- 无标题文档
查看论文信息

论文中文题名:

     

姓名:

 邢志中    

学号:

 17101016008    

保密级别:

 2    

论文语种:

 chi    

学科代码:

 0802    

学科名称:

  -     

学生类型:

     

学位级别:

     

学位年度:

 2022    

培养单位:

 西    

院系:

 机械工程学院    

专业:

 机械工程    

研究方向:

     

第一导师姓名:

 郭卫    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-02-12    

论文答辩日期:

 2022-12-07    

论文外文题名:

 Research on <font color='red'>Analytic</font> Method of Spatial Features of Fully Mechanized Mining Face Based on Point Cloud Information    

论文中文关键词:

 综采工作面 ; 点云 ; 神经网络 ; 空间特征 ; 调直 ; 深度学习    

论文外文关键词:

 Fully mechanized mining face ; Point cloud ; Neural network ; Spatial features ; Straightening ; Deep learning    

论文中文摘要:
<p>&ldquo;&rdquo;线线</p> <p></p> <p>1</p> <p>2线DGCNNDGCNNK沿DGCNN</p> <p>3使DGCNNMS&amp;MA-DGCNN</p> <p>4DTPCDGCNNDTPCDGCNNDGCNN沿DGCNN3EA-DGCNN</p> <p>5DTPCMD-DTPCMD-DTPCMDNV-DTPCMDNV-DTPC3EA-DGCNN</p> <p>64310143206线线431014320688.69%88.87%431014320691.41%91.32%</p> <p></p>
论文外文摘要:
<p>Intellectualization of fully mechanized mining face is the development direction and inevitable trend of safe and efficient coal mining. In the production process of intelligent fully mechanized mining face, the cooperation of shearer, scraper conveyor and hydraulic support constitutes a multi-agent closed-loop system. Among them, the coordinated control of sliding and moving supports not only needs to realize the continuous advancement of the fully mechanized mining face, but also to ensure that the straightness of the fully mechanized mining face meets the technological requirements of &quot;three straight and two flat&quot;. Ensuring the straightness of the fully mechanized mining face is the key of&nbsp;safe and efficient coal mining.&nbsp;How to obtain the effective basis for straightness control of fully mechanized mining face has become a key problem to be solved.&nbsp;The spatial features mainly refer to the information in the three-dimensional physical world, such as point, line, surface, body and position and so on. The point cloud with three-dimensional coordinates can more comprehensively express the spatial features of the fully mechanized mining face in digital form. Therefore, the spatial features of the fully mechanized mining face can be analyzed based on the point cloud information.</p> <p>This research takes the point cloud of fully mechanized mining face as the research object. The point cloud segmentation model of the fully mechanized mining face, the unstructured and disordered processing method of the point cloud segmentation of the fully mechanized mining face, the target point cloud identification model of the fully mechanized mining face, and the sparsity and inconspicuous geometric features processing method of target point cloud identification of the fully mechanized mining face are mainly studied, so as to provide the key basis and premise for the automatic straightening of the fully mechanized mining face. The specific contents are as follows:</p> <p>(1)&nbsp;The research analyzes the cooperative operation process of the fully mechanized mining equipment, and defines the key to detect the straightness of the fully mechanized mining face. In addition, the research deeply studies the characteristics of the point cloud under the physical environment of the fully mechanized mining face, and points out the difficulties faced in analyzing the spatial features of the fully mechanized mining face based on the point cloud information. And then it gives the overall idea of analyzing the spatial features of the fully mechanized mining face. These lays the foundation for the subsequent research.</p> <p>(2)&nbsp;The construction of point cloud segmentation model of fully mechanized mining face to perceive the point, line and plane information of fully mechanized mining face is the primary content to realize the spatial feature analysis of fully mechanized mining face in the form of point cloud. Firstly, a fast annotation method for massive point cloud of fully mechanized mining face is proposed, and the point cloud segmentation model based on dynamic graph convolution neural network (DGCNN) is trained efficiently; Secondly, the study analyzes the essential reason of the different segmentation results of the point cloud in the fully mechanized mining face caused by the receptive field of K nearest neighbor graph algorithm in DGCNN and the feature dimension of the abstract rising point cloud of the multi-layer perceptron; Finally, the model is compared with other different front deep neural networks, and the results show that the DGCNN under the appropriate selection of receptive field and point cloud ascending dimension shows the best effect, which verifies the rationality of the point cloud segmentation model established in the fully mechanized mining face.</p> <p>(3)&nbsp;In view of the unstructured and disordered characteristics between the points in the point cloud of the fully mechanized mining face, on the premise of establishing the point cloud segmentation model of the fully mechanized mining face, multi-scale edge convolution and series pooling are proposed to fully meet the above characteristics. Firstly, multi-scale edge convolution is constructed to splice the local features of the point cloud of the fully mechanized mining face, to solve the defect that single scale edge convolution can only obtain the fixed neighborhood structure near the center point in the unstructured point cloud; Secondly, the series pooling is used as a symmetric function to extract the global features of point clouds in the fully mechanized mining face, which makes up for the disadvantage of using the max-pooling alone to meet the disorder of point clouds&nbsp;that&nbsp;causes&nbsp;certain feature loss; Finally, comparative experiments of point cloud segmentation in fully mechanized mining face are carried out, and the results show that the DGCNN integrating multi-scale edge convolution and series pooling (MS&amp;MA-DGCNN) achieves the optimal performance, which verifies the correctness of the proposed method.</p> <p>(4)&nbsp;Building the target point cloud recognition model of the fully mechanized mining face provides a more understandable space world for the three-dimensional scene of the fully mechanized mining face. Most importantly, it provides a premise for controlling the hydraulic support to straighten the fully mechanized mining face. Firstly, the diversity target point cloud (DTPC) dataset containing random noise is produced, and method of identifying target point cloud in point cloud of fully mechanized mining face after DGCNN training is proposed; Secondly,&nbsp;after improving the optimizer of DGCNN, the effect of DGCNN under different edge convolution layers is clarified; Finally, the model comparison experiments of different front deep neural networks are carried out, and the results show that the DGCNN with the best edge convolution layer and adaptive moment estimation optimizer (3EA-DGCNN) obtained better results, which verifies the rationality of the target point cloud identification model established in the fully mechanized mining face.</p> <p>(5)&nbsp;In order to solve the problems of sparsity and insufficient geometric features in target point cloud identification of fully mechanized coal mining, multi density and increased normal vector are proposed on the premise of establishing target point cloud identification model in fully mechanized mining face. Firstly, a multi density diversity target point cloud (MD-DTPC) dataset is constructed on the basis of DTPC dataset; Secondly, the normalized normal vector information of all points on the MD-DTPC dataset is extracted to form a multi density and normal vector diversity target point cloud (MDNV-DTPC) dataset; Finally, comparative experiments on target point cloud identification in fully mechanized mining face are carried out, and the results show that the performance of various deep neural networks under MDNV-DTPC is improved and 3EA-DGCNN achieves the optimal effect, which verifies the correctness of the proposed method.</p> <p>(6)&nbsp;It further illustrates the effectiveness of the spatial feature analysis method of fully mechanized coal face proposed in this paper in the field of coal mine engineering. Firstly, the point clouds of the 43101 and 43206 fully mechanized mining faces of Yujialiang coal mine are obtained through the point cloud collection system of the fully mechanized mining faces; Secondly, in the point cloud segmentation perception point line plane information of the fully mechanized mining face, intersection line between the empty roof area and the coal wall is taken as an example (roof goaf area is still part of the roof, hereinafter referred to as: roof), and in the identification of target point cloud of fully mechanized mining face, hydraulic support is taken as an example to design the experimental scheme and details; Finally, based on the collected point cloud of the fully mechanized mining face, the experimental verification is carried out, and the accuracy of the model to segment the point clouds of 43101 and 43206 fully mechanized mining faces is 88.69% and 88.87%, and the accuracy of the model to identify the target point clouds of 43101 and 43206 fully mechanized working faces is 91.41% and 91.32%. The results show that the proposed method for analyzing the spatial features of the fully mechanized mining face is reasonable, feasible and universal.</p> <p>The spatial features analysis method of fully mechanized mining face proposed in this paper not only provides a basis for straightening the fully mechanized mining face, but also has a positive significance for intelligent identification of fully mechanized mining equipment in the digital fully mechanized mining face to realize linkage control.</p>
参考文献:

[1]中国人民共和国国家统计局. 2021年12月份能源生产情况[EB/OL]. 2022. (2022-01-17). http://www.stats.gov.cn/xxgk/sjfb/zxfb2020/202201/t20220117_1826438.html

[2]刘闯,蓝晓梅.世界煤炭供需形势分析[J].中国煤炭,2020,46(04):99-104.

[3]王国法,任世华,庞义辉,等.煤炭工业“十三五”发展成效与“双碳”目标实施路径[J].煤炭科学技术,2021,49(09):1-8.

[4]谢和平,任世华,谢亚辰,等.碳中和目标下煤炭行业发展机遇[J].煤炭学报,2021,46(07):2197-2211.

[5]袁亮,姜耀东,王凯,等.我国关闭/废弃矿井资源精准开发利用的科学思考[J].煤炭学报,2018,43(01):14-20.

[6]武强,涂坤,曾一凡,等.打造我国主体能源(煤炭)升级版面临的主要问题与对策探讨[J].煤炭学报,2019,44(06):1625-1636.

[7]Wang P, Lin C K, Wang Y, et al. Location-specific co-benefits of carbon emissions reduction from coal-fired power plants in China[J]. Nature Communications, 2021, 12(1): 1-11.

[8]王国法,刘峰,庞义辉,等.煤矿智能化——煤炭工业高质量发展的核心技术支撑[J].煤炭学报,2019,44(02):349-357.

[9]中华人民共和国国家能源局.关于开展首批智能化示范煤矿建设的通知[R]. 2020. (2020-11-25). http://zfxxgk.nea.gov.cn/2020-11/25/c_139561244.html

[10]王国法,任怀伟,庞义辉,等.煤矿智能化(初级阶段)技术体系研究与工程进展[J].煤炭科学技术,2020,48(07):1-27.

[11]刘再斌,刘程,刘文明,等.透明工作面多属性动态建模技术[J].煤炭学报,2020,45(07):2628-2635.

[12]程建远,刘文明,朱梦博,等.智能开采透明工作面地质模型梯级优化试验研究[J].煤炭科学技术,2020,48(07):118-126.

[13]刘万里,张学亮,王世博.采煤工作面煤层三维模型构建及动态修正技术[J].煤炭学报,2020,45(06):1973-1983

[14]毛善君,鲁守明,李存禄,等.基于精确大地坐标的煤矿透明化智能综采工作面自适应割煤关键技术研究及系统应用[J].煤炭学报,2022,47(01):515-526.

[15]王存飞,荣耀.透明工作面的概念、架构与关键技术[J].煤炭科学技术,2019,47(07):156-163.

[16]王峰.基于透明工作面的智能化开采概念、实现路径及关键技术[J].工矿自动化,2020,46(05):39-42+53.

[17]袁亮,张平松.煤炭精准开采透明地质条件的重构与思考[J].煤炭学报,2020,45(07):2346-2356.

[18]王国法.煤矿智能化最新技术进展与问题探讨[J].煤炭科学技术,2022,50(01):1-27.

[19]王国法,赵国瑞,胡亚辉.5G技术在煤矿智能化中的应用展望[J].煤炭学报,2020,45(01):16-23.

[20]王国法,赵国瑞,任怀伟.智慧煤矿与智能化开采关键核心技术分析[J].煤炭学报,2019,44(01):34-41.

[21]王国法,刘峰,孟祥军,等.煤矿智能化(初级阶段)研究与实践[J].煤炭科学技术,2019,47(08):1-36.

[22]国家安全生产监督管理总局,国家煤矿安全监察局.煤矿安全规程[M].北京:煤炭工业出版社,2016.

[23]李森.基于惯性导航的工作面直线度测控与定位技术[J].煤炭科学技术,2019,47(08):169-174.

[24]高有进,杨艺,常亚军,等.综采工作面智能化关键技术现状与展望[J].煤炭科学技术,2021,49(08):1-22.

[25]王学文,李素华,谢嘉成,等.机器人运动学与时序预测融合驱动的刮板输送机调直方法[J].煤炭学报,2021,46(02):652-666.

[26]Xie J C, Yang Z, Wang X, et al. A joint positioning and attitude solving method for shearer and scraper conveyor under complex conditions[J]. Mathematical Problems in Engineering, 2017, 2017.

[27]Einicke G A, Ralston J C, Hargrave C O, et al. Longwall mining automation an application of minimum-variance smoothing [J]. IEEE Control Systems Magazine, 2008, 28(6): 28-37.

[28]Wu G, Fang X, Zhang L, et al. Positioning accuracy of the shearer based on a strapdown inertial navigation system in underground coal mining[J]. Applied Sciences, 2020, 10(6): 2176.

[29]Wang S B, Zhang B Y , Wang S J, et al. Dynamic precise positioning method of shearer based on closing path optimal estimation model[J]. IEEE Transactions on Automation Science and Engineering, 2018, 16(3): 1468-1475.

[30]Yang H, Li W, Luo T, et al. Research on the strategy of motion constraint-aided ZUPT for the SINS positioning system of a shearer[J]. Micromachines, 2017, 8(11): 340.

[31]Yang H, Li W, Luo C, et al. Research on error compensation property of strapdown inertial navigation system using dynamic model of shearer[J]. IEEE Access, 2016, 4: 2045-2055.

[32]Fan Q G, Li W, Hui J, et al. Integrated positioning for coal mining machinery in enclosed underground mine based on SINS/WSN [J].The Scientific World Journal, 2014, 2014:1-12.

[33]Zheng J, Li S, Liu S, et al. Research on the shearer positioning method based on SINS and LiDAR with velocity and absolute position constraints[J]. Remote Sensing, 2021, 13(18): 3708.

[34]Wang B, Xie J, Wang X, et al. A new method for measuring the attitude and straightness of hydraulic support groups based on point clouds[J]. Arabian Journal for Science and Engineering, 2021, 46(12): 11739-11757.

[35]Peng J G, Zhang J H, Zhang B, et al. Research on the application of double-end constraint algorithm on fully mechanized mining face[C]. International Conference on Power, Electronics and Computer Applications. IEEE, 2022: 467-471.

[36]Si L, Wang Z, Xu R, et al. Image enhancement for surveillance video of coal mining face based on single-scale retinex algorithm combined with bilateral filtering[J]. Symmetry, 2017, 9(6): 93.

[37]Mao Q H, Wang Y, Zhang X H, et al. Clarity method of fog and dust image in fully mechanized mining face[J]. Machine Vision and Applications, 2022, 33(2): 1-16.

[38]张旭辉,王冬曼,杨文娟.基于视觉测量的液压支架位姿检测方法[J].工矿自动化,2019,45(03):56-60.

[39]刘鹏坤,王聪.基于机器视觉的长壁工作面直线度测量算法研究[J].矿业科学学报,2017,2(03):267-273.

[40]杨曌.基于视觉测量的综采工作面直线度测量技术研究[J].煤炭工程,2016,48(09):134-136.

[41]Lu X, Wang Z, Yan H, et al. Optimization design of pushing distance estimation of hydraulic support using the Kalman filter with the covariance improvement[J]. Advances in Mechanical Engineering, 2019, 11(5): 1687814019850720.

[42]Zhang Y, Zhang H, Gao K, et al. New method and experiment for detecting relative position and posture of the hydraulic support[J]. IEEE Access, 2019, 7: 181842-181854.

[43]Yang X, Wang R, Wang H, et al. A novel method for measuring pose of hydraulic supports relative to inspection robot using LiDAR[J]. Measurement, 2020, 154: 107452.

[44]Wang N, Liu H, Li X, et al. Pushing pose sensing of underground mobile supporting robot[J]. Mathematical Problems in Engineering, 2022, 6978943.

[45]牛剑峰.综采工作面直线度控制系统研究[J].工矿自动化,2015,41(05):5-8.

[46]余佳鑫,马鹏宇,郭伟文,等.综采工作面液压支架和刮板输送机自动调直方法及系统[P]. ZL201310058049.8, 2013-05-22.

[47]庞义辉,王国法,任怀伟,等.一种采煤工作面液压支架与刮板输送机直线度监测方法[P]. ZL110057324B, 2020-09-04.

[48]Cui Y, Liu S, Yao J, et al. Integrated positioning system of unmanned automatic vehicle in coal mines[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-13.

[49]Qiao T, Liu W, Pang Y, et al. Research on visible light and infrared vision real-time detection system for conveyor belt longitudinal tear[J]. IET Science, Measurement & Technology, 2016, 10(6): 577-584.

[50]Chen Y, Li W, Wang Y. Robust gaussian approximate fixed-interval smoother with outlier detection[J]. IEEE Signal Processing Letters, 2020, 27: 1505-1509.

[51]Ayanu Y Z, Conrad C, Nauss T, et al. Quantifying and mapping ecosystem services supplies and demands: a review of remote sensing applications[J]. Environmental Science & Technology, 2012, 46(16): 8529-8541.

[52]Fan T J, Medioni G, Nevatia R. Segmented descriptions of 3-D surfaces[J]. IEEE Journal on Robotics and Automation, 1987, 3(6): 527-538.

[53]Woo H, Kang E, Wang S, et al. A new segmentation method for point cloud data[J]. International Journal of Machine Tools and Manufacture, 2002, 42(2): 167-178.

[54]Vo A V, Truong-Hong L, Laefer D F, et al. Octree-based region growing for point cloud segmentation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 104: 88-100.

[55]柯映林,单东日.基于边特征的点云数据区域分割[J].浙江大学学报(工学版),2005(03):63-66+8.

[56]Kang Z, Zhong R, Wu A, et al. An efficient planar feature fitting method using point cloud simplification and threshold-independent BaySAC[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1842-1846.

[57]Su F, Zhu H, Li L, et al. Indoor interior segmentation with curved surfaces via global energy optimization[J]. Automation in Construction, 2021, 131: 103886.

[58]Zhao B, Hua X, Yu K, et al. Indoor point cloud segmentation using iterative gaussian mapping and improved model fitting[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(11): 7890-7907.

[59]Li X, Zhang Y J, Yang X, et al. Point cloud surface segmentation based on volumetric eigenfunctions of the Laplace-Beltrami operator[J]. Computer Aided Geometric Design, 2019, 71: 157-175.

[60]Khaloo A, Lattanzi D. Robust normal estimation and region growing segmentation of infrastructure 3D point cloud models[J]. Advanced Engineering Informatics, 2017, 34: 1-16.

[61]Su Y T, Bethel J, Hu S. Octree-based segmentation for terrestrial LiDAR point cloud data in industrial applications[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 113: 59-74.

[62]Wu T, Hu X, Ye L. Fast and accurate plane segmentation of airborne LiDAR point cloud using cross-line elements[J]. Remote Sensing, 2016, 8(5): 383.

[63]邹纪伟,刘德儿,康翔,等.激光点云中典型地物分割方法[J].桂林理工大学学报,2021,41(03):602-607.

[64]Biosca J M, Lerma J L. Unsupervised robust planar segmentation of terrestrial laser scanner point clouds based on fuzzy clustering methods[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2008, 63(1): 84-98.

[65]Wang Y, Hao W, Ning X, et al. Automatic segmentation of urban point clouds based on the Gaussian map[J]. The Photogrammetric Record, 2013, 28(144): 342-361.

[66]Sampath A, Shan J. Segmentation and reconstruction of polyhedral building roofs from aerial lidar point clouds[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 48(3): 1554-1567.

[67]Feng C, Taguchi Y, Kamat V R. Fast plane extraction in organized point clouds using agglomerative hierarchical clustering[C]. Proceedings of the IEEE International Conference on Robotics and Automation. IEEE, 2014: 6218-6225.

[68]Xu X, Luo M, Tan Z, et al. Plane segmentation and fitting method of point clouds based on improved density clustering algorithm for laser radar[J]. Infrared Physics & Technology, 2019, 96: 133-140.

[69]Zhang C, He Y, Fraser C S. Spectral clustering of straight-line segments for roof plane extraction from airborne LiDAR point clouds[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(2): 267-271.

[70]Yang H, Wang Z, Lin L, et al. Two-layer-graph clustering for real-time 3D LiDAR point cloud segmentation[J]. Applied Sciences, 2020, 10(23): 8534.

[71]Jo K, Lee S, Kim C, et al. Rapid motion segmentation of LiDAR point cloud based on a combination of probabilistic and evidential approaches for intelligent vehicles[J]. Sensors, 2019, 19(19): 4116.

[72]徐博.基于航空LiDAR数据的建筑物屋顶面三维重建关键技术研究[D].武汉:武汉大学,2017.

[73]刘欣怡.影像线特征约束的建筑物点云结构化模型重建[D].武汉:武汉大学,2020.

[74]邓琉元.基于深度学习的道路场景语义分割方法研究[D].上海:上海交通大学,2020.

[75]Ibrahim M, Akhtar N, Wise M, et al. Annotation tool and urban dataset for 3D point cloud semantic segmentation[J]. IEEE Access, 2021, 9: 35984-35996.

[76]王燕.港口环境下基于激光雷达的障碍物检测方法研究[D].上海:上海交通大学,2020.

[77]Ma J W, Czerniawski T, Leite F. Semantic segmentation of point clouds of building interiors with deep learning: Augmenting training datasets with synthetic BIM-based point clouds[J]. Automation in Construction, 2020, 113: 103144.

[78]李游.基于车载激光扫描数据的城市街道信息提取技术研究[D].武汉:武汉大学,2017.

[79]张景蓉.三维管道点云分割与识别技术研究[D].南京:南京理工大学,2019.

[80]岳文龙.面向港口自动卸货系统的点云处理算法研究[D].上海:上海交通大学,2019.

[81]Liu H, Lin C, Wu D, et al. Slice-based instance and semantic segmentation for low-channel roadside LiDAR data[J]. Remote Sensing, 2020, 12(22): 3830.

[82]Zhang S, Cui S, Ding Z. Hypergraph spectral clustering for point cloud segmentation[J]. IEEE Signal Processing Letters, 2020, 27: 1655-1659.

[83]陈文强.基于复杂工况的高精准可预测自动驾驶环境认知方法[D].北京:清华大学,2018

[84]杨帆.激光点云室内空间划分与自动建模方法[D].武汉:武汉大学,2019.

[85]赵鹏程.室内外场景三维建模与语义分割关键技术研究[D].武汉:武汉大学,2020.

[86]Hu S M, Cai J X, Lai Y K. Semantic labeling and instance segmentation of 3D point clouds using patch context analysis and multiscale processing[J]. IEEE Transactions on Visualization and Computer Graphics, 2018, 26(7): 2485-2498.

[87]李自胜.点云数据处理与特征识别关键技术研究[D].成都:西南交通大学,2017.

[88]Sun, J.; Jiang, Y.; Jing, J.; Bai, X. Triangular mesh construction based on point cloud matrix and edge feature extraction[C]. Information Technology, Networking, Electronic and Automation Control Conference. IEEE, 2016: 275-279.

[89]Liu J, Bai D, Chen L. 3-D point cloud registration algorithm based on greedy projection triangulation[J]. Applied Sciences, 2018, 8(10): 1776.

[90]Su T, Wang W, Lv Z, et al. Rapid Delaunay triangulation for randomly distributed point cloud data using adaptive Hilbert curve[J]. Computers & Graphics, 2016, 54: 65-74.

[91]Hao J, Yang H, Li Z. Research of the reconstruction method for the image feature of non-rigid 3D point cloud[J]. Multimedia Tools and Applications, 2017, 76(19): 19591-19603.

[92]Zhao Y, Shi C X, Kwon K C, et al. Fast calculation method of computer-generated hologram using a depth camera with point cloud gridding[J]. Optics Communications, 2018, 411: 166-169.

[93]Zhou G, Li Y, Liu C, et al. A feature-based automatic broken surfaces fitting method for complex aircraft skin parts[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84: 1001-1011.

[94]Zhang Z, Wei X, Zhou Z, et al. 8N-DD-based point cloud edge extraction algorithm[J]. Chinese Journal of Scientific Instrument, 2017, 38(8):2015-2021.

[95]Dey T K, Wang L. Voronoi-based feature curves extraction for sampled singular surfaces[J]. Computers & Graphics, 2013, 37(6): 659-668.

[96]Ying S, Xu G, Li C, et al. Point cluster analysis using a 3D voronoi diagram with applications in point cloud segmentation[J]. ISPRS International Journal of Geo-Information, 2015, 4(3): 1480-1499.

[97]Zhao Q, Zhao X, Li Y, et al. Using geometry tessellation and Markov chain Monte Carlo for segmentation of LiDAR point cloud data[J]. Journal of Applied Remote Sensing, 2015, 9(1): 095052.

[98]Zhou T, Popescu S, Malambo L, et al. From LiDAR waveforms to hyper point clouds: A novel data product to characterize vegetation structure[J]. Remote Sensing, 2018, 10(12): 1949.

[99]Li K, Shao J, Guo D. A multi-feature search window method for road boundary detection based on LIDAR data[J]. Sensors, 2019, 19(7): 1551.

[100]Chen Z, Zhang T, Cao J, et al. Point cloud resampling using centroidal voronoi tessellation methods[J]. Computer-Aided Design, 2018, 102: 12-21.

[101]周飞燕,金林鹏,董军.卷积神经网络研究综述[J].计算机学报,2017,40(06):1229-1251.

[102]唐宏伟,孙炜,张文洋,等.电力线除冰机器人基于粒子群优化的小波神经网络障碍物识别方法[J].机械工程学报,2017,53(13):55-63.

[103]李海生,武玉娟,郑艳萍,等.基于深度学习的三维数据分析理解方法研究综述[J].计算机学报,2020,43(01):41-63.

[104]Griffiths D, Boehm J. A review on deep learning techniques for 3D sensed data classification[J]. Remote Sensing, 2019, 11(12): 1499.

[105]Su H, Maji S, Kalogerakis E, et al. Multi-view convolutional neural networks for 3D shape recognition[C]. Proceedings of the IEEE International Conference on Computer Vision. IEEE, 2015: 945-953.

[106]Shi B, Bai S, Zhou Z, et al. Deeppano: Deep panoramic representation for 3D shape recognition[J]. IEEE Signal Processing Letters, 2015, 22(12): 2339-2343.

[107]Kalogerakis E, Averkiou M, Maji S, et al. 3D shape segmentation with projective convolutional networks[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2017: 3779-3788.

[108]Alonso I, Riazuelo L, Montesano L, et al. 3D-mininet: Learning a 2D representation from point clouds for fast and efficient 3d lidar semantic segmentation[J]. IEEE Robotics and Automation Letters, 2020, 5(4): 5432-5439.

[109]Lawin F J, Danelljan M, Tosteberg P, et al. Deep projective 3D semantic segmentation[C]. International Conference on Computer Analysis of Images and Patterns. Springer, Cham, 2017: 95-107.

[110]Wang H, He P, Li N, et al. Pose recognition of 3D human shapes via multi-view CNN with ordered view feature fusion[J]. Electronics, 2020, 9(9): 1368.

[111]Zhao R, Pang M, Wang J. Classifying airborne LiDAR point clouds via deep features learned by a multi-scale convolutional neural network[J]. International Journal of Geographical Information Science, 2018, 32(5): 960-979.

[112]Maturana D, Scherer S. VoxNet: A 3D convolutional neural network for real-time object recognition[C]. Proceedings of the IEEE International Conference on Intelligent Robots and Systems. IEEE, 2015: 922-928.

[113].Klokov R, Lempitsky V. Escape from cells: Deep kd-networks for the recognition of 3D point cloud models[C]. Proceedings of the IEEE International Conference on Computer Vision. IEEE, 2017: 863-872.

[114]Le T, Duan Y. Pointgrid: A deep network for 3D shape understanding[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2018: 9204-9214.

[115]Zhou Y, Tuzel O. Voxelnet: End-to-end learning for point cloud based 3D object detection[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2018: 4490-4499.

[116]Wu Z, Song S, Khosla A, et al. 3D ShapeNets: A deep representation for volumetric shapes[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2015: 1912-1920.

[117]Graham B, Engelcke M, Van Der Maaten L. 3D semantic segmentation with submanifold sparse convolutional networks[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2018: 9224-9232.

[118]Qi C R, Su H, Mo K, et al. PointNet: Deep learning on point sets for 3d classification and segmentation[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2017: 652-660.

[119]Guo Y, Wang H, Hu Q, et al. Deep learning for 3D point clouds: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(12): 4338-4364.

[120]尹露.分布式激光雷达与视觉信息融合关键技术研究[D].武汉:武汉大学,2020.

[121]王磊.三维点云理解的深度学习方法研究[D].武汉:武汉大学,2020.

[122]Han X, Dong Z, Yang B. A point-based deep learning network for semantic segmentation of MLS point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 175: 199-214.

[123]Feng Y, Zhang Z, Zhao X, et al. GVCNN: Group-view convolutional neural networks for 3d shape recognition[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2018: 264-272.

[124]Wang L, Huang Y, Shan J, et al. MSNet: Multi-scale convolutional network for point cloud classification[J]. Remote Sensing, 2018, 10(4): 612.

[125]Qi C R, Yi L, Su H, et al. Pointnet++: Deep hierarchical feature learning on point sets in a metric space[J]. Advances in Neural Information Processing Systems, 2017, 30.

[126]Zhang L, Sun J, Zheng Q. 3D point cloud recognition based on a multi-view convolutional neural network[J]. Sensors, 2018, 18(11): 3681.

[127]Li M, Sun C. Refinement of LiDAR point clouds using a super voxel based approach[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 143: 213-221.

[128]邓家俊.面向视频和点云数据的目标检测方法研究[D].合肥:中国科学技术大学,2021.

[129]Xu Y, Tong X, Stilla U. Voxel-based representation of 3D point clouds: Methods, applications, and its potential use in the construction industry[J]. Automation in Construction, 2021, 126: 103675.

[130]Mirsu R, Simion G, Caleanu C D, et al. A pointnet-based solution for 3D hand gesture recognition[J]. Sensors, 2020, 20(11): 3226.

[131]Li N, Kähler O, Pfeifer N. A comparison of deep learning methods for airborne LiDAR point clouds classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 6467-6486.

[132]童绪鹏.基于点云数据的形状分析研究[D].哈尔滨:哈尔滨工业大学,2020.

[133]Wang Y, Sun Y, Liu Z, et al. Dynamic graph cnn for learning on point clouds[J]. ACM Transactions On Graphics, 2019, 38(5): 1-12.

[134]王国法,张德生.煤炭智能化综采技术创新实践与发展展望[J].中国矿业大学学报,2018,47(03):459-467.

[135]王国法,徐亚军,张金虎,等.煤矿智能化开采新进展[J].煤炭科学技术,2021,49(01):1-10.

[136]Stanimirović P S, Petković M D. Improved GNN models for constant matrix inversion[J]. Neural Processing Letters, 2019, 50(1): 321-339.

[137]Zhang G, Cao X, Zhang M. A knowledge graph system for the maintenance of coal mine equipment[J]. Mathematical Problems in Engineering, 2021, 2866751.

[138]Zhang Z, Leng J, Ma L, et al. Architectural implications of graph neural networks[J]. IEEE Computer Architecture Letters, 2020, 19(1): 59-62.

[139]朱霆.异构网络中基于图神经网络的MPTCP性能优化研究[D].合肥:中国科学技术大学,2021.

[140]Pham H V, Thanh D H, Moore P. Hierarchical pooling in graph neural networks to enhance classification performance in large datasets[J]. Sensors, 2021, 21(18): 6070.

[141]Liu H, Lu S, Chen X, et al. G3: When graph neural networks meet parallel graph processing systems on GPUs[J]. Proceedings of the VLDB Endowment, 2020, 13(12): 2813-2816.

[142]Matrone F, Grilli E, Martini M, et al. Comparing machine and deep learning methods for large 3D heritage semantic segmentation[J]. ISPRS International Journal of Geo-Information, 2020, 9(9): 535.

[143]Kim M, Park S, Danielson J, et al. General external uncertainty models of three-plane intersection point for 3D absolute accuracy assessment of LiDAR point cloud[J]. Remote Sensing, 2019, 11(23): 2737.

[144]Balado J, Martínez-Sánchez J, Arias P, et al. Road environment semantic segmentation with deep learning from MLS point cloud data[J]. Sensors, 2019, 19(16): 3466.

[145]Kim H, Kim C. Deep-Learning-based classification of point clouds for bridge inspection[J]. Remote Sensing, 2020, 12(22): 3757.

[146]Widyaningrum E, Bai Q, Fajari M K, et al. Airborne laser scanning point cloud classification using the DGCNN deep learning method[J]. Remote Sensing, 2021, 13(5): 859.

[147]Zadeh S G, Schmid M. Bias in cross-entropy-based training of deep survival networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(9): 3126-3137.

[148]俞天宇,倪文俭,刘见礼,等.大兴安岭林区无人机可见光影像散发枯立木识别算法[J].遥感学报,2021,25(03):725-736.

[149]Dersch S, Heurich M, Krueger N, et al. Combining graph-cut clustering with object-based stem detection for tree segmentation in highly dense airborne LiDAR point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 172: 207-222.

[150]姜龙飞,毛善君,李梅,等.基于激光点云的割煤顶板线提取技术研究[J].煤炭科学技术,2022,50(06):286-291.

[151]Pierdicca R, Paolanti M, Matrone F, et al. Point cloud semantic segmentation using a deep learning framework for cultural heritage[J]. Remote sensing, 2020, 12(6): 1005.

[152]Zhang Z, Leng J, Ma L, et al. Architectural implications of graph neural networks[J]. IEEE Computer Architecture Letters, 2020, 19(1): 59-62.

[153]Pan Z, Wang Y, Ku W. A new general nearest neighbor classification based on the mutual neighborhood information[J]. Knowledge-Based Systems, 2017, 121: 142-152.

[154]Nguyen T H, Jones S, Soto-Berelov M, et al. A comparison of imputation approaches for estimating forest biomass using landsat time-series and inventory data[J]. Remote Sensing, 2018, 10(11): 1825.

[155]Zhang X, Xu C, Tian X, et al. Graph edge convolutional neural networks for skeleton-based action recognition[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 31(8): 3047-3060.

[156]Bello S A, Wang C, Wambugu N M, et al. FFPointNet: Local and global fused feature for 3D point clouds analysis[J]. Neurocomputing, 2021, 461: 55-62.

[157]Liang P, Fang Z, Huang B, et al. PointFusionNet: Point feature fusion network for 3D point clouds analysis[J]. Applied Intelligence, 2021, 51(4): 2063-2076.

[158]Chaudhury S, Yamasaki T. Robustness of adaptive neural network optimization under training noise[J]. IEEE Access, 2021, 9: 37039-37053.

[159]Chandra R, Bhagat A, Maharana M, et al. Bayesian graph convolutional neural networks via tempered MCMC[J]. IEEE Access, 2021, 9: 130353-130365.

[160]Ushio A, Yukawa M. Projection-based regularized dual averaging for stochastic optimization[J]. IEEE Transactions on Signal Processing, 2019, 67(10): 2720-2733.

[161]Su S S W, Kek S L. An improvement of stochastic gradient descent approach for mean-variance portfolio optimization problem[J]. Journal of Mathematics, 2021, 2021.

[162]Avelin B, Nyström K. Neural ODEs as the deep limit of ResNets with constant weights[J]. Analysis and Applications, 2021, 19(03): 397-437.

[163]Sharma A. Guided stochastic gradient descent algorithm for inconsistent datasets[J]. Applied Soft Computing, 2018, 73: 1068-1080.

[164]Arcos-García Á, Alvarez-Garcia J A, Soria-Morillo L M. Deep neural network for traffic sign recognition systems: An analysis of spatial transformers and stochastic optimisation methods[J]. Neural Networks, 2018, 99: 158-165.

[165]Caner M, Han X, Lee Y. Adaptive elastic net GMM estimation with many invalid moment conditions: Simultaneous model and moment selection[J]. Journal of Business & Economic Statistics, 2018, 36(1): 24-46.

[166]Khan A H, Cao X, Li S, et al. BAS-ADAM: an ADAM based approach to improve the performance of beetle antennae search optimizer[J]. IEEE/CAA Journal of Automatica Sinica, 2020, 7(2): 461-471.

[167]黄松延.网络上的分布式自适应估计算法研究[D].杭州:浙江大学,2016.

[168]Zhou J, Wang H, Wei J, et al. Adaptive moment estimation for polynomial nonlinear equalizer in PAM8-based optical interconnects[J]. Optics Express, 2019, 27(22): 32210-32216.

[169]Wang Y, Wang Y, Zheng W. On-orbit pulse phase estimation based on CE-ADAM algorithm[J]. Aerospace, 2021, 8(4): 95.

[170]Qu T, Feng Y T, Wang M, et al. Calibration of parallel bond parameters in bonded particle models via physics-informed adaptive moment optimisation[J]. Powder Technology, 2020, 366: 527-536.

[171]朱晓宁.深度神经网络在图像识别中的研究与应用[D].北京:北京邮电大学,2019.

[172]谭涛.基于卷积神经网络的随机梯度下降优化算法研究[D].重庆:西南大学,2020.

[173]Zhou T, Peng Y. Adaptive Bayesian quadrature based statistical moments estimation for structural reliability analysis[J]. Reliability Engineering & System Safety, 2020, 198: 106902.

[174]Tang M, Huang Z, Yuan Y, et al. A bounded scheduling method for adaptive gradient methods[J]. Applied Sciences, 2019, 9(17): 3569.

[175]Zhou Y, Zhang M, Zhu J, et al. A randomized block-coordinate ADAM online learning optimization algorithm[J]. Neural Computing and Applications, 2020, 32(16): 12671-12684.

[176]Yang L, Cai D. AdaDB: An adaptive gradient method with data-dependent bound[J]. Neurocomputing, 2021, 419: 183-189.

[177]Li Z, Fan W, Liu R, et al. Generalized anisotropic sparse grid integrals based on adaptive high dimension model representation for moment estimation[J]. KSCE Journal of Civil Engineering, 2021, 25(12): 4751-4762.

[178]Pasa L, Navarin N, Sperduti A. Multiresolution reservoir graph neural network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(6): 2642-2653.

[179]Fan R, Wang H, Wang Y, et al. Graph attention layer evolves semantic segmentation for road pothole detection: A benchmark and algorithms[J]. IEEE Transactions on Image Processing, 2021, 30: 8144-8154.

[180]Chen S, Eldar Y C, Zhao L. Graph unrolling networks: Interpretable neural networks for graph signal denoising[J]. IEEE Transactions on Signal Processing, 2021, 69: 3699-3713.

[181]Bai Y, Li C, Lin Z, et al. Efficient data loader for fast sampling-based GNN training on large graphs[J]. IEEE Transactions on Parallel and Distributed Systems, 2021, 32(10): 2541-2556.

[182]Dong L, Yao H, Li D, et al. Improving graph neural network via complex-network-based anchor structure[J]. Knowledge-Based Systems, 2021, 233: 107528.

[183]Liu C, Li X, Zhao D, et al. Graph neural networks with information anchors for node representation learning[J]. Mobile Networks and Applications, 2020: 1-14.

[184]Lu K S, Ortega A. Fast graph Fourier transforms based on graph symmetry and bipartition[J]. IEEE Transactions on Signal Processing, 2019, 67(18): 4855-4869.

[185]Girault B, Ortega A, Narayanan S S. Irregularity-aware graph Fourier transforms[J]. IEEE Transactions on Signal Processing, 2018, 66(21): 5746-5761.

[186]Zhou H, Ren D, Xia H, et al. AST-GNN: An attention-based spatio-temporal graph neural network for Interaction-aware pedestrian trajectory prediction[J]. Neurocomputing, 2021, 445: 298-308.

[187]Manessi F, Rozza A. Graph-based neural network models with multiple self-supervised auxiliary tasks[J]. Pattern Recognition Letters, 2021, 148: 15-21.

[188]宋世平.基于视觉和雷达融合的智能汽车目标跟踪与轨迹预测研究[D].长春:吉林大学,2021.

[189]Zou D, Lerman G. Graph convolutional neural networks via scattering[J]. Applied and Computational Harmonic Analysis, 2020, 49(3): 1046-1074.

[190]Ruiz L, Gama F, Ribeiro A. Graph neural networks: architectures, stability, and transferability[J]. Proceedings of the IEEE, 2021, 109(5): 660-682.

[191]Bai Y, Li C, Lin Z, et al. Efficient data loader for fast sampling-based gnn training on large graphs[J]. IEEE Transactions on Parallel and Distributed Systems, 2021, 32(10): 2541-2556.

[192]Chen X, Zhou M, Zou L, et al. A fast reconstruction method of the dense point-cloud model for cultural heritage artifacts based on compressed sensing and sparse auto-encoder[J]. Optical and Quantum Electronics, 2019, 51(10): 1-16.

[193]Awrangjeb M, Gilani S A N, Siddiqui F U. An effective data-driven method for 3-D building roof reconstruction and robust change detection[J]. Remote Sensing, 2018, 10(10): 1512.

[194]王程远.三维重建中的点云拼接算法研究[D].太原:中北大学,2017.

[195]Zhang C, Xu S, Jiang T, et al. Integrating normal vector features into an atrous convolution residual network for LiDAR point cloud classification[J]. Remote Sensing, 2021, 13(17): 3427.

[196]Liu X, Zheng W, Mou Y, et al. Microscopic 3D reconstruction based on point cloud data generated using defocused images[J]. Measurement and Control, 2021, 54(9-10): 1309-1318.

[197]张守祥,张学亮,张磊,等.综采巡检机器人关键技术研究[J].煤炭科学技术,2022,50(01):247-255.

[198]李森,王峰,刘帅,等.综采工作面巡检机器人关键技术研究[J].煤炭科学技术,2020,48(07):218-225.

[199]高士岗,高登彦,欧阳一博,等.中薄煤层智能开采技术及其装备[J].煤炭学报,2020,45(06):1997-2007.

[200]Nguyen T T, Nguyen H H, Barton R, et al. Efficient design of chirp spread spectrum modulation for low-power wide-area networks[J]. IEEE Internet of Things Journal, 2019, 6(6): 9503-9515.

[201]Belo D, Carvalho N B. An OOK chirp spread spectrum backscatter communication system for wireless power transfer applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 69(3): 1838-1845.

[202]周小成,王锋克,黄洪宇,等.基于无人机遥感的伐区造林坑穴数量与参数提取[J].农业机械学报,2021,52(12):201-206.

[203]Li Z, Cheng C, Kwan M P, et al. Identifying asphalt pavement distress using UAV LiDAR point cloud data and random forest classification[J]. ISPRS International Journal of Geo-Information, 2019, 8(1): 39.

[204]Jin D, Li J, Gong J, et al. Shipborne mobile photogrammetry for 3D mapping and landslide detection of the water-level fluctuation zone in the three gorges reservoir area, china[J]. Remote Sensing, 2021, 13(5): 1007.

中图分类号:

 TD421.6    

开放日期:

 2025-03-21    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式