- 无标题文档
查看论文信息

论文中文题名:

 基于超表面的涡旋波反射阵天线研究    

姓名:

 李东    

学号:

 19307205008    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085208    

学科名称:

 工学 - 工程 - 电子与通信工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 电子与通信工程    

研究方向:

 超表面天线    

第一导师姓名:

 韩晓冰    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-21    

论文答辩日期:

 2022-06-08    

论文外文题名:

 Research on vortex wave reflectarray antenna based on metasurface    

论文中文关键词:

 轨道角动量 ; 无衍射波束 ; 多波束 ; 电磁超表面 ; 涡旋电磁波    

论文外文关键词:

 Orbital angular momentum ; Non-diffracting beam ; Multi-beam Metasurface ; Vortex electromagnetic waves    

论文中文摘要:

携带轨道角动量(OAM)的涡旋电磁波被视为解决频谱资源紧张,提高信道容量的 新方法,因而成为了重要的研究内容。电磁超表面由于具有易加工、可灵活地调控电磁 波等优点,能够高效地生成 OAM 涡旋波。本文以电磁超表面为研究工具,针对不同的 应用需求对涡旋波反射阵天线的设计方法进行了研究,主要研究内容如下: 本文针对不同的应用需求设计了几款基于超表面的涡旋波反射阵天线。(1)设计了 一款反射相移达到 360° 且对入射角度不敏感的谐振型超表面单元,并以该单元为基础设 计超表面结构。在涡旋波补偿相位的计算中引入汇聚相位补偿项,设计了工作于 26 GHz 的汇聚涡旋波反射阵天线。仿真结果表明该反射阵天线生成了具有场增强效果的汇聚涡 旋波。(2)通过对贝塞尔涡旋波的分析得到了贝塞尔相位补偿项,并将其引入反射面补 偿相位的计算中,设计了馈源偏馈 15°,工作于 26 GHz 的无衍射涡旋波反射阵天线。仿 真结果表明该反射阵天线生成了模态纯正的二阶无衍射涡旋波。(3)本文分析了沿任意 方向辐射的零阶贝塞尔波束所需的相位补偿,通过坐标变换得到传播方向上的螺旋补偿 相位,进而得到了沿任意方向辐射的高阶无衍射涡旋波补偿相位的计算方法。仿真结果 表明设计的反射阵天线生成了沿 θ=30° , φ= 0° 方向传播的二阶无衍射涡旋波。在补偿 相位的计算过程中结合电磁场的叠加原理,设计了生成多个高阶无衍射波束的超表面结 构,仿真结果表明在反射阵上方生成了分别沿 θ=30° , φ= 0° 和 θ=30° , φ= 180° 方向传播,OAM 模式分别为一阶和二阶的高阶无衍射涡旋波,验证了该方法的可行性。 通过琼斯矩阵分析超表面单元反射系数间的关系,得到基于几何相位原理的超表面 单元的结构特性,设计了适用于宽带应用场景的超表面单元。以该单元为基础设计了能 够生成高阶无衍射涡旋波的超表面结构,仿真结果表明在 26 GHz 至 31 GHz 的宽带范围 内生成了 OAM 模式为−2 阶的高阶无衍射涡旋波,验证了该方法的可行性。本文为不同 应用场景下基于超表面的涡旋波生成提供了设计方法,具有一定的参考价值。

论文外文摘要:

Vortex electromagnetic waves carrying orbital angular momentum (OAM) are considered as a new method to solve the spectrum resource constraint and increase the channel capacity, and thus become an important research element. Electromagnetic supersurfaces can generate OAM vortex waves efficiently due to their advantages lor='red'>of easy processing and flexible modulation lor='red'>of electromagnetic waves. In this thesis, the design method lor='red'>of vortex wave reflectarray antenna is investigated for different application requirements using electromagnetic super-surface as a research tool, and the main research contents are as follows: 

In this thesis, several metasurface based vortex wave reflectarray antennas are designed for different application requirements. (1) A resonant metasurface unit with a reflection phase shift lor='red'>of 360° and insensitivity to the incident angle is designed, and the metasurface structure is based on this unit. The convergent phase compensation term is introduced in the calculation lor='red'>of the vortex wave compensation phase, and a convergent vortex wave reflectarray antenna operating at 26 GHz is designed. The simulation results show that the reflectarray antenna generates convergent vortex waves with field enhancement effect. (2) The Bessel phase compensation term is obtained by analyzing the Bessel vortex wave and introduced into the calculation lor='red'>of the reflected surface compensation phase to design a reflectarray antenna with a feed bias lor='red'>of 15° and operating at 26 GHz non-diffraction vortex wave. The simulation results show that the reflectarray antenna generates a second-order non-diffraction vortex wave with pure mode. (3) In this thesis, the phase compensation required for a zero-order Bessel beam radiating in any direction is analyzed, and the spiral compensation phase in the propagation direction is obtained by coordinate transformation, and then the calculation method lor='red'>of the compensation phase for a higher-order non-diffraction vortex wave radiating in any direction is obtained. The simulation results show that the designed reflectarray antenna generates a second-order non-diffraction vortex wave propagating along θ=30° , φ= 0° direction. During the calculation lor='red'>of the compensated phase, the metasurface structure is designed to generate multiple high-order non-diffraction beams in combination with the superposition principle lor='red'>of electromagnetic fields, and the simulation results show that high-order non-diffraction vortex waves with first- order and second-order OAM modes propagating along θ=30° , φ= 0° and θ=30° , φ= 180°  directions, respectively, are generated above the reflection array, which verifies the feasibility lor='red'>of the method.

By analyzing the relationship between the reflection coefficients lor='red'>of the metasurface unit by Jones matrix, the structural properties lor='red'>of the metasurface unit based on the geometric phase principle are obtained, and a metasurface unit is designed for broadband application scenarios. Simulation results show that a high-order non-diffraction vortex wave with OAM mode lor='red'>of  order is generated in the broadband range lor='red'>of 26 GHz to 31 GHz, which verifies the feasibility lor='red'>of the method. This thesis provides design methods for the generation lor='red'>of vortex waves based on metasurfaces in different application scenarios, which has certain reference value.

参考文献:

[1] Feng R, Yi J, Burokur S N, et al. Orbital angular momentum generation method based on transformation electromagnetics[J]. Optics express, 2018, 26(9): 11708-11717.

[2] Yi J, Cao X, Feng R, et al. All-dielectric transformed material for microwave broadband orbital angular momentum vortex beam[J]. Physical Review Applied, 2019, 12(2): 024064.

[3] Bai Q, Tennant A, Allen B. Experimental circular phased array for generating OAM radio beams[J]. Electronics letters, 2014, 50(20): 1414-1415.

[4] Li L, Zhou X. Mechanically reconfigurable single-arm spiral antenna array for generation of broadband circularly polarized orbital angular momentum vortex waves[J]. Scientific reports, 2018, 8(1): 1-9.

[5] Yi J, Guo M, Feng R, et al. Design and validation of an all-dielectric metamaterial medium for collimating orbital-angular-momentum vortex waves at microwave frequencies[J]. Physical Review Applied, 2019, 12(3): 034060.

[6] Wu G B, Chan K F, Chan C H. 3-D printed terahertz lens to generate higher order Bessel beams carrying OAM[J]. IEEE Transactions on Antennas and Propagation, 2020, 69(6): 3399-3408.

[7] Akram M R, Bai X, Jin R, et al. Photon spin Hall effect-based ultra-thin transmissive metasurface for efficient generation of OAM waves[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(7): 4650-4658.

[8] Ma H, Kong X, Chen P, et al. Broadband vortex beams generation with narrow divergence angle using polarization insensitive metasurface[J]. IEEE Access, 2020, 8: 218062-218068.

[9] 郭桂蓉, 胡卫东, 杜小勇. 基于电磁涡旋的雷达目标成像[J]. 国防科技大学学报, 2013, 35(6):6.

[10] 李龙, 薛皓, 冯强. 涡旋电磁波的理论与应用研究进展[J]. 微波学报, 2018, 34(2):12.

[11] 吕坤, 马晖, 刘宏伟. 基于涡旋电磁波体制的三维SAR成像方法[J]. 雷达学报, 2021, 10(5):8.

[12] 周余昂, 陈怡君, 谢文宣,等. 基于涡旋电磁波的雷达探测技术概述[J]. 现代雷达, 2021, 43(2):10.

[13] Liu K, Li X, Gao Y, et al. Microwave imaging of spinning object using orbital angular momentum[J]. Journal of Applied Physics, 2017, 122(12): 124903.

[14] Hui X, Zheng S, Chen Y, et al. Multiplexed millimeter wave communication with dual orbital angular momentum (OAM) mode antennas[J]. Scientific reports, 2015, 5(1): 1-9.

[15] Yan Y, Xie G, Lavery M P J, et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J]. Nature communications, 2014, 5(1): 1-9.

[16] 周潇潇, 刘永杰, 李龙. 模态波束双可重构OAM发生器的研究[J]. 电波科学学报, 2018, 33(3):11.

[17] 孙牧歌, 孙学宏, 常伟,等. 基于环形OAM阵列天线的复用传输系统研究[J]. 微波学报, 2019(1):7.

[18] Morabito A F, Di Donato L, Isernia T. Orbital angular momentum antennas: Understanding actual possibilities through the aperture antennas theory[J]. IEEE Antennas and Propagation Magazine, 2018, 60(2): 59-67.

[19] Veysi M, Guclu C, Capolino F, et al. Revisiting orbital angular momentum beams: Fundamentals, reflectarray generation, and novel antenna applications[J]. IEEE antennas and propagation magazine, 2018, 60(2): 68-81.

[20] Holloway C L, Kuester E F, Gordon J A, et al. An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials[J]. IEEE antennas and propagation magazine, 2012, 54(2): 10-35.

[21] Ra'di Y, Asadchy V S, Tretyakov S A. One-way transparent sheets[J]. Physical Review B, 2014, 89(7): 075109..

[22] Aieta F, Kats M A, Genevet P, et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation[J]. Science, 2015, 347(6228): 1342-1345.

[23] Pfeiffer C, Grbic A. Millimeter-wave transmitarrays for wavefront and polarization control[J]. IEEE transactions on microwave theory and techniques, 2013, 61(12): 4407-4417.

[24] Pfeiffer C, Grbic A. Controlling vector Bessel beams with metasurfaces[J]. Physical Review Applied, 2014, 2(4): 044012.

[25] Lin D, Fan P, Hasman E, et al. Dielectric gradient metasurface optical elements[J]. science, 2014, 345(6194): 298-302.

[26] Pan Y M, Hu P F, Zhang X Y, et al. A low-profile high-gain and wideband filtering antenna with metasurface[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(5): 2010-2016.

[27] Erfani E, Niroo-Jazi M, Tatu S. A high-gain broadband gradient refractive index metasurface lens antenna[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(5): 1968-1973.

[28] Pandi S, Balanis C A, Birtcher C R. Design of scalar impedance holographic metasurfaces for antenna beam formation with desired polarization[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(7): 3016-3024.

[29] Wang Y, Zhang K, Yuan Y, et al. Generation of high-efficiency vortex beam carrying OAM mode based on miniaturized element frequency selective surfaces[J]. IEEE Transactions on Magnetics, 2019, 55(10): 1-4.

[30] Chen M L N, Jiang L J, Wei E I. Ultrathin complementary metasurface for orbital angular momentum generation at microwave frequencies[J]. IEEE Transactions on Antennas and Propagation, 2016, 65(1): 396-400.

[31] Yu S, Li L, Shi G, et al. Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain[J]. Applied Physics Letters, 2016, 108(12): 121903.

[32] Zhang Y, Lyu Y, Wang H, et al. Transforming surface wave to propagating OAM vortex wave via flat dispersive metasurface in radio frequency[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 17(1): 172-175.

[33] Deng R, Xu S, Yang F, et al. A single-layer high-efficiency wideband reflectarray using hybrid design approach[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 16: 884-887.

[34] Akram Z, Li X, Qi Z, et al. Wideband vortex beam reflectarray design using quarter-wavelength element[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(7): 1458-1462.

[35] 孙胜, 阳棂均, 沙威. 基于反射超表面的偏馈式涡旋波产生装置[J]. 物理学报, 2021, 70(19):7.

[36] 邱靓婕, 李秀萍, 郭晓斌,等. 多波束涡旋电磁波反射阵天线设计[J]. 无线电工程, 2022, 52(2):5.

[37] Ma H, Kong X, Chen P, et al. Broadband vortex beams generation with narrow divergence angle using polarization insensitive metasurface[J]. IEEE Access, 2020, 8: 218062-218068.

[38] Ran Y, Liang J, Cai T, et al. High-performance broadband vortex beam generator using reflective Pancharatnam–Berry metasurface[J]. Optics Communications, 2018, 427: 101-106.

[39] Wang H, Li Y, Han Y, et al. Vortex beam generated by circular-polarized metasurface reflector antenna[J]. Journal of Physics D: Applied Physics, 2019, 52(25): 255306.

[40] Albani M, Pavone S C, Casaletti M, et al. Generation of non-diffractive Bessel beams by inward cylindrical traveling wave aperture distributions[J]. Optics express, 2014, 22(15): 18354-18364.

[41] Ettorre M, Pavone S C, Casaletti M, et al. Experimental validation of Bessel beam generation using an inward Hankel aperture distribution[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(6): 2539-2544.

[42] Imani M F, Grbic A. Generating evanescent Bessel beams using near-field plates[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(7): 3155-3164.

[43] Lemaitre-Auger P, Abielmona S, Caloz C. Generation of Bessel beams by two-dimensional antenna arrays using sub-sampled distributions[J]. IEEE transactions on antennas and propagation, 2012, 61(4): 1838-1849.

[44] Wu Y F, Cheng Y J. Generating and 2-D steering large depth-of-field beam by leaky-wave antenna array with a modified parabolic reflector[J]. IEEE Transactions on Antennas and Propagation, 2019, 68(4): 2779-2787.

[45] Comite D, Fuscaldo W, Podilchak S K, et al. Radially periodic leaky-wave antenna for Bessel beam generation over a wide-frequency range[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(6): 2828-2843.

[46] Zhong Y C, Cheng Y J. Ka-band wideband large depth-of-field beam generation through a phase shifting surface antenna[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(12): 5038-5045.

[47] Zhong Y C, Cheng Y J. Wideband quasi-nondiffraction beam with accurately controllable propagating angle and depth-of-field[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(10): 5035-5042.

[48] Cai B G, Li Y B, Jiang W X, et al. Generation of spatial Bessel beams using holographic metasurface[J]. Optics express, 2015, 23(6): 7593-7601.

[49] Kou N, Yu S, Li L. Generation of high-order Bessel vortex beam carrying orbital angular momentum using multilayer amplitude-phase-modulated surfaces in radiofrequency domain[J]. Applied Physics Express, 2016, 10(1): 016701.

[50] Wu G B, Chan K F, Chan C H. 3-D printed terahertz lens to generate higher order Bessel beams carrying OAM[J]. IEEE Transactions on Antennas and Propagation, 2020, 69(6): 3399-3408.

[51] Chen X, Xue W, Shi H, et al. Orbital angular momentum multiplexing in highly reverberant environments[J]. IEEE Microwave and Wireless Components Letters, 2019, 30(1): 112-115.

[52] Wang L, Park W, Yang C, et al. Wireless communication of radio waves carrying orbital angular momentum (OAM) above an infinite ground plane[J]. IEEE transactions on electromagnetic compatibility, 2020, 62(5): 2257-2264.

[53] Trichili A, Park K H, Zghal M, et al. Communicating using spatial mode multiplexing: potentials, challenges, and perspectives[J]. IEEE Communications Surveys & Tutorials, 2019, 21(4): 3175-3203.

[54] Yan Y, Xie G, Lavery M P J, et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J]. Nature communications, 2014, 5(1): 1-9.

[55] Vaquero Á F, Pino M R, Arrebola M, et al. Bessel beam generation using dielectric planar lenses at millimeter frequencies[J]. IEEE Access, 2020, 8: 216185-216196.

[56] Hong Z Y, Zhang J, Drinkwater B W. Observation of orbital angular momentum transfer from Bessel-shaped acoustic vortices to diphasic liquid-microparticle mixtures[J]. Physical review letters, 2015, 114(21): 214301.

[57] Chillara V K, Davis E S, Pantea C, et al. Ultrasonic Bessel beam generation from radial modes of piezoelectric discs[J]. Ultrasonics, 2019, 96: 140-148.

[58] Chillara V K, Pantea C, Sinha D N. Low-frequency ultrasonic Bessel-like collimated beam generation from radial modes of piezoelectric transducers[J]. Applied Physics Letters, 2017, 110(6): 064101.

中图分类号:

 TN82    

开放日期:

 2022-06-22    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式