论文中文题名: |
基于相场法的核电异种金属焊接接头裂纹扩展行为研究
|
姓名: |
杨彬
|
学号: |
22205224093
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
085500
|
学科名称: |
工学 - 机械
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2025
|
培养单位: |
西安科技大学
|
院系: |
机械工程学院
|
专业: |
机械工程
|
研究方向: |
结构安全性评价
|
第一导师姓名: |
赵凌燕
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2025-06-18
|
论文答辩日期: |
2025-05-30
|
论文外文题名: |
Research on Crack Propagation Behavior in Dissimilar Metal Welded Joint of Nuclear Power Plants Using the Phase-Field Method
|
论文中文关键词: |
异种金属焊接接头 ; 相场法 ; 连续过渡材料 ; 裂纹扩展路径 ; 双裂纹
|
论文外文关键词: |
Dissimilar Metal Welded Joint ; Phase-Field Method ; Crack Propagation Path ; Continuous Transition Material ; Double Cracks
|
论文中文摘要: |
︿
异种金属焊接接头(DMWJ)广泛应用于核电、航空航天等重大装备领域,其界面区域因应力腐蚀导致的环境致裂问题,严重威胁着焊接结构的安全性和可靠性。本研究针对DMWJ断裂失效这一关键问题,以核电安全端DMWJ为研究对象,根据相场理论和数值模拟方式开发相场法数值模拟框架,从损伤力学的角度研究了连续过渡材料区域的单裂纹和双裂纹扩展行为。实现了对DMWJ界面裂纹扩展路径的预测,为焊接结构完整性评估提供了新的分析方法。完成的主要工作如下:
(1) 根据弹塑性相场理论推导裂纹扩展的演化方程,基于FORTRAN语言开发相场法的UMAT子程序,采用各向同向硬化本构方程建立弹塑性本构模型。开发UEL子程序框架,以弹性应变能和耗散能作为裂纹扩展驱动力建立相场法的扩展模型。通过二次开发技术,在INP文件进行参数化建模,耦合位移场和相场两层结构模型。通过对网格密度、裂纹长度尺度参数l与位移载荷的分析,研究不同参数对裂纹扩展路径的影响,确定裂纹扩展的尺寸参数。
(2) 通过显微压痕硬度实验获取DMWJ局部区域的硬度分布,利用硬度和力学性能参数的转化关系建立材料的力学性能参数梯度场。采用插值函数法将实验数据编写进UMAT子程序,表征DMWJ界面热影响区和熔合区的非均匀力学性能。结合UEL子程序与UMAT子程序,基于能量最小化原理来模拟单裂纹的扩展路径。研究在不同的裂纹位置时,力学性能不均匀性对DMWJ单裂纹扩展偏转路径的影响与变化规律,通过与参考文献的物理实验对比,验证相场法的准确性,分析弹性模量、屈服强度和硬化模量失配对DMWJ裂纹扩展路径产生的影响。
(3) 以材料分界面处的裂纹为基准裂纹,分别在DMWJ的热影响区和熔合区创建第二条裂纹,建立DMWJ双裂纹扩展相场模型。结合相场法的子程序来模拟双裂纹的萌生和扩展,描述两条裂纹之间的相互作用以及材料力学性能对裂纹扩展路径的影响。分析双裂纹融合的规律,以及不同的裂纹间距和裂纹长度对双裂纹扩展路径的影响。
﹀
|
论文外文摘要: |
︿
Dissimilar Metal Welded Joint (DMWJ) are widely employed in critical equipment sectors such as nuclear power and aerospace. However, the interfacial regions of these joints are prone to severe environmental assisted cracking caused by stress corrosion, which significantly threatens the safety and reliability of welded structures. Aiming at the critical issue of fracture failure in DMWJ, this study takes the safe-end DMWJ in nuclear power plants as the research object. Based on the phase-field theory and numerical simulation methods, a phase-field numerical simulation framework was developed to systematically investigate the propagation behavior of single and double cracks in the continuously graded material regions from the perspective of damage mechanics. This framework enables the prediction of crack propagation paths in the DMWJ interface, providing a novel analytical method for the integrity assessment of welded structures. The main achievements are as follows:
(1) Derived the evolution equation for crack propagation based on elasto-plastic phase-field theory. Developed a UMAT (User Material) subroutine for the phase-field method using FORTRAN, and established an elasto-plastic constitutive model using an isotropic hardening constitutive equation. Developed a UEL (User Element) subroutine framework, establishing a phase-field crack propagation model with elastic strain energy and dissipated energy as the driving forces for crack extension. Implemented parameterized modeling in INP files through secondary development techniques, coupling a two-layer structural model of the displacement field and phase-field. The influence of different parameters (mesh density, crack length scale parameter l, and displacement loading) on crack propagation paths was investigated to determine the dimensional parameters for crack propagation.
(2) Obtained the hardness distribution in local regions of DMWJ through micro-indentation hardness experiments. Established a gradient field of material mechanical properties using the conversion relationship between hardness and mechanical performance parameters. Incorporated experimental data into the UMAT subroutine using interpolation functions to characterize the non-uniform mechanical properties of the heat-affected zone (HAZ) and fusion zone (FZ) in DMWJ interfaces. Simulated single crack propagation paths by combining UEL and UMAT subroutines based on the principle of energy minimization. Investigated the influence and variation patterns of mechanical property heterogeneity on the deflection paths of single cracks in DMWJ at different crack locations. The accuracy of the phase-field method was validated by comparing with physical experiments from literature, and the impact of mismatches in elastic modulus, yield strength, and hardening modulus on DMWJ crack propagation paths was analyzed.
(3) Taking the crack at the material interface as the reference, a second crack was introduced into the HAZ and FZ of DMWJ, respectively, to establish a phase-field model for double-crack propagation. The subroutines of the phase-field method were used to simulate the initiation and propagation of double cracks, describing the interaction between the two cracks and the influence of material mechanical properties on crack paths. The laws of double-crack coalescence and the effects of different crack spacing and crack length on double-crack propagation paths were analyzed.
﹀
|
参考文献: |
︿
[1] 王国法, 刘合, 王丹丹, 庞义辉, 吴立新. 新形势下我国能源高质量发展与能源安全[J]. 中国科学院院刊, 2023, 38(01): 23-37. [2] 周洋, 裴红伟, 邹华明, 石秦. 核电厂安全级设备零部件质量验证方法实践[J]. 自动化仪表, 2023, 44(S1): 190-195. [3] Andresen P. A brief history of environmental cracking in hot water[J]. Corrosion, 2019, 75(3): 240-253. [4] Zhao L, Wang J, Su H, Du D, Zhang L, Tu S. Stress corrosion cracking of the fusion boundary for 304l/82 dissimilar metal weld joint in simulated primary water[J]. Corrosion, 2020, 76(2): 176-187. [5] 杨武. 核电工程材料的应力腐蚀破裂研究[J]. 腐蚀科学与防护技术, 1995, (02): 87-92. [6] 杨武. 材料科技工作者面临我国核电大发展的机遇与挑战——“轻水堆核电站中的材料问题: 现状、缓解、将来的问题”国际研讨会成功召开[J]. 腐蚀与防护, 2005, (04): 182-183. [7] 郭瑞. 核电安全端异种金属焊接接头应力腐蚀开裂裂尖力学场研究[D]. 西安科技大学, 2020. [8] 韩恩厚. 核电站关键材料在微纳米尺度上的环境损伤行为研究——进展与趋势[J]. 金属学报, 2011, 47(07): 769-776. [9] 王振文. 核电一回路安全端焊接接头SCC裂纹扩展速率研究[D]. 西安科技大学, 2014. [10] 徐连勇. 长寿命高可靠性焊接结构[J]. 天津大学学报(自然科学与工程技术版), 2022, 55(01): 1-10. [11] 李亚东, 唐晓, 李焰. 焊接接头局部腐蚀的研究进展[J]. 材料导报, 2017, 31(11): 158-165. [12] 郭舒, 王海涛, 韩恩厚. 核电站接管安全端异种金属焊接接头残余应力预测的研究现状[J]. 机械工程材料, 2021, 45(10): 1-12. [13] 贾文娜. 拘束效应对核电异种金属焊接接头环境致裂行为影响研究[D]. 西安科技大学, 2021. [14] Silling S. Reformulation of elasticity theory for discontinuities and long-range forces[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(1): 175-209. [15] Francfort G, Marigo J. Revisiting brittle fracture as an energy minimization problem[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(8): 1319-1342. [16] Bourdin B, Francfort G, Marigo J. Numerical experiments in revisited brittle fracture[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(4): 797-826. [17] 王涵, 黄丹, 徐业鹏, 刘一鸣. 非常规态型近场动力学热黏塑性模型及其应用[J]. 力学学报, 2018, 50(04): 810-819. [18] 卢广达, 陈建兵. 基于一类非局部宏-微观损伤模型的裂纹模拟[J]. 力学学报, 2020, 52(3): 749-762. [19] Silling S, Epton M, Weckner O, Xu J, Askari E. Peridynamic States and Constitutive Modeling[J]. Journal of Elasticity, 2007, 88(2): 151-184. [20] Bamford W, Newton B, Seeger D. Recent experience with weld overlay repair of indications in alloy 182 butt welds in two operating PWRs[C]//ASME Pressure Vessels and Piping Conference. 2006, 47578: 427-434. [21] Li G, Congleton J. Stress corrosion cracking of a low alloy steel to stainless steel transition weld in PWR primary waters at 292 C[J]. Corrosion Science, 2000, 42(6): 1005-1021. [22] Štefane P, Naib S, Hertelé S, De Waele W, Gubeljak N. Crack tip constraint analysis in welded joints with pronounced strength and toughness heterogeneity[J]. Theoretical and Applied Fracture Mechanics, 2019, 103: 102293. [23] Xue H, Bi Y, Wang S, Zhang J, Gou S. Compilation and application of UMAT for mechanical properties of heterogeneous metal welded joints in nuclear power materials[J]. Advances in Materials Science and Engineering, 2019, 2019(1): 3151823. [24] Dong L, Peng Q, Han E, Ke W, Wang L. Microstructure and intergranular stress corrosion cracking susceptibility of a SA508-52M-316L dissimilar metal weld joint in primary water[J]. Journal of Materials Science & Technology, 2018, 34(8): 1281-1292. [25] Fan K, Wang G, Xuan F, Tu S. Local failure behavior of a dissimilar metal interface region with mechanical heterogeneity[J]. Engineering Failure Analysis, 2016, 59: 419-433. [26] Seifert H, Ritter S. The influence of ppb levels of chloride impurities on the stress corrosion crack growth behaviour of low-alloy steels under simulated boiling water reactor conditions[J]. Corrosion Science, 2016, 108: 134-147. [27] Ming H, Zhang Z, Wang J, Han E, Su M. Microstructure and local properties of a domestic safe-end dissimilar metal weld joint by using hot-wire GTAW[J]. Acta Metall Sin, 2016, 53(1): 57-69. [28] Zhao L, Cui Y, Xue H. Effect of mechanical heterogeneity on the crack driving force of a reactor pressure vessel outlet nozzle DMW joint[J]. IOP Conference Series: Materials Science and Engineering, 2017, 280(1): 012031. [29] Guo R, Xue H, Gong X. Influence of residual stress and heterogeneity on mechanical field at crack tips in safety end of nuclear power plant[J]. Procedia Structural Integrity, 2018, 13: 2202-2209. [30] Wang W, Liu Y, Zhang Q, Zhang L, Zhang J. Microstructure and local mechanical properties of a dissimilar metal welded joint with buttering layer in steam turbine rotor[J]. Materials Science and Engineering: A, 2019, 747: 244-254. [31] Fan Y, Yang B, Liu T, Lu Y. Effect of inhomogeneous microstructure on the deformation and fracture mechanisms of 316LN stainless steel multi-pass weld joint using small punch test[J]. Journal of Nuclear Materials, 2020, 538: 152239. [32] Kumar S, Pandey C, Goyal A. Microstructure and mechanical behavior of P91 steel dissimilar welded joints made with IN718 filler[J]. International Journal of Pressure Vessels and Piping, 2021, 190: 104290. [33] Zhao K, Wang B, Xue H, Wang Z. Effect of material inhomogeneity on the crack tip mechanical field and SCC growth rate of 52m/316l dissimilar metal welded joints[J]. Metals, 2022, 12(10): 1683. [34] Xu Z, Wang J, Yan C, Ren J, Zhou Y, Li Y, Zhan X. Inhomogeneity of microstructure and mechanical properties in the interlayer regions for narrow gap laser wire filling welding of 316L stainless steel[J]. Optics & Laser Technology, 2024, 169: 110050. [35] Wang Z, Xue H, Zhang Y, Wang R, Geng M. Characterization of mechanical heterogeneity and study of the mechanical field at the tip of the stationary-growing crack in dissimilar metal welded joints[J]. Journal of Engineering Materials and Technology, 2024, 146(4). [36] Peng Y, Wu C, Gan J, Dong J. Characterization of heterogeneous constitutive relationship of the welded joint based on the stress-hardness relationship using micro-hardness tests[J]. Construction and Building Materials, 2019, 202: 37-45. [37] 蒋红辉. 氨制冷压力管道焊接接头质量检测及分析[J]. 压力容器, 2014, 31(05): 51-57. [38] Rizvi S, Alib W. Welding defects, Causes and their remedies: a review[J]. Teknomekanik, 2019, 2(2): 39-47. [39] Radaj D, Sonsino C, Fricke W. Fatigue assessment of welded joints by local approaches [M]. Woodhead publishing, 2006. [40] Zerbst U, Schödel M, Webster S, Ainsworth R. Fitness-for-service fracture assessment of structures containing cracks: a workbook based on the European SINTAP/FITNET procedure [M]. Academic Press, 2013. [41] Zerbst U, Hensel J. Application of fracture mechanics to weld fatigue [J]. International Journal of Fatigue, 2020, 139: 105801. [42] Xiao J, Wang G, Tu S, Xuan F. Effects of material properties and mismatch on unified constraint parameter [J]. Engineering Fracture Mechanics, 2022, 269: 108526. [43] 鲁乃唯, 崔健, 王鸿浩, 余孟南. 钢桥面板焊缝多疲劳裂纹交互融合特性研究[J]. 工程力学. [44] Sarzosa D, Godefroid L, Ruggieri C. Fatigue crack growth assessments in welded components including crack closure effects: Experiments and 3-D numerical modeling[J]. International Journal of Fatigue, 2013, 47: 279–291. [45] Hyde T, Sun W, Becker A. Creep crack growth in welds: a damage mechanics approach to predicting initiation and growth of circumferential cracks[J]. International Journal of Pressure Vessels and Piping, 2001, 78(11): 765–771. [46] Zhao L, Jing H, Xu L, Han Y, Xiu J. Analysis of creep crack growth behavior of P92 steel welded joint by experiment and numerical simulation[J]. Materials Science and Engineering: A, 2012, 558: 119–128. [47] Saber M, Sun W, Hyde T. Numerical study of the effects of crack location on creep crack growth in weldment[J]. Engineering Fracture Mechanics, 2016, 154: 72–82. [48] Wang H, Wang G, Xuan F, Tu S. Numerical investigation of ductile crack growth behavior in a dissimilar metal welded joint[J]. Nuclear Engineering and Design, 2011, 241(8): 3234–3243. [49] 尹越, 韩磊旺, 徐丽森, 李福康. 基于孔洞扩张模型的偏心受力焊接球节点延性断裂数值模拟[J]. 工程力学, 2025, 42(02): 190-198. [50] 卓子超, 张庆亚, 王江超. 船板钢焊接接头的断裂失效行为及GTN模型的数值分析[J]. 工程力学, 2020, 37(11): 238–247. [51] 薛河, 崔英浩, 高富国, 赵凌燕, 倪陈强. 屈服强度失配对异种金属焊接接头裂纹扩展的影响分析[J]. 中国科技论文, 2017, 12(16): 1854-1857+1875. [52] Yang F, Xue H, Zhao L, Fang X R. Effects of welded mechanical heterogeneity on interface crack propagation in dissimilar weld joints[J]. Advances in Materials Science and Engineering, 2019(1): 6593982. [53] Bi Y, Yuan X, Lv J, Bashir R, Wang S, Xue H. Effect of yield strength distribution welded joint on crack propagation path and crack mechanical tip field[J]. Materials, 2021, 14(17): 4947. [54] Liu W, Wu D, Duan S, Wang T, Zou Y. A study on fatigue crack propagation for friction stir welded plate of 7N01 Al-Zn-Mg alloy by EBSD[J]. Materials, 2020, 13(2): 330. [55] Chang H, Shen M, Yang X, Hou J. Uncertainty modeling of fatigue crack growth and probabilistic life prediction for welded joints of nuclear stainless steel[J]. Materials, 2020, 13(14): 3192. [56] Wang Z, Xue H, Wang S, Zhang Y. A multi-method coupled approach to simulate crack growth path and stress-strain field at the tip of the growing crack in the dissimilar metal welded joint[J]. International Journal of Pressure Vessels and Piping, 2023, 206: 105046. [57] Griffith A. The phenomena of rupture and flow in solids[J]. Philosophical transactions of the royal society of london. Series A, containing papers of a mathematical or physical character, 1921, 221: 163-198. [58] Molnár G, Ganster P, Tanguy A, Barthel E, Kermouche G. Densification dependent yield criteria for sodium silicate glasses-anatomistic simulation approach[J]. Acta Materialia, 2016, 111:129-137. [59] Bourdin B, Francfort G, Marigo J. The variational approach to fracture[J]. Journal of Elasticity, 2008, 91(01):5-148. [60] Ambrosio L, Tortorelli V. On the approximation of free discontinuity problems[J]. Bollettino Della Unione Matematica Italiana, 1992, 6(01):105-123. [61] Ambrosio L, Tortorelli V. Approximation of functional depending on jumps by elliptic functional via t-convergence[J]. Communications on Pure and Applied Mathematics, 1990, 43(08):999-1036. [62] Tanné E, Li T, Bourdin B, Marigo J, Maurini C. Crack nucleation in variational phase-field models of brittle fracture[J]. Journal of the Mechanics and Physics of Solids, 2017, 110: 80-99. [63] Amor Hanen, Marigo Jean-Jacques, Maurini Corrado. Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments[J]. Journal of the Mechanics and Physics of Solids, 2009, 57(8): 1209-1229. [64] Miehe C, Hofacker M, Welschinger F. A phase field model for rate-independentm crack propagation: Robust algorithmic implementation based on operator splits[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(45-48):2765-2778. [65] Tian F, Tang X, Xu T, Yang J, Li L. A hybrid adaptive finite element phase-field method for quasi-static and dynamic brittle fracture[J]. Intelna-tional Journal for Numerical Methods in Engineering, 2019, 120:1108-1125. [66] Tian F, Zeng J, Tang X, Xu T, Li L. A dynamic phase field model with no attenuation of wave speed for rapid fracture instability in hyperelastic materials[J]. International Journal of Solids and Structures, 2020, 202: 685-698. [67] Pham K, Amor H, Marigo J, Maurini C. Gradient damage models and their use to approximate brittle fracture[J]. Intelnational Journal of Damage Mechanics, 2011, 20:618-652. [68] Wu J. A geometrically regularized gradient-damage model with energetic equivalence[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 328:612-637. [69] Wu J, Nguyen V. A length scale insensitive phase-field damage model for brittle fracture[J]. Journal of the Mechanics and Physics of Solids, 2018, 119:20-42. [70] 李鹏飞, 朱其志, 顾水涛, 倪涛. 岩石类材料裂隙形成和扩展的相场方法模拟[J]. 工程力学, 2018, 35(03): 41-48. [71] Hofacker M, Miehe C. A phase field model of dynamic fracture:Robust field updates for the analysis of complex crack patterns[J]. Intelnational Journal for Numerical Methods in Engineering, 2012, 93(03):276-301. [72] Borden M, Verhoosel C, Scott M, Hughes T, Landis C. A phase-field description of dynamic brittle fracture[J]. Computer Methods in Applied Mechanics and Engineering, 2012, 217(01):77-95. [73] Park K, Paulino G, Celes W, Espinha R. Adaptive mesh refinement and coarsening for cohesive zone modeling of dynamic fracture[J]. Intelnational Journal for Numerical Methods in Engineering, 2012, 92(01):1-35. [74] Chu D, Li X, Liu Z, Cheng J, Wang T, Li Z, Zhuang Z. A unified phase field damage model for modeling the brittle-ductile dynamic failure mode transition in metals[J]. Engineering Fracture Mechanics, 2019, 212: 197-209. [75] Ren H, Zhuang X, Anitescu C, Rabczuk T. An explicit phase field method for brittle dynamic fracture[J]. Computers and Structures, 2019, 217:45-56. [76] Msekh M, Sargado J, Jamshidian M. Abaqus implementation of phase-field model for brittle fracture[J]. Computational Materials Science, 2015, 96:472-484. [77] Molnár G, Gravouil A. 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture[J]. Finite Elements in Analysis and Design, 2017, 130: 27-38. [78] 刘国威, 李庆斌, 左正. 相场断裂模型分步算法在ABAQUS中的实现[J]. 岩石力学与工程学报, 2016, 35(05): 1019-1030. [79] Zhou S, Zhuang X. Adaptive phase field simulation of quasi-static crack propagation in rocks[J]. Underground Space, 2018, 3(03):190-205. [80] Miehe C, Welschinger F, Hofacker M. Thermodynamically consistent phase‐field models of fracture: Variational principles and multi‐field FE implementations[J]. International Journal for Numerical Methods in Engineering, 2010, 83(10): 1273-1311. [81] Fang J, Wu C, Rabczuk T, Wu C, Ma C, Sun G, Li Q. Phase field fracture in elasto-plastic solids: Abaqus implementation and case studies[J]. Theoretical and Applied Fracture Mechanics, 2019, 103: 102252. [82] Xue H, Wang Z, Wang S, He J, Yang H. Characterization of mechanical heterogeneity in dissimilar metal welded joints[J]. Materials, 2021, 14(15): 4145. [83] Moës N, Belytschko T. Extended finite element method for cohesive crack growth[J]. Engineering Fracture Mechanics, 2002, 69(7): 813-833. [84] Zang J, Ren H, Song X, Zhang Z, Zhang Y, Chen L. Vibration control of interconnected composite beams: Dynamical analysis and experimental validations[J]. Mechanical Systems and Signal Processing, 2024, 208: 111008. [85] Huang J, Lu C, Huang D, Qin Y, Xin F, Sheng H. A Spatial interpolation method for meteorological data based on a hybrid kriging and machine learning approach[J]. International Journal of Climatology, 2024, 44(15): 5371-5380. [86] 王正. 异种金属焊接接头裂纹扩展路径及裂尖力学场的精确分析[D]. 西安科技大学, 2022. [87] Wang H, Wang G, Xuan F, Tu S. An experimental investigation of local fracture resistance and crack growth paths in a dissimilar metal welded joint[J]. Materials and Design, 2013, 44: 179-189. [88] 李冠军. 异种金属焊接件SA508-52M-316L在模拟压水堆一回路水环境中的性能研究[D]. 机械科学研究总院, 2011.
﹀
|
中图分类号: |
TG407
|
开放日期: |
2025-06-18
|