- 无标题文档
查看论文信息

题名:

 改性煤气化渣基充填材料硬化机理与承载特性研究    

作者:

 杨潘    

学号:

 21103077020    

保密级别:

 保密(2年后开放)    

语种:

 chi    

学科代码:

 0819    

学科:

 工学 - 矿业工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2024    

学校:

 西安科技大学    

院系:

 能源学院    

专业:

 矿业工程    

研究方向:

 固废处置与充填开采    

导师姓名:

 刘浪    

导师单位:

 西安科技大学    

第二导师姓名:

 索永录    

提交日期:

 2025-01-08    

答辩日期:

 2024-12-05    

外文题名:

 Study on the hardening mechanism and bearing characteristics of modified coal gasification slag based backfill materials    

关键词:

 煤气化渣 ; 胶凝材料 ; 水化反应动力学 ; 微观结构 ; 承载特性    

外文关键词:

 Coal gasification slag ; Cementitious materials; Hydration reaction kinetics; Microstructural; Bearing characteristics    

摘要:

随着全球能源需求的增长,煤炭的高效清洁利用变得至关重要。煤气化技术通过将煤炭转化为合成气来生产电力、化工原料和燃料油,但同时产生大量含硅、铝、铁、钙的固体废弃物——煤气化渣。若不加以处理,这些渣料会占用土地并对环境造成潜在危害。通过改性和加工,煤气化渣可作为胶凝材料或骨料,用于制备充填材料和混凝土等功能材料加以利用,降低传统材料生产成本。因此,研究煤气化渣的资源化利用具有科学价值和战略意义。

本文针对陕北榆林地区煤气化渣的资源化利用需求,利用改性镁渣和脱硫石膏激发煤气化细渣的反应活性,开发了一种绿色低碳的改性煤气化渣基胶凝材料(MCC)。同时,以煤气化粗渣为骨料,研制了一种高性低价的改性煤气化渣基充填材料(MCB)。通过室内试验、理论分析和现场试验,明确了煤气化渣的水化活性来源及其改性原理,揭示了MCC的水化硬化机制,研究了MCB中骨料与硬化浆体的相互作用和协同承载特性,成功制备出适用于矿山充填和场地硬化的高性能材料。主要开展了以下工作:

(1) 通过BET、FT-IR和XRD等表征手段,对比分析了煤气化细渣和粗渣的粒度分布、化学成分、物相组成、孔隙特征、化学基团和元素化学状态等物化特性。研究了细渣和粗渣中残炭和硅铝酸盐的化学形态和占比,并分析了其在氢氟酸中的Ca、Si和Al的溶出特性差异,量化了其火山灰反应活性。结果表明,煤气化渣的水化活性主要来自低聚合度的硅铝酸盐,粗渣的聚合度高于细渣,且其粒径大比表面积小,不利于火山灰反应,导致其活性指数远低于细渣(约低20%),且二者均未达到活性指数不低于60%的标准要求,无法直接作为胶凝材料使用。

(2) 针对煤气化细渣活性低的问题,利用当地改性镁渣和脱硫石膏,开展盐碱复合激发的活化改性研究。通过模拟改性镁渣中CaO和MgO形成的碱性环境,与脱硫石膏配置不同组分溶液,研究煤气化细渣中Si和Al的溶出规律,建立了溶出动力学模型,揭示了其在盐-碱激发剂作用下的溶解聚合机制。结果表明,改性镁渣中的CaO和MgO与脱硫石膏中的CaSO4ꞏ2H2O与煤气化渣的硅铝酸盐具有化学成分互补优势。改性镁渣和脱硫石膏的单一激发效果弱于二者的复合激发,复合激发的活性指数提升了38%。

(3) 通过热力学分析,明确了MCC水化反应是一个放热过程,并利用放热特性划分了水化阶段,揭示了固废种类和掺量对各反应阶段的影响。基于水化动力学,研究了MCC的水化机理,量化了晶体几何生长指数(n)和反应动力学常数(K)。采用XRD、SEM和MIP等表征了MCC硬化体的水化产物种类和生成量,揭示了其孔隙结构的演化规律。利用单纯形质心法研究了MCC凝结时间和强度的演变,揭示了MCC从矿物相溶解到水化反应再到浆体硬化的水化硬化机制。结果表明,改性镁渣、脱硫石膏和煤气化细渣中的β-C2S,CaO,MgO、CaSO4ꞏ2H2O和硅铝酸盐溶解并发生水化反应,生成C-S(A)-H和AFt等水化产物,优化了孔隙分布,提高了MCC基质密实度和强度。

(4) 研究了固废种类和掺量对MCB强度的影响,建立了固废掺量与强度的多项式函数关系。揭示了MCB中骨料、界面过渡区(ITZ)和硬化浆体的微力学差异,量化了各相的显微硬度和压痕模量,明确了固废种类和掺量对ITZ微观结构、化学元素组成和形貌的影响。研究了MCB的孔隙分布特征,建立了微观孔隙、显微硬度和强度的关联关系,揭示了骨料与浆体间的作用机制。结果表明,28天MCB的抗压强度高达22.00 MPa,骨料、硬化浆体和ITZ的显微硬度分别为7.58∼9.61 GPa、0.29∼0.62 GPa 和0.07∼0.33 GPa,ITZ范围为15∼35 μm。MCB中骨料与硬化浆体存在无互动、弱互动、强互动和聚合四种作用关系,通过机械咬合、摩擦力和化学作用增强了其粘结作用。

(5) 通过单轴压缩试验,结合声发射和数值散斑技术,系统研究了不同固废种类和掺量对MCB 力学参数、应力-应变曲线、裂纹萌生与扩展规律及破坏模式的影响。结果表明,MCB 的弹性模量受固废种类和掺量影响,变化范围为88.2∼1408.2 MPa,与固废掺量呈三次函数关系。随脱硫石膏掺量增加,裂纹扩展数量先增后减,破坏形态由“X型”转为“Y 型”,再转为“II型”。随改性镁渣和煤气化细渣掺量增加,裂纹扩展数量增多,破坏形态由“X型”转为“II型”,再转为“Y型”。MCB的破坏模式主要包括拉伸、剪切及拉剪组合破坏,其中拉伸信号占主导地位,比例为52.1%∼68.4%。

(6) 采用响应面法(RSM)分析了不同材料组分对MCB抗压强度和流动性的影响及其显著性,揭示了各因素的相互作用。以流动性、强度和浸出毒性为约束条件,最小成本和最大强度为多目标函数,利用鲸鱼优化算法(WOA)进行多目标配比优化设计。将优化后的MCB应用于场地硬化工程,并进行工程示范,验证其强度和环境性能。结果表明:利用RSM-WOA多目标优化技术,提升了MCB性能,有效降低了生产成本,其设计的MCB在强度、流动性和浸出毒性方面均满足矿山充填和场地硬化的需求。

外文摘要:

With the growth of global energy demand, the efficient and clean utilization of coal has become crucial. Coal gasification technology converts coal into synthetic gas to produce electricity, chemical raw materials, and fuel oil, but at the same time generates a large amount of solid waste (CGS) containing silicon, aluminum, iron, and calcium. If left untreated, these slags occupy land and are potentially harmful to the environment. Through modification and processing, gasification slag can be used as cementitious materials or aggregates for the preparation of backfill materials and functional materials such as concrete, reducing the production cost of traditional materials. Therefore, studying the resource utilization of coal gasification slag has scientific value and strategic significance.

In this paper, for the demand of resource utilization of coal gasification slag in Yulin area of northern Shaanxi, a green and low-carbon modified coal gasification slag-based cementitious material (MCC) was developed by using modified magnesium slag and desulfurization gypsum to stimulate the reactivity of coal gasification fine slag. Meanwhile, a cost-effective modified coal gasification slag-based backfill material (MCB) was prepared using coal gasification coarse slag as aggregate. Through indoor tests, theoretical analyses and field tests, the source of hydration activity of coal gasification slag and its modification principle were clarified, and the hydration-hardening mechanism of MCC and the interaction and synergistic load-bearing characteristics of aggregate and hardened slurry in MCB were explored, so that high-performance materials suitable for mine backfill and site hardening have been successfully prepared. The following work was mainly carried out:

(1) The physical and chemical properties such as particle size distribution, chemical composition, physical phase composition, pore characteristics, chemical groups and elemental chemical states of coal gasification fine slag and coarse slag were comparatively analyzed by means of BET, FT-IR and XRD characterization. The study reveals the chemical morphology and proportion of residual carbon and silica-aluminate in the fine and coarse slags, and analyzes the differences in the dissolution characteristics of Ca, Si and Al in HF, and quantifies their pozzolanic reactivity. The results show that the hydration activity of coal gasification slag mainly comes from silica-aluminate with low polymerization degree, and the polymerization degree of coarse slag is higher than that of fine slag, but coarse slag has a large particle size and small specific surface area, which is not conducive to the pozzolanic reaction, resulting in an activity index much lower than that of fine slag (about 20% lower), and both of them do not reach the 60% activity index required by the standard, and therefore cannot be used for cementitious materials directly.

(2) Aiming at the problem of low activity of coal gasification slag, the activation and modification research of saline and alkaline composite excitation was carried out by using local modified magnesium slag and desulfurization gypsum solid waste. By simulating the alkaline environment formed by CaO and MgO in the modified magnesium slag and configuring different component solutions with desulfurization gypsum, the dissolution law of Si and Al in the coal gasification fine slag was studied, and a dissolution kinetic model was established to reveal its dissolution and polymerization mechanism under the action of salt-alkali exciters. The results show that CaO and MgO in modified magnesium slag and sulfate (CaSO4ꞏ2H2O) in desulfurization gypsum have complementary advantages with silica-aluminate in coal gasification slag. The single excitation of modified magnesium slag and desulfurization gypsum was weaker than the composite excitation of the two, and the activity index of the composite excitation was enhanced by 38%.

(3) Through thermodynamic analysis, it was clarified that the hydration reaction of MCC was an exothermic process, and the exothermic properties were used to divide the hydration stages, revealing the effects of solid waste types and dosage on each reaction stage. Based on the hydration kinetic model, the hydration mechanism of MCC was investigated, and the crystal geometric growth index (n) and reaction kinetic constant (K) were quantified. XRD, SEM and MIP were used to characterize the hydration product types and production of MCC hardeners, revealing the evolution of their pore structure. The evolution of MCC condensation time and strength was investigated using the simplex centroid method, revealing the hydration-hardening mechanism of MCC from mineral phase dissolution to hydration reaction to slurry hardening. The results showed that β-C2S, CaO, MgO, CaSO4ꞏ2H2O and silica-aluminate in modified magnesium slag, desulfurization gypsum and coal gasification fine slag were dissolved and underwent hydration reactions to produce hydration products such as C-S(A)-H and AFt, which optimized the pore distribution and improved the MCC matrix compactness and strength.

(4) The effects of solid waste types and dosage on the strength of MCB were investigated, and a polynomial functional relationship between solid waste dosage and strength was established. The micromechanical differences of aggregate, interfacial transition zone (ITZ) and slurry in MCB were revealed, the microhardness and indentation modulus of each phase were quantified, and the effects of solid waste types and dosing on the microstructure, chemical element composition and morphology of ITZ were clarified. The pore distribution characteristics of MCB were investigated, and the correlation relationship between microscopic pores, micro-hardness and strength was established, revealing the mechanism of interaction between aggregate and slurry. The results show that the compressive strength of MCB reaches 22.00 MPa, and the micro-hardnesses of aggregate, hardened slurry and ITZ are 7.58∼9.61 GPa, 0.20∼0.53 GPa, and 0.07∼0.33 GPa, with the ITZ ranging from 15∼35 μm. There are four kinds of interaction relationships between aggregate and hardened slurry in MCB, namely no interaction, weak interaction, strong interaction and polymerization, which enhances their bonding through mechanical occlusion, friction and chemical action.

(5) In this study, the effects of different solid waste types and dosages on the mechanical parameters, stress-strain curves, crack initiation and extension patterns, and damage modes of MCB were systematically investigated by means of uniaxial compression tests, combined with acoustic emission and numerical scattering techniques. The results showed that the modulus of elasticity of MCB was affected by the type and dosage of solid waste, with the variation range from 88.2 to 1408.2 MPa, and the relationship with the dosage of solid waste was a cubic function. With the increase of desulfurization gypsum dosage, the number of crack extension increases and then decreases, and the damage pattern changes from“X-type”to“Y-type”and then to “II-type”. With the increase of modified magnesium slag and coal gasification slag, the number of crack extension increases, and the damage pattern changes from “X-type”to “II-type”and then to “Y-type”.Damage modes of MCB The damage modes of MCB mainly include tensile, shear and combined tensile-shear damage, in which the tensile signal dominates, with a proportion of 52.1%∼68.4%.

(6) Response surface methodology (RSM) was used to analyze the effects of different material components on the compressive strength and flowability of MCB and their significance, revealing the interaction of the factors. With fluidity, strength and leaching toxicity as constraints, and minimum cost and maximum strength as multi-objective functions, a multi-objective proportioning optimization design was carried out using the Whale Optimization Algorithm (WOA). The optimized MCB was applied to the flooring project and engineering demonstration was conducted to verify its strength and environmental performance. The results show that the use of RSM-WOA multi-objective optimization technology improves the performance of MCB and effectively reduces the production cost, and its designed MCB meets the needs of mine backfill and site hardening in terms of strength, fluidity and leaching toxicity.

参考文献:

[1] 卫月星, 贺子岳, 燕可洲, 等. 改性煤气化渣催化降解双酚 A 的性能研究 [J]. 化工学报: 1–20.

[2] Yin S, Shao Y, Wu A, et al. A Systematic Review of Paste Technology in Metal Mines for Cleaner Production in China [J]. Journal of Cleaner Production, 2020, 247: 119590.

[3] 袁亮, 姜耀东, 王凯, 等. 我国关闭/废弃矿井资源精准开发利用的科学思考 [J]. 煤炭学报, 2018, 43 (01): 14–20.

[4] 刘建功, 李新旺, 何团. 我国煤矿充填开采应用现状与发展[J]. 煤炭学报, 2020, 45 (01): 141–150.

[5] 赵江, 王云康, 王建友, 等. 榆林市工业固体废弃物现状与应用进展 [J]. 工业催化, 2022, 30 (3): 1–7.

[6] 刘浪, 阮仕山, 方治余, 等. 镁渣的改性及其在矿山充填领域的应用探索 [J]. 煤炭学报, 2021: 1–15.

[7] 张丽宏, 金要茹, 程芳琴. 煤气化渣资源化利用 [J]. 化工进展: 1–13.

[8] 刘艳丽, 李强, 陈占飞, 等. 煤气化渣特性分析及综合利用研究进展 [J]. 煤炭科学技术, 2022, 50 (11): 251–257.

[9] 刘艳丽, 李强, 陈占飞, 等. 煤气化渣特性分析、研究进展与展望 [J]. 煤炭科学技术, 2021: 1–9.

[10] Yang Q, Qi X, Lyu Q, et al. Physicochemical Properties of Coal Gasification Fly Ash from Circulating Fluidized Bed Gasifier [J]. Journal of Thermal Science, 2023.

[11] 高旭霞, 郭晓镭, 龚欣. 气流床煤气化渣的特征[J]. 华东理工大学学报(自然科学版), 2009, 35 (5): 677–683.

[12] 李健, 徐向平, 张生, 等. GE水煤浆气化工艺煤气化渣的特性研究[J]. 煤化工, 2022, 50 (5): 74–78.

[13] Yan S, Xuan W, Cao C, et al. A Review of Sustainable Utilization and Prospect of Coal Gasification Slag [J]. Environmental Research, 2023, 238: 117186.

[14] Saini R, Barma S D, Rao D S, et al. Applied Mineralogical Investigation on Coal Gasification Ash [J]. Waste Management, 2023, 167: 1–12.

[15] 于伟, 刘莉君, 高博, 等. 基于氮气吸附-核磁共振分析的煤气化细渣孔隙结构特征 [J]. 燃料化学学报, 2022, 50 (8): 966–973.

[16] 郭凯, 王嘉琪, 李亚男, 等. 煤气化渣活化过硫酸盐体系氧化去除菲 [J]. 精细化工: 1–13.

[17] Guo F, Guo Y, Chen L, et al. Multitudinous Components Recovery, Heavy Metals Evolution and Environmental Impact of Coal Gasification Slag: A Review [J]. Chemosphere, 2023, 338: 139473.

[18] 李宇, 王建敏, 张弦, 等. 高附加值煤气化渣基材料开发研究进展 [J]. 材料导报, 2023 (23): 1–21.

[19] Xie K. Reviews of Clean Coal Conversion Technology in China: Situations & Challenges [J]. Chinese Journal of Chemical Engineering, 2021.

[20] Qu J, Zhang J, Li H, et al. A High Value Utilization Process for Coal Gasification Slag: Preparation of High Modulus Sodium Silicate by Mechano-Chemical Synergistic Activation [J]. Science of The Total Environment, 2021, 801: 149761.

[21] 徐颖, 姚鑫毅, 宋永红, 等.煤气化渣改性工艺及吸附Cd~(2+) 性能[J]. 过程工程学报, 2023: 1–11.

[22] Du M, Liu H, Hu D, et al. The Leaching Mechanism of Heavy Metals (Ni, Cd, As) in a Gasification Slag during Acidification [J]. Waste Management, 2020, 114: 17–24.

[23] Liu L, Fang Z, Qi C, et al. Experimental Investigation on the Relationship between Pore Characteristics and Unconfined Compressive Strength of Cemented Paste Backfill [J]. Construction and Building Materials, 2018, 179: 254–264.

[24] Pomykała R. The Mechanical Properties of Coal Gasification Slag as a Component of Concrete and Binding Mixtures [J]. Polish Journal of Environmental Studies, 2014, 23 (4): 1403–1406.

[25] Acosta A, Iglesias I, Aineto M, et al. Utilisation of IGCC Slag and Clay Steriles in Soft Mud Bricks (by Pressing) for Use in Building Bricks Manufacturing. [J]. Waste management, 2002, 22 (8): 887–891.

[26] 张一昕, 郭旸, 王如梦, 等. 宁东煤气化细渣及其碳灰分离产物物理化学性质[J]. 煤炭学报, 2021, 46 (S2): 1096–1104.

[27] Zhu D, Xue B, Jiang Y, et al. Using Chemical Experiments and Plant Uptake to Prove the Feasibility and Stability of Coal Gasification Fine Slag as Silicon Fertilizer [J]. Environmental Science and Pollution Research, 2019, 26 (6): 5925–5933.

[28] 田巧艳, 亢福仁, 张凯煜, 等. 煤基固废生态化利用研究进展 [J]. 榆林学院学报, 2021, 31 (6): 57–62.

[29] Guo F, Zhao X, Guo Y, et al. Fractal Analysis and Pore Structure of Gasification Fine Slag and Its Flotation Residual Carbon [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585: 124148.

[30] 史达, 张建波, 杨晨年, 等. 煤气化灰渣脱碳技术研究进展 [J]. 洁净煤技术, 2020, 26 (6): 1–10.

[31] 冯向港, 葛奋飞, 张印民, 等. 煤气化渣高值化利用的研究进展及应用展望[J]. 洁净煤技术, 2023: 1–11.

[32] 李梦杰, 李鹏, 范桂侠. 煤气化渣的高值化利用研究进展 [J]. 煤化工, 2023, 51 (1): 47–53.

[33] 刘冬雪, 胡俊阳, 冯启明, 等. 煤气化炉渣浮选及其精炭制备活性炭的研究 [J]. 煤炭转化, 2018, 41 (5): 73–80.

[34] Wang W, Liu D, Tu Y, et al. Enrichment of Residual Carbon in Entrained-Flow Gasification Coal Fine Slag by Ultrasonic Flotation [J]. Fuel, 2020, 278: 118195.

[35] Xu S, Zhou Z, Gao X, et al. The Gasification Reactivity of Unburned Carbon Present in Gasification Slag from Entrained-Flow Gasifier [J]. Fuel Processing Technology, 2009, 90 (9).

[36] Wu S, Huang S, Ji L, et al. Structure Characteristics and Gasification Activity of Residual Carbon from Entrained-Flow Coal Gasification Slag [J]. Fuel, 2014, 122: 67–75.

[37] 晁岳建, 王洪记. 循环流化床锅炉掺烧气化渣和煤泥的可行性研究[J]. 化肥工业, 2015, 42 (3): 48–50.

[38] Zhu D, Miao S, Xue B, et al. Effect of Coal Gasification Fine Slag on the Physicochemical Properties of Soil [J]. Water, Air, & Soil Pollution, 2019, 230 (7): 155.

[39] 姚阳阳. 煤气化粗渣制备活性炭/沸石复合吸附材料及其性能研究[D]. 吉林: 吉林大学, 2018.

[40] 徐怡婷, 柴晓利. 铁负载煤气化渣基活性炭非均相Fenton体系降解甲基橙染料废水的工艺优化及其机理研究 [J]. 山东化工, 2016, 45 (22): 159–164.

[41] 凌琪, 孙冰香, 伍昌年, 等. 投加气化渣对 DMBR 处理印染废水效果及污泥性能的影响 [J]. 应用化工, 2016, 45 (9): 1629–1632.

[42] 凌琪, 李尚尚, 伍昌年, 等. 投加气化渣对 DMBR 处理造纸废水污泥性能及膜污染的影响 [J]. 阜阳师范学院学报 (自然科学版), 2018, 35 (2): 15–20.

[43] 尹洪峰, 汤云, 任耘, 等. 气化炉渣合成 Ca-α-Sialon–SiC 复相陶瓷 [J]. 硅酸盐学报, 2011, 39 (2): 233–238.

[44] 赵永彬, 吴海骏, 张学斌, 等. 煤气化残渣基多孔陶瓷的制备研究 [J]. 洁净煤技术, 2016, 22 (5): 7–11.

[45] Liu S, Wei J, Chen X, et al. Low-Cost Route for Preparing Carbon–Silica Composite Mesoporous Material from Coal Gasification Slag: Synthesis, Characterization and Application in Purifying Dye Wastewater [J]. Arabian Journal for Science and Engineering, 2020, 45 (6): 4647–4657.

[46] Teoh F, Veksha A, Chia V W, et al. Nickel-Based Catalysts for Steam Reforming of Naphthalene Utilizing Gasification Slag from Municipal Solid Waste as a Support [J]. Fuel, 2019, 254: 115561.

[47] Han F, Gao Y, Huo Q, et al. Characteristics of Vanadium-Based Coal Gasification Slag and the NH3-Selective Catalytic Reduction of NO [J]. Catalysts, 2018, 8 (8).

[48] Aineto M, Acosta A, Rincón J M, et al. Production of Lightweight Aggregates from Coal Gasification Fly Ash and Slag [J].

[49] 冯银平, 尹洪峰, 袁蝴蝶, 等. 利用气化炉渣制备轻质隔热墙体材料的研究 P [J]. 硅酸盐通报, 2014, 33 (03): 497–501+510.

[50] 云正, 于鹏超, 尹洪峰. 气化炉渣对铁尾矿烧结墙体材料性能的影响 [J]. 金属矿山, 2010 (11): 4.

[51] Bland C H, Sharp J H. A Conduction Calorimetric Study of Gasifier Slag-Portland Cement Blends [J]. Cement and Concrete Research, 1991, 21 (2): 359–367.

[52] 屈慧升, 索永录, 刘浪, 等. 改性煤气化渣基矿用充填材料制备与性能研究 [J]. 煤炭学报, 2021: 1–17.

[53] Han Y, Qi W, Pang H, et al. A Novel Coal Gasification Coarse Slag-Based Geopolymer: Influences of Physico-Chemical Coupling Activation on Its Properties, Microstructure, and Hazardous Material Immobilization [J]. Construction and Building Materials, 2024, 420: 135591.

[54] 窦占双, 魏力, 王梦梦, 等. 煤气化渣替代矿渣制备超硫酸盐水泥的可行性研究 [J]. 硅酸盐通报, 2024, 43 (8): 2952–2960.

[55] 孙佳雪, 林宗祥, 郭卓越, 等. 煤气化渣性能和应用研究进展 [J]. 砖瓦, 2024 (8): 29–32.

[56] Wu F, Li H, Yang K. Effects of Mechanical Activation on Physical and Chemical Characteristics of Coal-Gasification Slag [J]. Coatings, 2021, 11 (8): 902.

[57] Zhu M, Xie G, Liu L, et al. Influence of Mechanical Grinding on Particle Characteristics of Coal Gasification Slag [J]. Materials, 2022, 15 (17): 6033.

[58] Wu F, Li H. Effects of High Salinity Wastewater on the Properties of Coal Gasification Residue-Based Cementitious Material [J]. Thermal Science, 2021, 25 (6 Part A): 4161–4169.

[59] Hirato M, Ninomiya Y, Obara T. Fundamental studies on the cement material of coal gasification slag with limestone additive [J]. Nippon Enerugi Gakkaishi (Journal of the Japan Institute of Energy);(Japan), 1992, 71:779.

[60] Cho H-S, Kim M-H, Lee G-C, et al. Effect of Gypsum Mixture on Activation of Coal Gasification Slag [C]. In Proceedings of the Korean Institute of Building Construction Conference, 2019: 17–18.

[61] 郭照恒, 杨文, 祝小靓, 等. 不同比表面积煤气化渣掺合料活性及力学性能研究 [J]. 硅酸盐通报, 2020, 39 (11): 3567–3573+3588.

[62] Li K, Teng Y, Wang K, et al. Mechanical Activation of Coal Gasification Fine Slag and Mechanical and Thermal Properties of Coal Gasification Fine Slag 鈥損oly(Vinyl Chloride) Composites [J], 2023.

[63] 吴平川, 刘治兵, 黄天勇, 等. 煤气化渣胶凝活性激发及机理研究进展 [J]. 材料导报: 1–19.

[64] Palomo A, Pavel K, García-Lodeiro I, et al. A Review on Alkaline Activation: New Analytical Per-spectives [J]. Materiales De Construccion, 2014, 64: 022.

[65] Sun B, Ye G, Schutter G D. A Review: Reaction Mechanism and Strength of Slag and Fly Ash-Based Alkali-Activated Materials [J]. Construction and Building Materials, 2022, 326: 126843.

[66] 席雅允, 沈玉, 刘娟红, 等. 化学激发对煤气化渣-水泥体系抗压强度影响机理研究 [J]. 材料导报, 2021 (S2 vo 35): 262–267+274.

[67] 孙雅娟, 段思宇, 张宏, 等. 化学外加剂对固废基胶凝材料性能及水化行为的影响 [J]. 化工进展: 1–15.

[68] 刘娟红, 许鹏玉, 周昱程, 等. 改性煤气化渣用于矿山充填的试验研究 [J]. 硅酸盐通报, 2020, 39 (08): 2528–2535.

[69] He S, Li T, Shen T, et al. Preparation and Performance of Multi-Ionic Composite Coagulants Based on Coal Gasification Coarse Slag by One-Step Acid Leaching [J]. Process Safety and Environmental Protection, 2023, 173: 249–262.

[70] Du M, Huang J, Liu Z, et al. Reaction Characteristics and Evolution of Constituents and Structure of a Gasification Slag during Acid Treatment [J]. Fuel, 2018, 224: 178–185.

[71] Wang Y S, Dai J G, Ding Z, et al. Phosphate-Based Geopolymer: Formation Mechanism and Thermal Stability [J]. Materials Letters, 2017, 190 (MAR.1): 209–212.

[72] Deguang C, Dageng S U, Bo L U, et al. Synthesis and Structure Characterization of Geopolymeric Material Based on Metakaolinite and Phosphoric Acid [J]. Journal of The Chinese Ceramic Society, 2005, 33 (11): 1385–1389.

[73] Fu J, Jones A M, Bligh M W, et al. Mechanisms of Enhancement in Early Hydration by Sodium Sulfate in a Slag-Cement Blend – Insights from Pore Solution Chemistry [J]. Cement and Concrete Research, 2020, 135: 106110.

[74] Yang P, Suo Y, Liu L, et al. Study on the Curing Mechanism of Cemented Backfill Materials Prepared from Sodium Sulfate Modified Coal Gasification Slag [J]. Journal of Building Engineering, 2022, 62: 105318.

[75] Yang P, Liu L, Suo Y, et al. Investigating the Synergistic Effects of Magnesia-Coal Slag Based Solid Waste Cementitious Materials and Its Basic Characteristics as a Backfill Material [J]. Science of The Total Environment, 2023: 163209.

[76] Yang P, Liu L, Suo Y, et al. Basic Characteristics of Magnesium-Coal Slag Solid Waste Backfill Material: Part I. Preliminary Study on Flow, Mechanics, Hydration and Leaching Characteristics [J]. Journal of Environmental Management, 2023, 329: 117016.

[77] Yang P, Liu L, Suo Y, et al. Mechanical Properties, Pore Characteristics and Microstructure of Modified Magnesium Slag Cemented Coal-Based Solid Waste Backfill Materials: Affected by Fly Ash Addition and Curing Temperature [J]. Process Safety and Environmental Protection, 2023, 176: 1007–1020.

[78] Zhu Z, Lian X, Zhai X, et al. Mechanical Properties of Ultra-High Performance Concrete with Coal Gasification Coarse Slag as River Sand Replacement [J]. Materials, 2022, 15 (21): 7552.

[79] Tian Y, Wang Y, Chai H, et al. Study on the Properties and Interfacial Transition Zone of Coal Gasification Slag Aggregate and Mineral Powder Geopolymer Mortar [J]. Construction and Building Materials, 2024, 414: 134864.

[80] Choudhry V, Kwan S, Hadley S R. Utilization of Lightweight Materials Made from Coal Gasification Slags [R]. 2001.

[81] Groppo J G, Rathbone R. Environmentally Safe, Large Volume Utilization Applications for Gasification Byproducts [R]. 2008.

[82] Kangkang W, Songhui L, Meng X, et al. Activation and Application of Wet Shotcrete Concrete with Coal Gasification Slag Aggregate [J]. Journal of Physics: Conference Series, 2023, 2445 (1): 012006.

[83] 刘开平, 赵红艳, 李祖仲, 等. 煤气化渣对水泥混凝土性能的影响[J]. 建筑科学与工程学报, 2017, 34 (05): 190–195.

[84] 刘亚娟, 楚京军, 李茂辉, 等. 气化渣配制混凝土的性能研究 [J]. 混凝土世界, 2024 (8): 32–35.

[85] Li H, Chen H, Nie Q, et al. Bond-Slip Constitutive Relationship between Steel Rebar and Concrete Synthesized from Solid Waste Coal Gasification Slag [J]. Buildings, 2024, 14 (9): 2931.

[86] 马世申. 粉煤灰-赤泥-气化渣复合胶凝体系力学性能研究 [D]. 太原: 山西大学, 2021.

[87] 许云龙, 周长俊, 刘晓敏, 等.路用煤气化渣混凝土的制备与微观结构[J]. 煤炭学报, 2024, 49 (S1): 424–433.

[88] Liu Y, Yuan N, Wang S, et al. Evaluation of the Applicability of Gasification Coarse Slag as a Fine Aggregate in Controlled Low-Strength Material: Preparation, Performance, and Environmental Effect [J]. Environmental Science and Pollution Research, 2024, 31 (10): 14927–14937.

[89] Park S-W, Han J-H, Han M-C. Reducing Hydration Heat of Mass Concrete by Applying Combination of Powdered Materials and CGS as Fine Aggregate [J]. Journal of the Korea Institute of Building Construction, 2024, 24 (2): 169–180.

[90] Han M-C, Kim J, Choi I-K, et al. Reduction of Hydration Heat of Mass Concrete Using Coal Gasification Slag as Mixed Fine Aggregates [J]. Journal of the Korea Institute of Building Construction, 2021, 21 (6): 551–562.

[91] Han M-C, Choi I-K. A Study on the Fundamental and Heat of Hydration Properties of Fly Ash Replacement Concrete Mixed with Coal Gasification Slag for Fine Aggregate [J]. Journal of the Architectural Institute of Korea Structure & Construction, 2020, 36 (1): 155–162.

[92] Park K-T, Han M-C, Hyun S-Y. Analysis the Use of Concrete Fine Aggregates of Coal Gasification Slag [J]. Journal of the Korean Recycled Construction Resources Institute, 2019, 7 (2): 101–108.

[93] Park K-T, Han M-C, Hyun S-Y. Engineering Properties of Concrete Using of Coal Gasification Slag as the Fine Aggregates [J]. Journal of the Korean Recycled Construction Resources Institute, 2019, 7 (3): 194–201.

[94] Park K-T, Han M-C, Hyun S-Y. Foundation Properties of Cement Mortar in the Use of Fine Aggregate of Coal Gasification Slag [J]. Journal of the Korean Recycled Construction Resources Institute, 2019, 7 (2): 116–122.

[95] 孙文标, 郭兵兵, 罗传龙, 等. 煤气化废渣用作煤矿充填材料的试验研究 [J]. 中国矿业, 2017, 26 (2): 166–168.

[96] 张海波, 郭朝阳, 郭晋辉, 等. 煤气化炉渣对煤矸石膏体充填材料性能影响 [J]. 河南理工大学学报 (自然科学版), 2024, 43 (1): 165–171.

[97] 梁卫强, 刘怀文, 侯志成, 等. 煤气化渣-矸石基混凝土在井下巷道地坪中的应用研究 [J]. 能源技术与管理, 2023, 48 (6): 132–136.

[98] 陈瑞毅. 煤基固废膏体充填材料力学特性实验研究 [D]. 安徽: 安徽理工大学, 2024.

[99] 王守飞. 粉煤气化灰渣制备泡沫陶瓷保温建筑材料 [D]. 安徽: 安徽理工大学, 2020.

[100] 章丽萍, 温晓东, 史云天, 等. 煤间接液化灰渣制备免烧砖研究 [J]. 中国矿业大学学报, 2015, 44 (2): 354–358.

[101] Wei C, Li Y, Liu X, et al. Large-Scale Application of Coal Gasification Slag in Nonburnt Bricks: Hydration Characteristics and Mechanism Analysis [J]. Construction and Building Materials, 2024, 421: 135674.

[102] 刘浪, 罗屹骁, 朱梦博, 等. 建筑物下特厚煤层镁渣基全固废连采连充开采技术及实践 [J]. 煤炭科学技术: 1–11.

[103] Lv Y, Liu L, Yang P, et al. Study on Leaching and Curing Mechanism of Heavy Metals in Magnesium Coal Based Backfill Materials [J]. Process Safety and Environmental Protection, 2023, 177: 1393–1402.

[104] 罗兴华, 袁润章, 朱颉安. 胶凝材料颗粒表面活性的 XPS 研究 [J]. 真空科学与技术, 1985 (1): 30–32+68.

[105] 杨潘. 改性煤气化渣充填材料的制备及其水化与微观结构演变研究 [D]. 西安: 西安科技大学, 2021.

[106] Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete [J], 2019.

[107] 韦寒波. 低品质固废高值化制备FS充填胶凝材料与应用研究 [D]. 北京: 北京科技大学, 2021.

[108] 吕俊敏, 王正, 杨颖臻, 等. 煤气化渣制备单一相 Y 分子筛研究[J]. 硅酸盐通报, 2024: 1–12.

[109] 方宏伟, 徐荣声, 程慧清, 等. 煤气化粗渣制多孔吸附材料对亚甲基蓝的吸附研究 [J]. 宁夏工程技术, 2023, 22 (3): 225–231.

[110] Xiang Y, Dai C, Fu M, et al. Improving the Phytoextraction Efficiency of Artemisia Ordosica Krasch. in Cadmium Contaminated Soil by Use of Tetrasodium N, N-bis(Carboxymethyl) Glutamic Acid and Modified Coal Gasification Slag [J]. Water, Air, & Soil Pollution, 2023, 234 (6): 331.

[111] Mao L, Zheng M, Xia B, et al. Multiscale Analysis of Fine Slag from Pulverized Coal Gasification in Entrained-Flow Bed [J]. International Journal of Coal Science & Technology, 2024, 11 (1): 6.

[112] 陈嘉懿, 牛纪达, 吕剑桥, 等. 煤气化渣对矿山废水中黄药的吸附性能研究 [J]. 矿产综合利用, 2024, 45 (2): 190–200.

[113] Nie C-c, Jiang S-q, Shi S-x, et al. Energy Recovery from Concentrate in Waste Gasification Fine Slag by Clean Flotation Assisted by Waste Oil Collector [J]. Energy, 2023, 273: 127285.

[114] 樊盼盼, 樊晓婷, 杨进进, 等. 气流床煤气化细渣分级浮选及 EDLVO 理论分析 [J]. 化工进展: 1–10.

[115] 叶军建, 高占彬, 吕超, 等. 某干粉煤气化细渣特征及浮选回收残炭研究 [J]. 矿业研究与开发, 2021, 41 (10): 138–141.

[116] 赵佳, 李圣洁, 吉文欣, 等. 机械活化煤气化细渣资源化利用及残碳燃烧反应动力学探究 [J]. 环境化学, 2022, 41 (3): 1052–1059.

[117] 毛立睿. 气流床气化细渣特征及熔渣中炭与灰的作用机制 [D]. 安徽: 安徽理工大学, 2024.

[118] Li J, Chen Z, Yuan L, et al. Effects of Flotation and Acid Treatment on Unburned Carbon Recovery from Atmospheric Circulating Fluidized Bed Coal Gasification Fine Ash and Application Evaluation of Residual Carbon [J]. Waste Management, 2021, 136: 283–294.

[119] 仇韩峰. 煤气化灰渣资源环境属性研究 [D]. 太原: 山西大学, 2021.

[120] Yang P, Liu L, Suo Y, et al. Physical-Chemical Coupling Excitation of Low Activity Coal Gasification Slag Solid Waste and Its Application as a Backfill Cementitious Material [J]. Construction and Building Materials, 2023, 401: 132973.

[121] 武成利, 王蓓蓓, 陶然, 等. 用 XPS 研究高灰熔融温度煤灰的矿物结构转化 [J]. 光谱学与光谱分析, 2018, 38 (7): 2296–2301.

[122] Cao X, Peng B, Kong L, et al. Flow Properties of Ash and Slag under Co-Gasification of Coal and Extract Residue of Direct Coal Liquefaction Residue [J]. Fuel, 2020, 264: 116850.

[123] Zhou M, Chen P, Chen X, et al. Study on Hydration Characteristics of Circulating Fluidized Bed Combustion Fly Ash (CFBCA) [J]. Construction and Building Materials, 2020, 251: 118993.

[124] Wei G, Dong B, Fang G, et al. Understanding Reactive Amorphous Phases of Fly Ash through the Acidolysis [J]. Cement and Concrete Composites, 2023, 140: 105102.

[125] Frias M, Villar-Cocina E, Valencia-Morales E. Characterisation of Sugar Cane Straw Waste as Pozzolanic Material for Construction: Calcining Temperature and Kinetic Parameters. [J]. Waste management (New York, N.Y.), 2007, 27 (4): 533–8.

[126] Hou W, Liu J, Liu Z, et al. Calcium Transfer Process of Cement Paste for Ettringite Formation under Different Sulfate Concentrations [J]. Construction and Building Materials, 2022, 348: 128706.

[127] Zhou Y X, Yu Y Z, Fan L S. The Researches on Preparation Techniques of Polysilicate Coagulants from Fly Ash [C]. In Applied Mechanics and Materials, 2013: 270–273.

[128] Zhang S, Qiao W, Wu Y, et al. Multi-Response Optimization of Ultrafine Cement-Based Slurry Using the Taguchi-Grey Relational Analysis Method [J]. Materials, 2021, 14 (1): 117.

[129] Zheng J, Sun X, Guo L, et al. Strength and Hydration Products of Cemented Paste Backfill from Sulphide-Rich Tailings Using Reactive MgO-activated Slag as a Binder [J]. Construction and Building Materials, 2019, 203: 111–119.

[130] Ting M Z Y, Sun X, Yi Y. Seawater Resistance of Blastfurnace Slag Activated by Reactive Magnesia with Different Reactivities: Durability Performance and Deterioration Mechanism [J]. Construction and Building Materials, 2024, 444: 137832.

[131] Luo K, Ye J, Zhang W, et al. Leaching Kinetics and Reactivity Regulation of Red Mud in an NaOH Solution [J]. Construction and Building Materials, 2024, 421: 135750.

[132] Ma H, Zhang S, Feng J. Early Hydration Properties and Microstructure Evolutions of MgO-activated Slag Materials at Different Curing Temperatures [J]. Ceramics International, 2022, 48 (12): 17104–17115.

[133] Zhao Z, Qu X, Li J. Microstructure and Properties of Fly Ash/Cement-Based Pastes Activated with MgO and CaO under Hydrothermal Conditions [J]. Cement and Concrete Composites, 2020, 114: 103739.

[134] Jia Y, Zhang J, Zou Y, et al. Development and Applications of MgO-activated SiO2 System—Achieving a Low Carbon Footprint: A Review [J]. Green Energy and Resources, 2024, 2 (2).

[135] ASTM. Standard Test Method for Measurement of Heat of Hydration of Hydraulic Cementitious Materials Using Isothermal Conduction Calorimetry [J], 2009.

[136] Kocaba V. Development and Evaluation of Methods to Follow Microstructural Development of Cementitious Systems Including Slags [R] . 2009.

[137] Liu L, Yang P, Qi C, et al. An Experimental Study on the Early-Age Hydration Kinetics of Cemented Paste Backfill [J]. Construction and Building Materials, 2019, 212: 283–294.

[138] Lothenbach B, Matschei T, Möschner G, et al. Thermodynamic Modelling of the Effect of Temperature on the Hydration and Porosity of Portland Cement [J]. Cement and Concrete Research, 2008, 38 (1): 1–18.

[139] Jia Y, Zou Y, Jiang Y, et al. Effect of a Carich Environment on the Reaction Process of the MgO-activated SiO2 System [J]. Cement and Concrete Composites, 2023, 136: 104855.

[140] 孙伟吉, 刘浪, 徐龙华, 等. 改性镁渣基矿用复合胶凝材料的水化性能 [J]. 中南大学学报 (自然科学版), 2022.

[141] Fang Z, Liu L, Zhang X, et al. Carbonation Curing of Modified Magnesium-Coal Based Solid Waste Backfill Material for CO2 Sequestration [J]. Process Safety and Environmental Protection, 2023, 180: 778–788.

[142] Telesca A, Marroccoli M, Calabrese D, et al. Flue Gas Desulfurization Gypsum and Coal Fly Ash as Basic Components of Prefabricated Building Materials [J]. Waste Management, 2013, 33 (3): 628–633.

[143] Xu L, Wu K, Li N, et al. Utilization of Flue Gas Desulfurization Gypsum for Producing Calcium Sulfoaluminate Cement [J]. Journal of Cleaner Production, 2017, 161: 803–811.

[144] Zhao J, Wang D, Yan P, et al. Self-Cementitious Property of Steel Slag Powder Blended with Gyp-sum [J]. Construction and Building Materials, 2016, 113: 835–842.

[145] 姜关照, 吴爱祥, 王贻明. 碱激发水泥-磷渣固化性能及与含硫尾砂的相容性 [J]. 工程科学学报, 2020, 42 (8): 963–971.

[146] Hamdan A, Song H, Yao Z, et al. Modifications to Reaction Mechanisms, Phase Assemblages and Mechanical Properties of Alkali-Activated Slags Induced by Gypsum Addition [J]. Cement and Concrete Research, 2023, 174: 107311.

[147] Thomas J J, Ghazizadeh S, Masoero E. Kinetic Mechanisms and Activation Energies for Hydration of Standard and Highly Reactive Forms of β-Dicalcium Silicate (C2S) [J]. Cement and Concrete Research, 2017, 100: 322–328.

[148] Brand A S, Gorham J M, Bullard J W. Dissolution Rate Spectra of β-Dicalcium Silicate in Water of Varying Activity [J]. CEMENT AND CONCRETE RESEARCH, 2019, 118: 69–83.

[149] Liu L, Ruan S, Qi C, et al. Co-Disposal of Magnesium Slag and High-Calcium Fly Ash as Cementitious Materials in Backfill [J]. Journal of Cleaner Production, 2020: 123684.

[150] Xin J, Liu L, Xu L, et al. A Preliminary Study of Aeolian Sand-Cement-Modified Gasification Slag-Paste Backfill: Fluidity, Microstructure, and Leaching Risks [J]. Science of The Total Environment, 2022, 830: 154766.

[151] Dhandapani Y, Santhanam M. Assessment of Pore Structure Evolution in the Limestone Calcined Clay Cementitious System and Its Implications for Performance [J]. Cement & Concrete Composites, 2017, 84: 36–47.

[152] Nuruzzaman M, Sarker P K, Shaikh F U A. The Interfacial Transition Zone Microstructure of Ground Ferronickel Slag Incorporated Self-Compacting Concrete Investigated by Nanoindentation [J]. Journal of Building Engineering, 2023, 71: 106437.

[153] Leng Y, Rui Y, Zhonghe S, et al. Development of an Environmental Ultra-High Performance Concrete (UHPC) Incorporating Carbonated Recycled Coarse Aggregate [J]. Construction and Building Materials, 2023, 362: 129657.

[154] Senadheera S S, Gupta S, Kua H W, et al. Application of Biochar in Concrete–A Review [J]. Cement and Concrete Composites, 2023, 143: 105204.

[155] Du X, Feng G, Qi T, et al. Failure Characteristics of Large Unconfined Cemented Gangue Backfill Structure in Partial Backfill Mining [J]. Construction and Building Materials, 2019, 194: 257–265.

[156] Lian S, Zheng K, Zhao Y, et al. Investigation the Effect of Freeze–Thaw Cycle on Fracture Mode Classification in Concrete Based on Acoustic Emission Parameter Analysis [J]. Construction and Building Materials, 2023, 362: 129789.

[157] Xue G, Yilmaz E, Song W, et al. Analysis of Internal Structure Behavior of Fiber Reinforced Cement-Tailings Matrix Composites through X-ray Computed Tomography [J]. Composites Part B: Engineering, 2019, 175: 107091.

[158] Qu H, Liu L, Suo Y, et al. Anisotropic Characteristics of Layered Backfill: Mechanical Properties and Energy Dissipation [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15 (12): 3188–3208.

[159] Gao T, Wu A, Wang S, et al. Compression Behavior and Microscopic Damage Mechanism of Waste Rock-Tailings Matrix Composites: Experiments and Models [J]. Construction and Building Materials, 2024, 425: 136076.

[160] Ohno K, Ohtsu M. Crack Classification in Concrete Based on Acoustic Emission [J]. Construction and Building Materials, 2010, 24 (12): 2339–2346.

[161] Li W, Liu A, Kwok C, et al. Mechanical Behaviour of Hong Kong Marine Deposits Stabilized with High Content of Coal Fly Ash [J]. Construction and Building Materials, 2023, 392: 131837.

[162] Pappalardo G. Correlation Between P-Wave Velocity and Physical–Mechanical Properties of Intensely Jointed Dolostones, Peloritani Mounts, NE Sicily [J]. Rock Mechanics and Rock Engineering, 2015, 48 (4): 1711–1721.

[163] Song X, Yu X, Zhao W, et al. Progressive Damage Process and Destabilization Precursor Recognition of Sulfate Tailing-Cemented Paste Backfill Based on Acoustic Emission [J]. Powder Technology, 2023, 430: 119047.

[164] Song X, Hao Y. Mechanical Response of Stress Damaged Cemented Tailings Backfill Based on Pore Structure and Acoustic Emission Characteristics [J]. Construction and Building Materials, 2023, 404: 133278.

[165] Wu C, Li J, Lu Y, et al. The Influence of Industrial Solid Waste in Conjunction with Lepidolite Tailings on the Mechanical Properties and Microstructure of Cemented Backfill Materials [J]. Construction and Building Materials, 2024, 419: 135422.

[166] Xie H, Wei P, Liu N, et al. Study on Failure Characteristics of Basalt Fiber Reactive Powder Concrete under Uniaxial Loading [J]. Construction and Building Materials, 2023, 404: 133246.

[167] Clayton S, Grice T G, Boger D V. Analysis of the Slump Test for On-Site Yield Stress Measurement of Mineral Suspensions [J]. International Journal of Mineral Processing, 2003, 70 (1): 3–21.

[168] Muratçobanoğlu B, Feyza Akyürek E, Manay E. Experimental Evaluation and Optimization of the Heat Pipes Integrated Thermoelectric Generator Using Response Surface Methodology [J]. Applied Thermal Engineering, 2024: 124599.

[169] 周顺, 周涵, 李东旭. 硅基材料和矿渣应用于水泥基材料的研究进展[J]. 材料导报, 2021, 35 (S1): 284–287.

中图分类号:

 TD823.7    

开放日期:

 2027-01-08    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式