论文中文题名: |
喹喔啉改性Y型稠环分子的合成及其光电性能研究
|
姓名: |
姚婉婷
|
学号: |
22211025016
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
0805
|
学科名称: |
工学 - 材料科学与工程
|
学生类型: |
硕士
|
学位级别: |
工学硕士
|
学位年度: |
2025
|
培养单位: |
西安科技大学
|
院系: |
材料科学与工程学院
|
专业: |
材料科学与工程
|
研究方向: |
有机太阳能电池
|
第一导师姓名: |
杨庆浩
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2025-06-17
|
论文答辩日期: |
2025-05-29
|
论文外文题名: |
Synthesis and Photoelectric Properties of Quinoxaline Modified Y-type Fusing-Ring Molecules
|
论文中文关键词: |
有机太阳能电池 ; 光电转换效率 ; 基于喹喔啉的稠环核 ; 端基修饰 ; 烷基链修饰
|
论文外文关键词: |
Organic solar cell ; Photoelectric conversion efficiency ; Quinoxaline-based dense ring cores ; End group modification ; Alkyl chain modification
|
论文中文摘要: |
︿
在当今能源需求不断增长与传统能源面临枯竭及环境问题的背景下,太阳能作为一种清洁、可再生能源受到广泛关注。有机太阳能电池(OSCs)由于质轻、柔性、半透明以及可大面积加工等特点,在可穿戴电子设备和建筑光伏一体化等领域展现出巨大的应用潜力。非富勒烯受体(NFAs)由于其独特的结构可调性和光电性能可控等优点而备受关注,特别是基于受体-给体-受体’-给体-受体(A-DA’D-A)型的Y系列稠环小分子受体在2019年后成为研究的重点。喹喔啉是一种弱缺电单元,与Y系列稠环小分子经常采用的苯并三唑和苯并噻二唑等A’单元相比,具有丰富的结构可调性。本研究设计并制备了基于喹喔啉结构的Y型稠环分子,系统研究了这些材料的光物理特性以及光伏性能,并对光伏器件的电荷传输与复合机理以及薄膜的形貌和分子取向性等进行了研究。
首先,以2,3-二(3-辛氧基苯基)二噻吩并[3,2-f:2',3'-h]喹喔啉为缺电子单元,制备了两种分别以氟溴氰基茚酮(FBr-IC)为端基的对称受体材料BQ-2FBr和以两氯氰基茚酮(2Cl-IC)及氟溴氰基茚酮(FBr-IC)为端基的非对称受体材料BQ-2Cl-FBr。对称的BQ-2FBr具有较高的LUMO能级,而非对称分子BQ-2Cl-FBr则展现出更宽的吸收光谱、较高的摩尔消光系数以及更好的π-π堆积性能。与PM6结合时,BQ-2FBr器件实现了0.944 V的优异开路电压和10.11%的中等光电转换效率。尽管BQ-2Cl-FBr器件的开路电压略有下降,为0.928 V,但短路电流密度和填充因子同时得到改善,使得PCE提高到11.54%。这主要归因于激子解离和电荷收集性能的提升、电荷复合的抑制、分子堆积性能的增强、薄膜形态的优化以及激子扩散时间的加快。
其次,将苊环和溴苊烯环引入A-DA’D-A受体体系中,合成了基于二维稠环拓展新核的小分子受体C12BE-4F和C12BE-Br-4F。基于苊环喹喔啉中心核C12BE-4F具有较低的LUMO能级,而基于溴苊烯环喹喔啉中心核C12BE-Br-4F展现出更宽的吸收光谱和较高的LUMO能级。与聚合物PM6结合制备二元器件时,C12BE-4F器件实现了0.933 V的开路电压,22.16 mA cm-2的高短路电流密度,66.27%的高填充因子和13.69%的中等光电转换效率。制备基于PM6:BTP-eC9三元器件时,虽然PM6:BTP-eC9:C12BE-4F三元器件开路电压略有降低,为0.844 V,但短路电流密度和填充因子均有提升分别为28.36 mA cm-2和76.75%,实现了18.37%优异PCE,这主要归因于电荷收集性能的提升、电荷复合的抑制以及薄膜形貌的优化。
最后,成功合成了两种新型的喹喔啉基多臂受体材料,C12QX-B和C20QX-B。这些分子由吡嗪喹喔啉单元桥连接,以具有弱拉电子特性的1,3-二乙基-2-硫代巴比妥酸作为端基。基于长烷基链四臂材料C20QX-B展现出更宽的吸收光谱和较低的LUMO能级,而基于短烷基链四臂材料C12QX-B具有较高的LUMO能级。将C12QX-B和C20QX-B引入PM6:BTP-eC9体系中制备三元器件,PM6:BTP-eC9:C20QX-B三元器件达到17.17%的PCE,而PM6:BTP-eC9:C12QX-B三元器件实现了18.23%的优异PCE,这两种四臂受体材料三元器件的PCE均高于PM6:BTP-eC9二元器件的16.91%。两种三元器件性能提升的差异主要是由于两种小分子对三元薄膜的空穴迁移率提升和电子迁移率的抑制程度不同所致。
﹀
|
论文外文摘要: |
︿
In the context of the continuously growing energy demand, the depletion of traditional energy sources, and environmental issues, solar energy, as a clean and renewable energy source, has received extensive attention. Organic solar cells (OSCs), due to their characteristics such as light weight, flexibility, semi-transparency, and the ability to be processed over a large area, exhibit great application potential in fields such as wearable electronic devices and building-integrated photovoltaics. Non-fullerene acceptors (NFAs) have attracted much attention due to their unique advantages such as structural tunability and controllable optoelectronic properties. In particular, the Y-series fused-ring small-molecule acceptors of the acceptor-donor-acceptor-donor-acceptor (A-DA’D-A) type have become the focus of research after 2019. Quinoxaline is a weakly electron-deficient unit. Compared with the A’ units such as benzotriazole and benzothiadiazole, which are often used in the Y-series fused-ring small molecules, it has rich structural tunability. In this study, materials based on the quinoxaline structure were designed and prepared by changing the alkyl chains and terminal groups. The photophysical properties and photovoltaic performance of these materials were systematically studied. Additionally, the charge transport and recombination mechanisms of the photovoltaic devices, as well as the morphology and molecular orientation of the thin films, were investigated.
Firstly, using 2,3-bis(3-octyloxyphenyl)dithieno[3,2-f:2',3'-h]quinoxaline as the electron-deficient unit, two acceptor materials were prepared. One is the symmetric acceptor material BQ-2FBr with fluorobromocyanoindanone (FBr-IC) as the terminal group, and the other is the asymmetric acceptor material BQ-2Cl-FBr with dichlorocyanoindanone (2Cl-IC) and fluorobromocyanoindanone (FBr-IC) as the terminal groups. The BQ-2FBr molecule, which exhibits a symmetrical structure, possesses a higher LUMO energy level. In contrast, the asymmetric BQ-2Cl-FBr molecule features a more expansive absorption spectrum, augmented molar extinction coefficient, and enhanced π-π stacking characteristics. In conjunction with PM6, the BQ-2FBr device attains an exceptional open-circuit voltage of 0.944 V and a commendable photovoltaic conversion efficiency of 10.11%. Despite a slight decrease in the open-circuit voltage of the BQ-2Cl-FBr device to 0.928 V, simultaneous enhancement in the short-circuit current density and fill factor has been observed, culminating in an augmented PCE of 11.54%. This enhancement is attributed to a combination of factors, including enhanced exciton dissociation and charge collection performance, suppression of charge complexation, enhanced molecular stacking performance, optimized film morphology, and faster exciton diffusion time.
Secondly, acenaphthene rings and bromoacenaphthylene rings were introduced into the A-DA’D-A acceptor system, and small-molecule acceptors C12BE-4F and C12BE-Br-4F based on a new two-dimensional fused-ring extended core were synthesized. The introduction of bromoacenaphthylene rings led to enhanced aggregation of the small-molecule acceptors, resulting in the blend films based on bromoacenaphthylene rings having larger phase separation sizes and surface roughness. When combined with polymer PM6 for the preparation of binary devices, the C12BE-4F devices achieved an open-circuit voltage of 0.933 V, a high short-circuit current density of 22.16 mA cm-2, a high fill factor of 66.27% and a moderate power conversion efficiency of 13.69%. For the ternary devices based on PM6:BTP-eC9 binay system, while the open-circuit voltage of the PM6:BTP-eC9:C12BE-4F device is marginally reduced to 0.844 V, there is an enhancement in both the short-circuit current density and the fill factor to 28.36 mA cm-2 and 76.75%, respectively, and an excellent PCE of 18.37% is achieved. This enhancement is primarily ascribed to the enhanced charge collection performance, the suppression of charge compounding, and the optimization of film morphology.
Finally, the synthesis of two novel quinoxaline-based multi-armed receptor materials, C12QX-B and C20QX-B, had been successfully achieved. These molecules are bridged by pyrazine-quinoxaline units with 1,3-diethyl-2-thiobarbituric acid, which possesses a weak electron-pulling property, as an end group. The long alkyl chain four-arm based material C20QX-B exhibits a broader absorption spectrum and a lower LUMO energy level, while the short alkyl chain four-arm based material C12QX-B has a higher LUMO energy level. Upon introduction of both C12QX-B and C20QX-B into the PM6:BTP-eC9 system for the preparation of ternary devices, the PM6:BTP-eC9:C20QX-B device attained a PCE of 17.17%, whereas the PM6:BTP-eC9:C12QX-B device achieved an excellent PCE of 18.23%, and the ternary devices of both four-arm acceptor materials had a PCE that is higher than the 16.91% of the PM6:BTP-eC9 binary device. It can thus be concluded that the discrepancy in the performance enhancement of the two four-arm acceptor-based ternary devices is primarily attributable to the varying degree to which the enhancement of hole mobilities and the inhibition of electron mobilities of the ternary films caused by these two small molecules.
﹀
|
参考文献: |
︿
[1] 李腾飞,占肖卫.有机光伏研究进展[J].化学学报, 2021, 79(3), 257-283. [2] 杜晓扬.高性能三元有机太阳能电池的设计及机理研究[D].电子科技大学, 2020, 34(5), 247-253. [3] 肖红斌.本体异质结有机太阳能电池性能影响因素[J].大众科技, 2010,12(7), 106-107. [4] 张倩.基于体异质结和双层异质结有机太阳能电池的研究[D].电子科技大学, 2022, 4(1), 23-28. [5] 刘志洋, 彭瑞祥, 艾玲.高效率有机太阳能电池的界面工程研究[J].高分子通报, 2017, 8(2), 1-8. [6] 苏梦蟾, 衣立新, 汪洋.体异质结有机太阳能电池性能提高的研究[J].光谱学与光谱分析, 2008, 28(4), 740-744. [7] 童金辉.有机叠层太阳能电池的结构设计, 制备工艺优化和器件性能研究[D].华中科技大学, 2018, 9(4), 573-583. [8] 王嘉宇, 占肖卫.非富勒烯受体光伏材料[J].科学焦点, 2022, 17(6), 44. [9] 宋伟, 葛子义.高效率有机太阳能电池研究[J].第九届新型太阳能材料科学与技术学术研讨会论文集, 2022, 12(6), 56-60. [10] Sun Y, Liu T, Kan Y, et al. Flexible organic solar cells: progress and challenges[J]. Small Science, 2021, 8(5), 2100001. [11] Liu W, Xu X, Yuan J, et al. Low-bandgap non-fullerene acceptors enabling high-performance organic solar cells[J]. ACS Energy Letters, 2021, 6(2), 598-608. [12] Wang X, Sun Q, Gao J, et al. Recent progress of organic photovoltaics with efficiency over 17%[J]. Energies, 2021, 14(4), 4200. [13] Gao W, Lin F R, Jen A K-Y. Near-infrared absorbing nonfullerene acceptors for organic solar cells[J]. Solar RRL, 2021, 6(1), 2100868. [14] Schweda B, Reinfelds M, Hofstadler P, et al. Recent progress in the design of fused-ring non-fullerene acceptors-relations between molecular structure and optical, electronic, and photovoltaic properties[J]. ACS Applied Energy Materials, 2021, 4(1), 11899-11981. [15] Sariciftci N S, Smilowitz L, Heeger A J, et al. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene[J]. Science, 1992, 258(50), 1474-1476. [16] Xiao C, Zhang G, Agbolaghi S. Stability of poly (3-hexylthiophene): phenyl-C71-butyric acid methyl ester solar cells modified by pre-designed supramolecular nanostructures[J]. Journal of Electronic Materials, 2020, 49(10), 5882-5894. [17] Deng L, Li X, Wang S, et al. Stereomeric effects of bisPC71BM on polymer solar cell performance[J]. Science Bulletin, 2016, 61(2), 132-138. [18] Luo Z, Ma R, Chen Z, et al. Altering the positions of chlorine and bromine substitution on the end group enables high-performance acceptor and efficient organic solar cells[J]. Advanced Energy Materials, 2020, 10(4), 2002649. [19] Kan B, Zhang J, Liu F, et al. Fine-tuning the energy levels of a nonfullerene small-molecule acceptor to achieve a high short-circuit current and a power conversion efficiency over 12% in organic solar cells[J]. Advanced Materials, 2018, 30(3), 1704904. [20] Zhang G, Lin F R, Qi F, et al. Renewed prospects for organic photovoltaics[J]. Chem Rev, 2022, 122(18), 14180-14274. [21] Wan X, Li C, Zhang M, et al. Acceptor-donor-acceptor type molecules for high performance organic photovoltaics-chemistry and mechanism[J]. Chemical Society Reviews, 2020, 49(9), 2828-2842. [22] Lin Y, Wang J, Zhang Z G, et al. An electron acceptor challenging fullerenes for efficient polymer solar cells[J]. Advanced materials, 2015, 27(7), 1170-1174. [23] Luo Z, Ma R, Yu J, et al. Heteroheptacene-based acceptors with thieno [3,2-b] pyrroleyield high-performance polymer solar cells[J]. National Science Review, 2022, 9(7), 76. [24] Feng L, Yuan J, Zhang Z, et al. Thieno [3,2-b] pyrrolo-fused pentacyclic benzotriazole-based acceptor for efficient organic photovoltaics[J]. ACS Applied Materials and Interfaces, 2017, 9(3), 31985-31992. [25] Yuan J, Zhang Y, Zhou L, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core[J]. Joule, 2019, 3(1), 1140-1151. [26] Liu T, Zhang Y, Shao Y, et al. Asymmetric acceptors with fluorine and chlorine substitution for organic solar cells toward 16.83% efficiency[J]. Advanced Functional Materials, 2020, 30(6), 2000456. [27] He Q, U fimkin P, AniésF, et al. Molecular engineering of Y‐series acceptors for nonfullerene organic solar cells[J]. Joule, 2022, 21(1), 591-606. [28] 徐翔,李坤,魏擎亚.基于非富勒烯小分子受体Y6的有机太阳能电池[J].化学进展, 2021, 33(2), 14. [29] Sun C, Zhu C, Meng L, et al. Quinoxaline‐based D–A copolymers for the applications as polymer donor and hole transport material in polymer/perovskite solar cells[J]. Advanced Materials, 2022, 34(2), 2104161. [30] Sun B, Chen Y, Huang Y, et al. Fused-ring acceptors based on quinoxaline unit for highly efficient single-junction organic solar cells with low charge recombination[J]. Organic Electronics, 2021, 98, 106282. [31] Chen Z, Ge J, Guo Y, et al. Modification on the quinoxaline unit to achieve high open-circuit voltage and morphology optimization for organic solar cells[J]. ACS Energy Letters, 2022, 7(2), 3432-3438. [32] Guo Y, Chen Z, Ge J, et al. Fine‐tuning alkyl chains on quinoxaline nonfullerene acceptors enables high‐Efficiency ternary organic solar cells with optimizing molecular stacking and reducing energy loss[J]. Advanced Functional Materials, 2023, 33(4), 2305611. [33] Wu H, Zhao B, Zhang S, et al. Efficient polymer solar cells enabled by A-DA′ DA type acceptors with alkoxypheny-substituted quinoxaline as the fused-ring core[J]. ACS Applied Materials and Interfaces, 2023, 15(11), 14369-14378. [34] Liu K, Jiang Y, Ran G, et al. 19.7% efficiency binary organic solar cells achieved by selective core fluorination of nonfullerene electron acceptors[J]. Joule, 2024, 8(3), 835-851. [35] Huang X, Cheng Y, Fang Y, et al. A molecular weight-regulated sequential deposition strategy enabling semitransparent organic solar cells with the light utilization efficiency of over 5%[J]. Energy and Environmental Science, 2022, 15(11), 4776-4788. [36] Zhang C, Shi Y, Tao J, et al. Efficient and stable organic solar cells achieved by synergistic optimization of extended end‐capped groups and fluorinated quinoxaline central cores in nonfullerene acceptors[J]. Advanced Energy Materials, 2023, 12(7), 2403806. [37] Chen L, Zhao C, Yu H, et al. Tailoring cyano substitutions on quinoxaline‐based small‐molecule acceptors enabling enhanced molecular packing for high‐performance organic solar cells[J]. Advanced Energy Materials, 2024, 14(3), 2400285. [38] Jiang Y, Liu K, Liu F, et al. 20.6% efficiency organic solar cells enabled by incorporating a lower bandgap guest nonfullerene acceptor without open‐circuit voltage loss[J]. Advanced Materials, 2025, 34(9), 2500282. [39] Liang W, Zhu S, Sun K, et al. Achieving 19.72% efficiency in ternary organic solar cells through electrostatic potential‐driven morphology control[J]. Advanced Functional Materials, 2025, 35(7), 2415499. [40] Chen H, Cao X, Wang P, et al. A rare case of iodinated non-fullerene acceptors for high-performance organic solar cells without post-treatments[J]. Journal of Materials Chemistry A, 2023, 11(6), 25368-25376. [41] Leblebici S Y, Chen T L, Olalde-Velasco P, et al. Reducing exciton binding energy by increasing thin film permittivity: an effective approach to enhance exciton separation efficiency in organic solar cells[J]. ACS Applied Materials and Interfaces, 2013, 5(2), 10105-10110. [42] Zhu L, Zhang J, Guo Y, et al. Small exciton binding energies enabling direct charge photogeneration towards low‐driving‐force organic solar cells[J]. Angewandte Chemie, 2021, 133(28), 15476-15481. [43] Qiu D, Adil M A, Lu K, et al. The crystallinity control of polymer donor materials for high-performance organic solar cells[J]. Frontiers in Chemistry, 2020, 8, 603134. [44] Ye L, Collins B A, Jiao X, et al. Miscibility–function relations in organic solar cells: significance of optimal miscibility in relation to percolation[J]. Advanced Energy Materials, 2018, 8(2), 1703058. [45] Li Z, Zhang Z, Chen H, et al. Oligomeric acceptor enables high‐performance and robust all‐polymer solar cells with 17.4% efficiency[J]. Advanced Energy Materials, 2023, 13(2), 2300301. [46] Lv M, Wang Q, Zhang J, et al. Strengthening the hetero‐molecular interactions in giant dimeric acceptors enables efficient organic solar cells[J]. Advanced Materials, 2024, 36(4), 2310046. [47] Meng X, Li M. A 4‐arm small molecule acceptor with high photovoltaic performance[J]. Angewandte Chemie, 2022, 134(38), e202207762. [48] Liu X, Zhang Z, Wang C, et al. A pyrene‐fused dimerized acceptor for ternary organic solar cells with 19% efficiency and high thermal stability[J]. Angewandte Chemie, 2024, 136(1), e202316039. [49] Qian D, Ye L, Zhang M, et al. Design, application, and morphology study of a new photovoltaic polymer with strong aggregation in solution state[J]. Macromolecules, 2012, 45(24), 9611-9617. [50] Zhao W, Li S, Yao H, et al. Molecular optimization enables over 13% efficiency in organic solar cells[J]. Journal of the American Chemical Society, 2017, 139(21), 7148-7151. [51] Li W, Ye L, Li S, et al. A high-efficiency organic solar cell enabled by the strong intramolecular electron push-pull effect of the nonfullerene acceptor[J]. Advanced Materials, 2018, 30(16), 1707170. [52] Cui Y, Yao H, Zhang J, et al. Single-junction organic photovoltaic cells with approaching 18% efficiency[J]. Advanced Materials, 2020, 32(19), 1908205. [53] Li C, Zhou J, Song J, et al. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells[J]. Nature Energy, 2021, 6(5), 605-613. [54] Hong L, Yao H, Wu Z, et al. Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency[J]. Advanced Materials, 2019, 31(9), 1903441. [55] Ma R, Liu T, Luo Z, et al. Improving open-circuit voltage by a chlorinated polymer donor endows binary organic solar cells efficiencies over 17%[J]. Science China Chemistry, 2020, 63(3), 325-330. [56] Sun H, Liu T, Yu J, et al. A monothiophene unit incorporating both fluoro and ester substitution enabling high-performance donor polymers for non-fullerene solar cells with 16.4% efficiency[J]. Energy and Environmental Science, 2019, 12(5), 3328-3337. [57] Liang J, Pan M, Chai G, et al. Random polymerization strategy leads to a family of donor polymers enabling well-controlled morphology and multiple cases of high-performance organic solar cells[J]. Advanced Materials, 2020, 32(5), 2003500. [58] Wu J, Li G, Fang J, et al. Random terpolymer based on thiophene-thiazolothiazole unit enabling efficient non-fullerene organic solar cells[J]. Nature Communications, 2020, 11(1), 4612. [59] Guo X, Fan Q, Wu J, et al. Optimized active layer morphologies via ternary copolymerization of polymer donors for 17.6 % efficiency organic solar cells with enhanced fill factor[J]. Angewandte Chemie International Edition, 2021, 60(5), 2322-2329. [60] Liu Q, Jiang Y, Jin K, et al. 18% Efficiency organic solar cells[J]. Science Bulletin, 2020, 65(4), 272-275. [61] Jin K, Xiao Z, Ding L. D18, an eximious solar polymer[J]. Journal of Semiconductors, 2021, 42(1), 010502. [62] Hou J, Tan Z, Yan Y, et al. Synthesis and photovoltaic properties of two-dimensional conjugated polythiophenes with bi (thienylenevinylene) side chains[J]. Journal of the American Chemical Society, 2006, 128(14), 4911-4916. [63] Blom P W M, Mihailetchi V D, Koster L J A, et al. Device physics of polymer: fullerene bulk heterojunction solar cells[J]. Advanced Materials, 2007, 19(12), 1551-1566. [64] Kyaw A K K, Wang D H, Gupta V, et al. Intensity dependence of current–voltage characteristics and recombination in high-efficiency solution-processed small-molecule solar cells[J]. ACS Nano, 2013, 7(5), 4569-4577. [65] Albrecht S, Tumbleston J R, Janietz S, et al. Quantifying charge extraction in organic solar cells: the case of fluorinated PCPDTBT[J]. The Journal of Physical Chemistry Letters, 2014, 5(3), 1131-1138. [66] Nilsson S , Bernasik A , Budkowski A , et al. Morphology and phase segregation of spin-casted films of polyfluorene/pcbm bends[J]. Macromolecules, 2012, 40(23), 8291-8301. [67] Hexemer A, Bras W, Glossinger J, et al. A saxs/waxs/gisaxs beamline with multilayer monochromator[J]. Journal of Physics: Conference Series, 2010, 247, 012007. [68] Tumbleston J R, Collins B A, Yang L, et al. The influence of molecular orientation on organic bulk heterojunction solar cells[J]. Nature Photonics, 2014, 8(5), 385-391. [69] Yao H, Chen Y, Qin Y, et al. Design and synthesis of a low bandgap small molecule acceptor for efficient polymer solar cells[J]. Advanced Materials, 2016, 28(7), 8283-8287. [70] Zhan X, Tan Z, Domercq B, et al. A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells[J]. Journal of the American Chemical Society, 2007, 129(23), 7246-7247. [71] Zhou J, He Z, Sun Y, et al. Organic photovoltaic cells based on nonhalogenated polymer donors and nonhalogenated A-DA′D-A-type nonfullerene acceptors with high VOC and low nonradiative voltage loss[J]. ACS Applied Materials and Interfaces, 2022, 14(6), 41296-41303. [72] Mohamed El Amine B, Zhou Y, Li H, et al. Latest updates of single-junction organic solar cells up to 20% Efficiency[J]. Energies, 2023, 16(9), 3895. [73] Zhou Z, Liu W, Zhou G, et al. Subtle molecular tailoring induces significant morphology optimization enabling over 16% efficiency organic solar cells with efficient charge generation[J]. Advanced Materials, 2020, 32(4), 1906324. [74] Bi P, Wang J, Cui Y, et al. Enhancing photon utilization efficiency for high-Performance organic photovoltaic cells via regulating phase transition kinetics[J]. Advanced Materials, 2023, 35(16), 2210865. [75] Elumalai N K, Uddin A. Open circuit voltage of organic solar cells: an in-depth review[J]. Energy and Environmental Science, 2015, 9(2), 391-410. [76] Ma X, Zeng A, Gao J, et al. Approaching 18% efficiency of ternary organic photovoltaics with wide bandgap polymer donor and well compatible Y6:Y6-1O as acceptor[J]. National Science Review, 2021, 8(1), 305. [77] Cao X, Wang P, Jia X, et al. Rebuilding peripheral F, Cl, Br footprints on acceptors enables binary organic photovoltaic efficiency exceeding 19.7%[J]. Angewandte Chemie International Edition, 2024, 137(5), e202417244. [78] Liu F, Espejo G L, Qiu S, et al. Multifaceted regioregular oligo (thieno [3,4-b] thiophene) s enabled by tunable quinoidization and reduced energy band gap[J]. Journal of the American Chemical Society, 2015, 137(32), 10357-10366. [79] Cong Z, Liu S, Zhao B, et al. An, z. high performance alternating polymers based on two-dimensional conjugated benzo[1,2-b:4,5-b’]dithiophene and fluorinated dithienylbenzothiadiazole for solar cells. Royal Society of Chemistry Advances, 2016, 6(2), 77525–77534. [80] Brebels J, Manca J V, Lutsen L, et al. High dielectric constant conjugated materials for organic photovoltaics. Journal of Materials Chemistry A, 2017, 5(4), 24037-24050. [81] Zhu W, Spencer A P, Mukherjee S, et al. Crystallography, morphology, electronic structure, and transport in non-fullerene/non-indacenodithienothiophene polymer:Y6 solar cells[J]. Journal of the American Chemical Society, 2020, 142(34), 14532-14547. [82] Kupgan G, Chen X K, Brédas J L, Bredas Jean Luc. Molecular packing of non-fullerene acceptors for organic solar cells: distinctive local morphology in Y6 versus ITIC derivatives[J]. Materials Today Advances, 2021, 11, 100154. [83] Yang J, Li Q.-S, Li Z.-S. Theoretical design of asymmetric A–D1A′D2–A type non-fullerene acceptors for organic solar cells[J]. Physical Chemistry Chemical Physics, 2021, 23(2), 12321-12328. [84] Irfan A, Hussien M, Mehboob M, et al. Learning from fullerenes and predicting for Y6: Machine Learning and high-throughput screening of small molecule donors for organic solar cells[J]. Energy Technology, 2022, 10(6), 210–1096. [85] Liu F, Zhou L, Liu W, et al. Organic solar cells with 18% efficiency enabled by an alloy acceptor: a two‐in‐one strategy[J]. Advanced Materials, 2021, 33(7), 2100830. [86] Bristow H, Thorley K J, White A J P, et al. Impact of nonfullerene acceptor side chain variation on transistor mobility[J]. Advanced Electronic Materials, 2019, 5(1), 1900344. [87] Zhao R, Liu J, Wang L. Polymer Acceptors Containing B←N Units for Organic Photovoltaics[J]. Accounts of Chemical Research, 2020, 53(8), 1557–1567. [88] Savikhin V, Babics M, Neophytou M, et al. Impact of polymer side chain modification on opv morphology and performance[J]. Chemistry of Materials, 2018, 30(21), 7872-7884. [89] Karaman C Z, Göker S, Şahin Ü, et al. Effect of thiophene, 3-hexylthiophene, selenophene, and thieno[3,2-b]thiophene spacers on opv device performance of novel 2,1,3-benzothiadiazole based alternating copolymers[J]. Journal of Electroanalytical Chemistry, 2021, 895, 115483. [90] Gao Y, Chen Q, Wang L, et al. End-group modification of non-fullerene acceptors enables efficient organic solar cells[J]. Journal of Materials Chemistry, 2022, 10(8), 10389-10395. [91] He C, Li Y, Liu Y, et al. Near infrared electron acceptors with a photoresponse beyond 1000 nm for highly efficient organic solar cells[J]. Journal of Materials Chemistry, 2020, 8(5), 18154-18161. [92] Chen Z, Ge J, Song W, et al. 20.2% efficiency organic photovoltaics employing a π‐extension quinoxaline‐based acceptor with ordered arrangement[J]. Advanced Materials, 2024, 36(3), 2406690. [93] Hai J, Zhao W, Luo S, et al. Vinylene π-bridge: a simple building block for ultra-narrow bandgap nonfullerene acceptors enable 14.2% efficiency in binary organic solar cells[J]. Dyes and Pigments, 2021, 188, 109171. [94] Chai G, Chang Y, Zhang J, et al.Fine-tuning of side-chain orientations on nonfullerene acceptors enables organic solar cells with 17.7% efficiency[J]. Energy and Environmental Science, 2021, 4(1), 3469-3479. [95] Cao X, Wang P, Jia X, et al. Rebuilding peripheral F, Cl, Br footprints on acceptors enables binary organic photovoltaic efficiency exceeding 19.7%[J]. Angewandte Chemie International Edition, 2024, 137(5), e202417244. [96] Lang Y, Lai H, Fu Y, et al. Balanced miscibility and crystallinity by 2d acceptors enabled halogen‐free solvent‐processed organic solar cells to achieve 19.28% efficiency[J]. Advanced Materials, 2024, 37(1), 2413270. [97] Lai H, Chen H, Zhu Y, et al. Aggregation of small molecule and polymer acceptors with 2d-fused backbones in organic solar cells[J]. Macromolecules, 2022, 55(8), 3353-3360. [98] Xie L, Chen Z, Yang D, et al. Modulation of crystallization kinetics using a guest acceptor for high-performance organic solar cells with 19.8% efficiency[J]. Energy and Environmental Science, 2024, 17(2), 7838-7849. [99] Si X, Shi W, Wang R, et al. Suppressing non-radiative recombination and tuning morphology via central core asymmetric substitution for efficient organic solar cells[J]. Nano Energy, 2024, 131(1), 110204. [100] Liu W, Xu X, He S, et al. Three-arm star-shaped acceptor enables organic solar cell over 18% efficiency[J]. Macromolecules, 2023, 56(21), 8623-8631. [101] Chen Z, Zhu J, Yang D, et al. Isomerization strategy on non-fullerene guest acceptor enables stable organic solar cells over 19% efficiency[J]. Energy and Environmental Science, 2023, 16, 3119-3127. [102] Shi Y, Chang Y, Lu K, et al. Small reorganization energy acceptors enable low energy losses in non-fullerene organic solar cells[J]. Nature Communications. 2022, 23, 3256. [103] Gao X, Ma X, Liu Z, et al. Novel third components with (thio) barbituric acid as the end groups improving the efficiency of ternary solar cells[J]. ACS Applied Materials and Interfaces, 2022, 14(2), 23701-23708.
﹀
|
中图分类号: |
TB34
|
开放日期: |
2025-06-18
|