[87] Kundu S, Pani AK, Khebchareon M. On Kirchhoff’s Model of Parabolic Type[J]. Numerical Functional Analysis and Optimization, 2016, 37(06): 719-752.

[88] Song K, Zhou X, Fan Y. Empirically Adopted IEM for Retrieval of Soil Moisture From Radar Backscattering Coefficients[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(06): 1662-1672.

[89] Zhang M, Lang FK, Zheng NS. Soil Moisture Retrieval during the Wheat Growth Cycle Using SAR and Optical Satellite Data[J]. Water, 2021, 13(02): 135.

[90] 欧阳文宇, 叶磊, 王梦云, 等. 深度学习水文预报研究进展综述Ⅰ——常用模型与建模方法[J]. 南水北调与水利科技(中英文), 2022, 20(04): 650-659.

[91] 伍云阳. 面向对象的GIS水文水资源数据模型设计与实现[J]. 智能城市, 2017, 03(10): 188.

[92] 李维乾, 解建仓, 张永进, 等. 动态贝叶斯网络在水文预报中的应用[J]. 计算机工程与应用, 2010, 46(06): 231-234.

[93] Mohammad SMT, Mohammad EB, Timothy O.R, SWAT-SF: A flexible SWAT-based model for watershed-scale water and soil salinity modeling[J]. Journal of Contaminant Hydrology, 2022, 244: 103893.

[94] Singh J, Knapp HV, Arnold JG, et al. Hydrological Modeling of the Iroquois River Watershed Using Hspf and Swat1[J]. JAWRA Journal of the American Water Resources Association, 2005, 41(02): 343-360.

[95] Thanh DD, Dung TV, A.F.M. KC, et al. A software package for the representation and optimization of water reservoir operations in the VIC hydrologic model[J]. Environmental Modelling & Software, 2020, 126: 104673.

[96] Wang S, Fu BJ, Liu JB. Soil moisture temporal stability analysis for typical hilly and gully re-vegetated catchment in the Loess Plateau, China[J]. Environmental Earth Sciences, 2016, 75(09): 789.

[97] 张勇. 井下采煤的地表水土流失及植被效应研究[D]. 西安: 西安科技大学, 2017.

[98] 江冲亚, 方红亮, 魏珊珊. 地表粗糙度参数化研究综述[J]. 地球科学进展, 2012, 27(03): 292.

[99] Chen S, Zhao K, Jiang T, et al. Predicting Surface Roughness and Moisture of Bare Soils Using Multiband Spectral Reflectance Under Field Conditions[J]. Chinese Geographical Science, 2018, 28(06): 986-997.

[100] Neelam M, Colliander A, Mohanty BP, et al. Multiscale Surface Roughness for Improved Soil Moisture Estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(08): 5264-5276.

[101] Zribi M, Gorrab A, Baghdadi N. A new soil roughness parameter for the modelling of radar backscattering over bare soil[J]. Remote Sensing of Environment, 2014, 152: 62-73.

[102] Zeyliger AM, Muzalevskiy K, Zinchenko E, et al. Field test of the surface soil moisture mapping using Sentinel-1 radar data[J]. Science of the Total Environment, 2022, 807: 151121.

[103] Guo SC, Bai XY, Chen Y, et al. An Improved Approach for Soil Moisture Estimation in Gully Fields of the Loess Plateau Using Sentinel-1A Radar Images[J]. Remote Sensing, 2019, 11(03): 349-361.

[104] Wang HQ, Magagi R, Goita K, et al. Soil moisture retrievals using ALOS2-ScanSAR and MODIS synergy over Tibetan Plateau[J]. Remote Sensing of Environment, 2020, 251: 112100.

[105]Jan Z. The effects of topography on the radar scattering from vegetated areas[J]. IEEE Transcations on Geoscience and Remote Sensing, 1993, 31(1): 153-160.

[106] 王锡刚. 基于水云模型标定的土壤水分反演研究[D]. 吉林: 吉林大学, 2023.

[107] 宋小宁, 马建威, 李小涛, 等. 基于Hyperion高光谱数据的植被冠层含水量反演[J]. 光谱学与光谱分析, 2013, 33(10): 2833-2837.

[108] 刘晓静, 陈国庆, 王良, 等. 不同生育时期冬小麦叶片相对含水量高光谱监测[J]. 麦类作物学报, 2018, 38(07): 854-862.

[109] Tucker CJ. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sensing of Environment, 1979, 08(02): 127-150.

[110] Yilmaz MT, Hunt ER, Jackson TJ. Remote sensing of vegetation water content from equivalent water thickness using satellite imagery[J]. Remote Sensing of Environment, 2008, 112(05): 2514-2522.

[111] Huete A, Didan K, Miura T, et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices[J]. Remote Sensing of Environment, 2002, 83(01): 195-213.

[112] Sims DA, Gamon JA. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages[J]. Remote Sensing of Environment, 2002, 81(02): 337-354.

[113] Brown L, Chen JM, Leblanc SG, et al. A Shortwave Infrared Modification to the Simple Ratio for LAI Retrieval in Boreal Forests: An Image and Model Analysis[J]. Remote Sensing of Environment, 2000, 71(01): 16-25.

[114] Herrmann I, Karnieli A, Bonfil DJ, et al. SWIR-based spectral indices for assessing nitrogen content in potato fields[J]. International Journal of Remote Sensing, 2010, 31(19): 5127-5143.

[115] Ren H, Feng G. Are soil-adjusted vegetation indices better than soil-unadjusted vegetation indices for above-ground green biomass estimation in arid and semi-arid grasslands?[J]. Grass and Forage Science, 2015, 70(04): 611-619.

[116] Gao BC. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space[J]. Remote Sensing of Environment, 1996, 58(03): 257-266.

[117] Xing XG, Ma XY. Analysis of Cracking Potential and Modification of Soil-Water Characteristic Curve by Adding Wheat Residues[J]. Soil Science Society of America Journal, 2019, 83(05): 1299-1308.

[118] Shi JC, Wang J, Hsu AY, et al. Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35: 1254-1266.

[119] Wu TD, Chen KS. A reappraisal of the validity of the IEM model for backscattering from rough surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(04): 743-753.

[120] Fung AK, Chen KS. An update on the IEM surface backscattering model[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 01(02): 75-77.

[121] Yu F, Zhao YS. A new semi-empirical model for soil moisture content retrieval by ASAR and TM data in vegetation-covered areas[J]. Science China Earth Sciences, 2011, 54(12): 1955-1964.

[122] Oh Y, Sarabandi K, Ulaby FT. Semi-empirical model of the ensemble-averaged differential Mueller matrix for microwave backscattering from bare soil surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(06): 1348-1355.

[123] Dubois PC, Van Z, Engman T. Measuring soil moisture with imaging radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33: 915-926.

[124] 张佳华,许云,姚凤梅,等. 植被含水量光学遥感估算方法研究进展[J]. 中国科学:技术科学, 2010, 40(10): 1121-1129.

[125] Wang Q, Jin TY, Li JC, et al. Modeling and Assessment of Vegetation Water Content on Soil Moisture Retrieval via the Synergistic Use of Sentinel-1 and Sentinel-2[J]. Earth and Space Science, 2022, 09(05): 2063.

[126] 赵健赟. 地表植被覆盖度遥感估算及其气候效应研究进展[J]. 测绘与空间地理信息, 2015, 38(08): 77-80+84.

[127] Huang C, Nguyen BD, Zhang SQ, et al. A Comparison of Terrain Indices toward Their Ability in Assisting Surface Water Mapping from Sentinel-1 Data[J]. ISPRS International Journal of Geo-Information, 2017, 06(05): 140.

[128] Sadeghi M, Babaeian E, Tuller M, et al. The optical trapezoid model: A novel approach to remote sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations[J]. Remote Sensing of Environment, 2017, 198: 52-68.

[129] Babaeian E, Homaee M, Montzka C, et al. Towards Retrieving Soil Hydraulic Properties by Hyperspectral Remote Sensing[J]. Vadose Zone Journal, 2015, 14(03): 1480.

[130] Han LR, Wang CM, Liu QY, et al. Soil Moisture Mapping Based on Multi-Source Fusion of Optical, Near-Infrared, Thermal Infrared, and Digital Elevation Model Data via the Bayesian Maximum Entropy Framework[J]. Remote Sensing, 2020, 12(23): 3916.

[131] Lillesand TM, Kiefer RW. Remote sensing and image interpretation[J]. Earth Surface Processes and Landforms, 2001, 26: 1361-1361.

[132] Yu BW, Liu GH, Liu QS, et al. Effects of topographic domain and land use on spatial variability of deep soil moisture in the semi-arid Loess Plateau of China[J]. Hydrology Research, 2019, 50(05): 1281-1292.

[133] 李雯雯. 基于多源监测数据的采煤沉陷区土壤湿度变化研究[D]. 西安: 西安科技大学, 2020.

[134] Gumus V, Avsaroglu Y, Simsek O. Streamflow trends in the Tigris river basin using Mann−Kendall and innovative trend analysis methods[J]. Journal of Earth System Science, 2022, 131(01): 34-46.

[135] Zhen Q, Zheng JY, Zhang XC, et al. Changes of solute transport characteristics in soil profile after mining at an opencast coal mine site on the Loess Plateau, China[J]. Science of the Total Environment, 2019, 665: 142-152.

[136] Hu ZQ, Fu YH, Xiao W, et al. Ecological restoration plan for abandoned underground coal mine site in Eastern China[J]. International Journal of Mining, Reclamation and Environment, 2015, 29(04): 316-330.

[137] Yuan KZ, Ni W, Lu XF, et al. Permeability characteristics and structural evolution of compacted loess under different dry densities and wetting-drying cycles[J]. Plos One, 2021, 16: 1433-1458.

[138] Zhou DW, Wu K, Cheng GL, et al. Mechanism of mining subsidence in coal mining area with thick alluvium soil in China[J]. Arabian Journal of Geosciences, 2015, 08(04): 1855-1867.

[139] 邹慧. 神东风积沙区煤炭开采对土壤水分运移规律的影响[D]. 北京:中国矿业大学, 2015.

[140] Li Y, Liu H, Su LJ, et al. Developmental Features, Influencing Factors, and Formation Mechanism of Underground Mining–Induced Ground Fissure Disasters in China: A Review[J]. International Journal of Environmental Research and Public Health, 2023, 20(04): 3511.

[141] Luo ZB, Ma J, Chen F, et al. Cracks Reinforce the Interactions among Soil Bacterial Communities in the Coal Mining Area of Loess Plateau, China[J]. International Journal of Environmental Research and Public Health, 2019, 16(24): 4892.

[142] Bai L, Wang YJ, Zhang K, et al. Spatial variability of soil moisture in a mining subsidence area of northwest China[J]. International Journal of Coal Science & Technology, 2022, 09(01): 64-81.

[143] Feng M, Liu P, Cai X, et al. Understanding the Resilience of Soil Moisture Regimes[J]. Water Resources Research, 2019, 55(09): 7541-7563.

[144] Liu H, Deng KZ, Zhu XJ, et al. Effects of mining speed on the developmental features of mining-induced ground fissures[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(08): 6297-6309.

[145] Shi BX, Chen SS, Zheng CF, et al. Expansive Soil Crack Depth under Cumulative Damage[J]. The Scientific World Journal, 2014, 10(15): 498437.

[146] Mi J, Ou J, Liu H, et al. The loss of plant species diversity dominated by temperature promotes local productivity in the steppe of eastern Inner Mongolia[J]. Ecological Indicators, 2022, 139: 108953.

[147] Constance A, Oehri J, Bunbury N, et al. Soil nutrient content and water level variation drive mangrove forest aboveground biomass in the lagoonal ecosystem of Aldabra Atoll[J]. Ecological Indicators, 2022, 143: 109292.

[148] Zhan J, He YJ, Zhao GZ, et al. Quantitative Evaluation of the Spatial Variation of Surface Soil Properties in a Typical Alluvial Plain of the Lower Yellow River Using Classical Statistics, Geostatistics and Single Fractal and Multifractal Methods[J]. Applied Sciences, 2020, 10(17): 5796.

[149] Dash SK, Sinha R. Space-time dynamics of soil moisture and groundwater in an agriculture-dominated critical zone observatory (CZO) in the Ganga basin, India[J]. Science of The Total Environment, 2022, 851: 158231.

[150] Zveryaev II, Arkhipkin AV. Interannual variability of soil moisture in the European part of Russia in summer[J]. Russian Meteorology and Hydrology, 2017, 42(03): 198-203.

[151] Jo H, Pyrcz MJ. Automatic Semivariogram Modeling by Convolutional Neural Network[J]. Mathematical Geosciences, 2022, 54(01): 177-205.

[152] A YL, Wang GQ, Liu TX, et al. Vertical variations of soil water and its controlling factors based on the structural equation model in a semi-arid grassland[J]. Science of The Total Environment, 2019, 691: 1016-1026.

[153] Eisenhauer N, Bowker MA, Grace JB, et al. From patterns to causal understanding: Structural equation modeling (SEM) in soil ecology[J]. Pedobiologia, 2015, 58(23): 65-72.

[154] Wang WW, Zhang F, Zhao Q, et al. Determining the main contributing factors to nutrient concentration in rivers in arid northwest China using partial least squares structural equation modeling[J]. Journal of Environmental Management, 2023, 343: 118249.

[155] Taka M, Aalto J, Virkanen J, et al. The direct and indirect effects of watershed land use and soil type on stream water metal concentrations[J]. Water Resources Research, 2016, 52(10): 7711-7725.

[156] Landuyt D, Maes SL, Depauw L, et al. Drivers of above‐ground understorey biomass and nutrient stocks in temperate deciduous forests[J]. Journal of Ecology, 2020, 108(03): 982-997.

[157] Daou L, Shipley B. The measurement and quantification of generalized gradients of soil fertility relevant to plant community ecology[J]. Ecology, 2019, 100(01): 2549.

[158] 范磊, 李永红, 徐斌. 黄土高原沟壑区种植植物和施肥对土壤矿质氮的影响[J]. 水土保持通报, 2018, 38(02): 115-121.

[159] 张丽娜, 李军, 范鹏, 等. 黄土高原典型苹果园地深层土壤氮磷钾养分含量与分布特征[J]. 生态学报, 2013, 33(06): 1907-1915.

[160] Wang SA, Li RP, Wu YJ, et al. Estimation of surface soil moisture by combining a structural equation model and an artificial neural network (SEM-ANN)[J]. Science of The Total Environment, 2023, 876: 162558.

[161] Liu CJ, Zhang F, Jim CY, et al. Controlled and driving mechanism of the SPM variation of shallow Brackish Lakes in arid regions[J]. Science of The Total Environment, 2023, 878: 163127.

[162] Yu HX, Zahidi I. Spatial and temporal variation of vegetation cover in the main mining area of Qibaoshan Town, China: Potential impacts from mining damage, solid waste discharge and land reclamation[J]. Science of The Total Environment, 2023, 859: 160392.

[163] Cao Y, Zhu HF, Bi R, et al. Spatial and temporal characteristics of surface soil moisture in a disturbed coal mining area of Chinese Loess Plateau[J]. Plos One, 2022, 17(05): 265837.

[164] Wang YY, Magliulo V, Yan W, et al. Assessing land surface drying and wetting trends with a normalized soil water index on the Loess Plateau in 2001–2016[J]. Science of the Total Environment, 2019, 676: 120-130.

[165] 宋进喜, 高隽清, 李晓鑫, 等. 近20年来黄土高原蒸散发变化规律及其驱动因素[J]. 西北大学学报(自然科学版), 2024, 53(06): 974-990.

[166] 白晓, 贾小旭, 邵明安, 等. 黄土高原北部土地利用变化对长期土壤水分平衡影响模拟[J]. 水科学进展, 2021, 32(01): 109-119.

[167] 姚雪玲, 傅伯杰. 黄土丘陵沟壑区坡面尺度土壤水分空间变异及影响因子[J]. 生态学报, 2012, 32(16): 4961-4968.

[168] 张琪琳, 王占礼. 黄土高原草地植被对土壤侵蚀影响研究进展[J]. 地球科学进展, 2017, 32(10): 1093.

[169] 王世军, 杨磊, 段兴武, 等. 黄土高原小流域植被恢复的土壤水分和养分权衡效应研究[J]. 土壤通报, 2022, 53(02): 356-365.

[170] Li Y, Nie C, Liu YH, et al. Soil microbial community composition closely associates with specific enzyme activities and soil carbon chemistry in a long-term nitrogen fertilized grassland[J]. Science of The Total Environment, 2019, 654: 264-274.

[171] Zhao ML, Zhao J, Yuan J, et al. Root exudates drive soil-microbe-nutrient feedbacks in response to plant growth[J]. Plant, Cell & Environment, 2021, 44(02): 613-628.

[172] He CC, Lu WY, Zha WH, et al. A geomechanical method for predicting the height of a water-flowing fractured zone in a layered overburden of longwall coal mining[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 143: 104798.

[173] Zhang YX. Effects of subsidence fracture caused by coal-mining on soil moisture content in semi-arid windy desert area.[J]. Environmental Science & Technology (China), 2015, 38(03): 11-14.

[174] He YB, Gao YH, LI XY, et al. Influence of gully erosion on hydraulic properties of black soil-based farmland[J]. Catena, 2023, 232: 107372.

[175] Xu J, Li YF, Wang B, et al. Microstructure and Permeability of Bentonite-Modified Loess after Wetting–Drying Cycles[J]. International Journal of Geomechanics, 2023, 23(05): 04023052.

[176] Duan Z, Li ZY, Wu YB, et al. Mechanical and microscopic properties of soil according to the rate of increase in pore water pressure[J]. Soil and Tillage Research, 2023, 225: 105530.

[177] Li XA, Li LC. Quantification of the pore structures of Malan loess and the effects on loess permeability and environmental significance, Shaanxi Province, China: an experimental study[J]. Environmental Earth Sciences, 2017, 76(15): 523.

[178] Wang HM, Ni WK. Response and prediction of unsaturated permeability of loess to microstructure[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2023, 09(01): 1-18.

[179] Liu W, Lin GC, Su X. Effects of pre-dynamic loading on hydraulic properties and microstructure of undisturbed loess[J]. Journal of Hydrology, 2023, 622: 129690.

[180] Nie YP, Ni WK, Li XN, et al. The Influence of Drying-Wetting Cycles on the Suction Stress of Compacted Loess and the Associated Microscopic Mechanism[J]. Water, 2021, 13(13): 1809.

[181] Wang HM, Ni WK, Yuan KZ. Prediction method of soil–water characteristic curve and suction stress characteristic curve based on void ratio: a case study of Yan’an compacted loess[J]. Environmental Earth Sciences, 2023, 82(11): 272.

[182] 周卓丽, 张卓栋, 高晓飞, 等. 离心机与压力板仪测定土壤水分特征曲线比较[J]. 中国水土保持科学(中英文), 2022, 20(04): 101-108.

[183] 刘禹含, 张成福, 贺帅, 等. HYDRUS模型研究进展[J]. 绿色科技, 2022, 24(16): 61-66.

[184] 谢晓深. 宁东煤炭基地采煤地表裂缝形成机理及评价预测方法研究[D]. 西安:西安科技大学, 2022.

[185] 刘辉, 邓喀中, 雷少刚, 等. 采动地裂缝动态发育规律及治理标准探讨[J]. 采矿与安全工程学报, 2017, 34(05): 884-890.

[186] Bai EH, Guo WB, Tan Y. Negative externalities of high-intensity mining and disaster prevention technology in China[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(07): 5219-5235.

[187] 王策, 张展羽, 陈晓安, 等. 基于水量平衡原理的裂隙优先流双域渗透模型及其应用[J]. 农业机械学报, 2021, 52(10): 314-326+348.

[188] 毕银丽, 伍越, 张健, 等. 采用HYDRUS模拟采煤沉陷地裂缝区土壤水盐运移规律[J]. 煤炭学报, 2020, 45(01): 360-367.

[189] 张旭阳, 刘英, 龙林丽, 等. 干旱半干旱区采煤沉陷引起的土壤水分变化及其对植物生理生态潜在影响分析综述[J]. 浙江大学学报(农业与生命科学版), 2022, 48(04): 415-425.

[190] Qian KM, Wang LP, Yin NN. Effects of AMF on soil enzyme activity and carbon sequestration capacity in reclaimed mine soil[J]. International Journal of Mining Science and Technology, 2012, 22(04): 553-557.

[191] 毕银丽, 武超, 彭苏萍, 等. 西部煤矿区微生物修复促进植物水分高效利用策略[J]. 煤炭学报, 2024, 49(02): 1003-1010.

中图分类号:

 P237    

开放日期:

 2024-07-02    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式