- 无标题文档
查看论文信息

论文中文题名:

 碳包覆Ga2O3基负极材料界面结构与电化学性能优化    

姓名:

 张叶雯    

学号:

 20211025019    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0805    

学科名称:

 工学 - 材料科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料科学与工程    

研究方向:

 新能源材料    

第一导师姓名:

 杜慧玲    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-19    

论文答辩日期:

 2023-06-04    

论文外文题名:

 Optimization of the interfacial structure and electrochemical performance of carbon-coated Ga2O3-based anode materials    

论文中文关键词:

 负极材料 ; 氧化镓 ; 界面结构 ; 电化学性能    

论文外文关键词:

 Gallium oxide-based composites ; Anode materials ; Interfacial structure ; Electrochemical properties    

论文中文摘要:

目前商用的锂离子负极材料石墨其理论容量较低,已无法满足不断增长的商业需求。因此,研究大功率、高能量密度、循环稳定性良好、反应动力学快速的锂离子负极材料成为当前研究的热点问题。氧化镓作为过渡金属氧化物中的一种,是典型的半导体材料,已广泛应用于光电和电化学领域,其较高的理论容量使得氧化镓成为研究的热点领域。本论文系统的探索了不同碳材料包覆氧化镓纳米球结构,对其电化学性能进一步优化,以推进材料的进一步广泛应用。

本文探索了还原氧化石墨烯包覆氧化镓纳米球复合结构与电化学性能优化。通过机械搅拌和冷冻干燥构筑三维还原氧化石墨烯包覆氧化镓结构。还原氧化石墨烯包覆氧化镓复合电极相较于纯氧化镓,其初始库伦效率、比容量以及循环稳定性都有明显的改善。在大电流密度下进行长循环性能测试,其容量相较于纯的氧化镓来说得到显著提升。纳米球结构可以缩短锂离子的传输路径,还原氧化石墨烯作为导电骨架提供了大量的电子通道,促进电子的转移,并且还原氧化石墨烯纳米片包覆氧化镓可以抑制氧化镓的体积膨胀,有效增强其循环稳定性。

通过一步水热法构筑了MXene纳米片包覆氧化镓纳米球这种耦合更为紧密的界面键合结构,提升电导率与结构稳定性,探索了其界面键合状态与电化学性能的影响,进一步改善氧化镓导电性差,循环稳定性差的问题。Ga2O3@MXene负极的循环500圈后其容量保持率高达58.4%,由于溶剂热反应,Ga3+与MXene的集中端的-OH基团之间的形成共价键,为界面共价键Ti-O-Ga,这极大地阻止了MXene纳米片的重新堆积,有利于电子的传输。同时,MXene纳米片包覆层抑制了氧化镓的体积膨胀,相较于低耦合的包覆结构,键合界面的构筑使其结构稳定性进一步增强。

为了进一步提升氧化镓的初始库伦效率以及反应动力学,构筑自聚合紧密包覆氧化镓结构。盐酸多巴胺在碱性条件下,沿着氧化镓纳米球表面发生自聚合反应,经过退火处理得到Ga2O3@PDA-C自聚合结构。其初始库仑效率由41.66%提升为69.5%,高于Ga2O3电极的初始库仑效率。自聚合形成的均匀紧密包覆的碳涂层增强了复合结构的稳定性,提高了电导率,并且提升反应动力学,使得赝电容贡献增加。Ga2O3@PDA-C具有优良的循环稳定性,其独特的石榴状结构提供了良好的循环性能,超薄含氮碳层可以有效的提高电极材料的电化学性能。因为自聚合紧密包覆结构可以使得电极/电解质之间的接触面积增大,电子和离子的扩散路径缩短,有效的改善了氧化镓初始库伦效率低、比容量低与反应动力学差等问题。

论文外文摘要:

The current commercial lithium ion anode material graphite with its low theoretical capacity can no longer meet the growing commercial demand. Therefore, the research of lithium-ion anode materials with high-power, high-energy density, good cycle stability and fast reaction kinetics has become a hot issue in current research. As one of the transition metal oxides, gallium oxide is a typical semiconductor material that has been widely used in optoelectronic and electrochemical fields, and its high theoretical capacity makes gallium oxide a hot area of research. In this thesis, the structure of gallium oxide nanospheres covered with different carbon materials is systematically explored to further optimize its electrochemical properties to promote the further wide application of this material.

This paper explores the optimization of the composite structure and electrochemical properties of reduced graphene oxide encapsulated gallium oxide nanospheres. The three-dimensional reduced graphene oxide covered gallium oxide structures were constructed by mechanical stirring and freeze-drying. The reduced graphene oxide encapsulated gallium oxide composite electrode shows significant improvements in initial Coulomb efficiency, specific capacity, multiplicative performance and cycling stability compared to pure gallium oxide. Long cycle performance tests at high current densities resulted in a capacity retention rate of 32.4%. The nanosphere structure can shorten the lithium-ion transport path, reduced graphene oxide as a conducting skeleton provides a large number of electron channels to facilitate electron transfer, and secondly reduced graphene oxide nanosheets encapsulated with gallium oxide can inhibit the volume expansion of the nanospheres, which in turn enhances their cycling stability.

In order to further improve the electrical conductivity and structural stability, I used MXene nanosheets to construct a more tightly coupled interfacial bonding structure by one-step hydrothermal hair, and explored the influence of its interfacial bonding state and electrochemical properties to further improve the poor electrical conductivity and cyclic stability of gallium oxide. The Ga2O3@MXene electrode has a capacity retention rate of 58.4 after 500 cycles. Due to the solvothermal reaction, the formation of covalent bonds between Ga3+ and the concentrated end-OH groups of MXene as interfacial covalent bonds Ti-O-Ga, which greatly prevented the re-stacking of MXene nanosheets and facilitated the electron transport. At the same time, the MXene nanosheet cladding layer inhibits the volume expansion of gallium oxide, and the construction obtained at the bonding interface further enhances its structural stability compared to the low-coupling cladding structure.

In order to further enhance the initial Coulomb efficiency as well as the reaction kinetics of Ga2O3, self-polymerized tightly packed Ga2O3 structures were constructed. Dopamine hydrochloride undergoes a self-polymerization reaction along the surface of gallium oxide nanospheres under alkaline conditions, and the Ga2O3@PDA-C self-polymerised structure is obtained after annealing treatment. Its initial coulombic coefficient was increased from 41.66% to 69.5%, which is higher than the initial coulombic efficiency of the Ga2O3 electrode. The homogeneous tightly packed carbon coating formed by the self-polymerization enhances the stability of the composite structure, improves the electrical conductivity and enhances the reaction kinetics, resulting in an increased pseudo-capacitance contribution. Ga2O3@PDA-C has excellent cycling stability, its unique garnet-like structure provides good cycling performance and the ultra-thin nitrogen-containing carbon layer can effectively improve the electrochemical performance of the electrode material. Because the self-polymerized tightly packed structure can make the contact area between electrode/electrolyte increased and the diffusion path of electrons and ions shortened, the problems of low initial Coulomb efficiency, low specific capacity and poor reaction kinetics of gallium oxide are effectively improved.

参考文献:

[1]HUGHES T P, KERRY J T, BAIRD A H, et al. Global warming impairs stock–recruitment dynamics of corals [J]. Nature, 2019, 568(7752): 387-390.

[2] 刘冰珂. 三维互联碳网络基复合材料构筑高性能碱金属离子电池负极 [D]; 吉林大学, 2022.

[3] JIN Y, TAN S, ZHU Z, et al. Hierarchical MoS2/C@ MXene composite as an anode for high-performance lithium-ion capacitors [J]. Applied Surface Science, 2022, 153778.

[4] DING J F, XU R, YAO N, et al. Non‐solvating and low‐dielectricity cosolvent for anion‐derived solid electrolyte interphases in lithium metal batteries [J]. Angewandte Chemie International Edition, 2021, 60(20): 11442-11447.

[5] SHANG H, GU Y, WANG Y, et al. N‐Doped Graphdiyne Coating for Dendrite‐Free Lithium Metal Batteries [J]. Chemistry–A European Journal, 2020, 26(24): 5434-5440.

[6] QIANG X, DU H, CAO B, et al. Boosting the lithium storage of tin dioxide nanotubes by MXene inks as conductive binder [J]. Chemistry Letters, 2022, 51(6): 585-589.

[7] 张扬. 石墨烯基杂化纤维的制备及其在高线容量柔性锂离子电池中应用的研究 [D]; 东华大学, 2022.

[8] 綦瑞萍, 杨绍斌, 王凤琴. 沥青包覆石墨用作锂离子电池负极材料的研究 [J]. 炭素, 2007, (2): 16-19.

[9] HAN B, YANG Y, SHI X, et al. Spontaneous repairing liquid metal/Si nanocomposite as a smart conductive-additive-free anode for lithium-ion battery [J]. Nano energy, 2018, 50: 359-366.

[10] EBNER M, MARONE F, STAMPANONI M, et al. Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries [J]. Science, 2013, 342(6159): 716-720.

[11] 韩笑. 镍钴锰酸锂锂离子电池研发及其缺陷和完善机理研究 [D]; 安徽理工大学, 2021.

[12] 肖雅丹. 磷化钼纳米粒子作为锂离子电池负极材料的制备及电化学性能 [D]; 大连理工大学, 2019.

[13] JI L, LIN Z, ALCOUTLABI M, et al. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries [J]. Energy & Environmental Science, 2011, 4(8): 2682-2699.

[14] XIAO X, YANG L, ZHAO H, et al. Facile synthesis of LiCoO2 nanowires with high electrochemical performance [J]. Nano Research, 2012, 5(1): 27-32.

[15] SHIMODA H, GAO B, TANG X, et al. Lithium intercalation into opened single-wall carbon nanotubes: storage capacity and electronic properties [J]. Physical review letters, 2001, 88(1): 015502.

[16] KIM M G, CHO J. Reversible and high‐capacity nanostructured electrode materials for Li‐ion batteries [J]. Advanced Functional Materials, 2009, 19(10): 1497-1514.

[17] ZHU J, LI Y, HU G. Large-scale synthesis of SnS/carbon nanotube composites with enhanced reversible lithium-ion storage [J]. Ionics, 2018, 24: 1265-1269.

[18] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of massless Dirac fermions in graphene [J]. nature, 2005, 438(7065): 197-200.

[19] YUAN J, ZHU J, BI H, et al. Self-assembled hydrothermal synthesis for producing a MnCO3/graphene hydrogel composite and its electrochemical properties [J]. RSC advances, 2013, 3(13): 4400-4407.

[20] 成雪莉, 张维福, 罗城城, et al. 一步水热法制备三维石墨烯/Fe3O4复合材料及其储锂性能研究 [J]. 储能科学与技术, 2023,12(4): 1066.

[21] NI J, LI Y. Carbon nanomaterials in different dimensions for electrochemical energy storage [J]. Advanced Energy Materials, 2016, 6(17): 1600278.

[22] SUN D, WANG M, LI Z, et al. Two-dimensional Ti3C2 as anode material for Li-ion batteries [J]. Electrochemistry communications, 2014, 47: 80-83.

[23] NAGUIB M, GOGOTSI Y. Synthesis of two-dimensional materials by selective extraction [J]. Accounts of chemical research, 2015, 48(1): 128-135.

[24] YUAN Z, GUO H, HUANG Y, et al. Composites of NiSe2@ C hollow nanospheres wrapped with Ti3C2Tx MXene for synergistic enhanced sodium storage [J]. Chemical Engineering Journal, 2022, 429: 132394.

[25] CHEN H, XIAO X, ZHU Q, et al. Flexible Mn3O4/MXene Films with 2D–2D Architectures as Stable and Ultrafast Anodes for Li-Ion Batteries [J]. ACS Applied Materials & Interfaces, 2022, 14(41): 46502-46512

[26] MA F X, WU H B, SUN X Y, et al. Hierarchical Mn3O4 Microplates Composed of Stacking Porous Nanosheets for High‐Performance Lithium Storage [J]. ChemElectroChem, 2017, 4(10): 2703-2708.

[27] 柏晓. 锂离子电池硅碳复合材料结构对其电化学性能影响规律的研究 [D]; 北京科技大学, 2023.

[28] ZHANG M, ZHANG T, MA Y, et al. Latest development of nanostructured Si/C materials for lithium anode studies and applications [J]. Energy Storage Materials, 2016, 4(1-14.

[29] SOHN M, PARK H-I, KIM H. Foamed silicon particles as a high capacity anode material for lithium-ion batteries [J]. Chemical Communications, 2017, 53(87): 11897-11900.

[30] 唐梦, 王帅, 吴沁宇, et al. 硅/金属氧化物复合负极材料研究进展 [J]. 功能材料, 2022, 53(09): 9051-9060+9072.

[31] CAO K, JIAO L, LIU H, et al. 3D hierarchical porous α-Fe2O3 nanosheets for high‐performance lithium‐ion batteries [J]. Advanced Energy Materials, 2015, 5(4): 1401421.

[32] DEKA S. Nanostructured mixed transition metal oxide spinels for supercapacitor applications [J]. Dalton Transactions, 2023,

[33] LU Y, YU L, LOU X W D. Nanostructured conversion-type anode materials for advanced lithium-ion batteries [J]. Chem, 2018, 4(5): 972-996.

[34] 周佳盈. 四氧化三钴基锂离子电池负极材料的赝电容性能研究 [D]; 湖北大学, 2022.

[35] TENG Y, YAMAMOTO S, KUSANO Y, et al. One-pot hydrothermal synthesis of uniformly cubic Co3O4 nanocrystals [J]. Materials Letters, 2010, 64(3): 239-242.

[36] WAN H, LIU Y, ZHANG H, et al. Improved lithium storage properties of Co3O4 nanoparticles via laser irradiation treatment [J]. Electrochimica Acta, 2018, 281: 31-38.

[37] HONG S-H, SONG M Y. Syntheses of nano-sized Co-based powders by carbothermal reduction for anode materials of lithium ion batteries [J]. Ceramics International, 2018, 44(4): 4225-4229.

[38] JING M, ZHOU M, LI G, et al. Graphene-embedded Co3O4 rose-spheres for enhanced performance in lithium ion batteries [J]. ACS Applied Materials & Interfaces, 2017, 9(11): 9662-9668.

[39] 刘超群, 乔秀丽, 迟彩霞. Fe2O3锂离子电池负极材料研究进展 [J]. 化学通报, 2022, 85(11): 1290-1296.

[40] ALI A, HANTANASIRISAKUL K, ABDALA A, et al. Effect of synthesis on performance of MXene/iron oxide anode material for lithium-ion batteries [J]. Langmuir, 2018, 34(38): 11325-11334.

[41] LIN J, RUAN L, WU J, et al. Design and synthesis of yolk–shell Fe2O3/N-doped carbon nanospindles with rich oxygen vacancies for robust lithium storage [J]. Physical Chemistry Chemical Physics, 2022, 24(48): 29520-29527.

[42] FRöSCHL T, HöRMANN U, KUBIAK P, et al. High surface area crystalline titanium dioxide: potential and limits in electrochemical energy storage and catalysis [J]. Chemical Society Reviews, 2012, 41(15): 5313-5360.

[43] PHAM T N, BUI V K H, LEE Y C. Recent advances in hierarchical anode designs of TiO2‐B nanostructures for lithium‐ion batteries [J]. International Journal of Energy Research, 2021, 45(12): 17532-17562.

[44] ZHEN M, ZHEN X, LIU L. Mesoporous nanoplate TiO2/reduced graphene oxide composites with enhanced lithium storage properties [J]. Materials Letters, 2017, 193:150-153.

[45] FU Y-X, DAI Y, PEI X-Y, et al. TiO2 nanorods anchor on reduced graphene oxide (R-TiO2/rGO) composite as anode for high performance lithium-ion batteries [J]. Applied Surface Science, 2019, 497: 143553.

[46] WANG Y, LI H, HE P, et al. Nano active materials for lithium-ion batteries [J]. Nanoscale, 2010, 2(8): 1294-1305.

[47] ZHANG W M, WU X L, HU J S, et al. Carbon coated Fe3O4 nanospindles as a superior anode material for lithium‐ion batteries [J]. Advanced Functional Materials, 2008, 18(24): 3941-3946.

[48] YANG W, CHEN D, JIANG Y, et al. Synergetic enhancement of sodium storage in gallium-based heterostructures [J]. Nano Energy, 2021, 89: 106395.

[49] VARLEY J B, WEBER J R, JANOTTI A, et al. Oxygen vacancies and donor impurities in β-Ga2O3 [J]. Applied Physics Letters, 2010, 97(14): 142106.

[50] LI L, WEI W, BEHRENS M. Synthesis and characterization of α-, β-, and γ-Ga2O3 prepared from aqueous solutions by controlled precipitation [J]. Solid state sciences, 2012, 14(7): 971-981.

[51] NAGARAJAN L, DE SOUZA R A, SAMUELIS D, et al. A chemically driven insulator–metal transition in non-stoichiometric and amorphous gallium oxide [J]. Nature materials, 2008, 7(5): 391-398.

[52] DELGADO M R, AREáN C O. Infrared Spectroscopic Studies on the Surface Chemistry of High‐Surface‐Area Gallia Polymorphs [J]. Zeitschrift für anorganische und allgemeine Chemie, 2005, 631(11): 2115-2120.

[53] KANG B, MANG S, SONG K, et al. Hydrothermal synthesis and characterization of uniform β-Ga2O3 hollow nanostructures by carbon nanospheres [J]. J Ceram Process Res, 2014, 15(3): 200-203.

[54] RYOU H, KIM S, LEE I G, et al. Photocatalytic Properties of Hydrothermally Synthesized Gallium Oxides at Different Phase Polymorphs [J]. Journal of the Semiconductor & Display Technology, 2021, 20(2): 98-102.

[55] PLAYFORD H Y, HANNON A C, TUCKER M G, et al. Characterization of structural disorder in γ-Ga2O3 [J]. The Journal of Physical Chemistry C, 2014, 118(29): 16188-16198.

[56] BöHM J. Über galliumoxyd und-hydroxyd [J]. Angew Chem, 1940, 53:131.

[57] ROY V. Hill, and EF Osborn [J]. J Am Chem Soc, 1952, 74(3): 719-722.

[58] ZINKEVICH M, ALDINGER F. Thermodynamic assessment of the gallium‐oxygen system [J]. Journal of the American Ceramic Society, 2004, 87(4): 683-691.

[59] ZHANG C, PARK S H, RONAN O, et al. Enabling flexible heterostructures for Li‐ion battery anodes based on nanotube and liquid‐phase exfoliated 2D gallium chalcogenide nanosheet colloidal solutions [J]. Small, 2017, 13(34): 1701677.

[60] BELIN C, TILLARD-CHARBONNEL M. Aspects of anionic framework formation: Clustering of p-block elements [J]. Coordination chemistry reviews, 1998, 178: 529-564.

[61] SAINT J, MORCRETTE M, LARCHER D, et al. Exploring the Li–Ga room temperature phase diagram and the electrochemical performances of the LixGay alloys vs. Li [J]. Solid State Ionics, 2005, 176(1-2): 189-197.

[62] TANG X, HUANG X, HUANG Y, et al. High-performance Ga2O3 anode for lithium-ion batteries [J]. ACS applied materials & interfaces, 2018, 10(6): 5519-5526.

[63] YANG M, SUN C, WANG T, et al. Graphene-oxide-assisted synthesis of Ga2O3 nanosheets/reduced graphene oxide nanocomposites anodes for advanced alkali-ion batteries [J]. ACS Applied Energy Materials, 2018, 1(9): 4708-4715.

[64] GUO J, GAO F, LI D, et al. Novel strategy of constructing hollow Ga2O3@ N-CQDs as a self-healing anode material for lithium-ion batteries [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(36): 13692-13700.

[65] NI S, CHEN Q, LIU J, et al. New insights into the Li-storage mechanism in α-Ga2O3 anode and the optimized electrode design [J]. Journal of Power Sources, 2019, 433: 126681.

[66] 王海斌, 陈蓝涛, 郑永军, et al. 钾离子电池负极材料的改进与展望 [J]. 电池, 2022, 52(04): 457-461.

[67] HUANG Y, TANG X, WANG J, et al. Two-dimensional Ga2O3/C nanosheets as durable and high-rate anode material for lithium ion batteries [J]. Langmuir, 2019, 35(42): 13607-13613.

[68] JIANG T, BU F, FENG X, et al. Porous Fe2O3 nanoframeworks encapsulated within three-dimensional graphene as high-performance flexible anode for lithium-ion battery [J]. ACS nano, 2017, 11(5): 5140-5147.

[69] LIU L, YANG X, LV C, et al. Seaweed-derived route to Fe2O3 hollow nanoparticles/N-doped graphene aerogels with high lithium ion storage performance [J]. ACS applied materials & interfaces, 2016, 8(11): 7047-7053.

[70] MENG Y, LIU X, XIAO M, et al. Reduced graphene oxide@ nitrogen doped carbon with enhanced electrochemical performance in lithium ion batteries [J]. Electrochimica Acta, 2019, 309: 228-233.

[71] WANG K, SHI Y-H, LI H-H, et al. Assembly of MnCO3 nanoplatelets synthesized at low temperature on graphene to achieve anode materials with high rate performance for lithium-ion batteries [J]. Electrochimica Acta, 2016, 215: 267-275.

[72] DAS B, DAS B, DAS N S, et al. Enhanced field emission properties of rGO wrapped Ga2O3 micro/nanobricks: Experimental investigation with theoretical validation [J]. Journal of Alloys and Compounds, 2022, 902: 163726.

[73] YU H, WANG T, WEN B, et al. Graphene/polyaniline nanorod arrays: synthesis and excellent electromagnetic absorption properties [J]. Journal of Materials Chemistry, 2012, 22(40): 21679-21685.

[74] CHEN Y, WANG Q, ZHU C, et al. Graphene/porous cobalt nanocomposite and its noticeable electrochemical hydrogen storage ability at room temperature [J]. Journal of Materials Chemistry, 2012, 22(13): 5924-5927.

[75] WANG C, WANG J, CHEN H, et al. An interlayer nanostructure of rGO/Sn2Fe-NRs array/rGO with high capacity for lithium ion battery anodes [J]. Science China Materials, 2016, 11(59): 927-937.

[76] SUN J-X, MI W, ZHANG D-S, et al. Synthesis of monoclinic structure gallium oxide film on sapphire substrate by magnetron sputtering [J]. Optoelectronics Letters, 2017, 13(4): 295-298.

[77] YANG D, WANG X, SHI J, et al. In situ synthesized rGO–Fe3O4 nanocomposites as enzyme immobilization support for achieving high activity recovery and easy recycling [J]. Biochemical engineering journal, 2016, 105: 273-280.

[78] KUMAR R, DUBEY P K, SINGH R K, et al. Catalyst-free synthesis of a three-dimensional nanoworm-like gallium oxide–graphene nanosheet hybrid structure with enhanced optical properties [J]. RSC advances, 2016, 6(21): 17669-17677.

[79] YANG D, VELAMAKANNI A, BOZOKLU G, et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy [J]. Carbon, 2009, 47(1): 145-152.

[80] XIAO Y-C, XU C-Y, WANG P-P, et al. Encapsulating MnO nanoparticles within foam-like carbon nanosheet matrix for fast and durable lithium storage [J]. Nano Energy, 2018, 50(675-684.

[81] BARSOUM M W. MAX phases: properties of machinable ternary carbides and nitrides [M]. John Wiley & Sons, 2013.

[82] SANG X, XIE Y, LIN M-W, et al. Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene [J]. ACS nano, 2016, 10(10): 9193-9200.

[83] WANG H, SONG X, LV M, et al. Interfacial Covalent Bonding Endowing Ti3C2‐Sb2S3 Composites High Sodium Storage Performance [J]. Small, 2022, 18(3): 2104293.

[84] TANG C S, XIA B, ZOU X, et al. Terahertz conductivity of topological surface states in Bi1. 5Sb0. 5Te1. 8Se1. 2 [J]. Scientific Reports, 2013, 3(1): 1-6.

[85] PAIER J, HIRSCHL R, MARSMAN M, et al. The Perdew–Burke–Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set [J]. The Journal of chemical physics, 2005, 122(23): 234102.

[86] GUO X, ZHANG P, XUE J. Ti2CO2 nanotubes with negative strain energies and tunable band gaps predicted from first-principles calculations [J]. The journal of physical chemistry letters, 2016, 7(24): 5280-5284.

[87] ZHANG Y, DU H, LU J, et al. Enhanced cyclic stability of Ga2O3@ PDA-C nanospheres as pseudocapacitive anode materials for lithium-ion batteries [J]. Fuel, 2023, 334: 126683.

[88] PENG M, YANG W, LI L, et al. Fast assembly of MXene hydrogels by interfacial electrostatic interaction for supercapacitors [J]. Chemical Communications, 2021, 57(82): 10731-10734.

[89] ZHAO M-Q, TORELLI M, REN C E, et al. 2D titanium carbide and transition metal oxides hybrid electrodes for Li-ion storage [J]. Nano Energy, 2016, 30: 603-613.

[90] ZHANG P, WANG D, ZHU Q, et al. Plate-to-layer Bi2MoO6/MXene-heterostructured anode for lithium-ion batteries [J]. Nano-micro letters, 2019, 11(1): 1-14.

[91] TIAN Y, AN Y, FENG J. Flexible and freestanding silicon/MXene composite papers for high-performance lithium-ion batteries [J]. ACS applied materials & interfaces, 2019, 11(10): 10004-10011.

[92] MU G, MU D, WU B, et al. Microsphere‐like SiO2/MXene hybrid material enabling high performance anode for lithium ion batteries [J]. Small, 2020, 16(3): 1905430.

[93] LIU Y T, ZHANG P, SUN N, et al. Self‐assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage [J]. Advanced Materials, 2018, 30(23): 1707334.

[94] WANG M, TAN G, REN H, et al. Direct double Z-scheme Og-C3N4/Zn2SnO4N/ZnO ternary heterojunction photocatalyst with enhanced visible photocatalytic activity [J]. Applied Surface Science, 2019, 492: 690-702.

[95] LIANG Y, ZHAO C Z, YUAN H, et al. A review of rechargeable batteries for portable electronic devices [J]. InfoMat, 2019, 1(1): 6-32.

[96] 赵晨雨, 李双鹏, 周佳盈, et al. 纳米片阵列NiO锂离子电池负极材料赝电容性能研究 [J]. 功能材料与器件学报, 2023, 29(01): 33-40.

[97] 田晓华, 余晨露, 郑瀚, et al. 硅碳复合结构对锂离子电池负极电化学性能的影响 [J]. 华东师范大学学报(自然科学版), 2022, 01): 52-61.

[98] LEE H, DELLATORE S M, MILLER W M, et al. Mussel-inspired surface chemistry for multifunctional coatings [J]. science, 2007, 318(5849): 426-430.

[99] LI F, MENG J, YE J, et al. Surface modification of PES ultrafiltration membrane by polydopamine coating and poly (ethylene glycol) grafting: Morphology, stability, and anti-fouling [J]. Desalination, 2014, 344: 422-430.

[100] LEI C, HAN F, LI D, et al. Dopamine as the coating agent and carbon precursor for the fabrication of N-doped carbon coated Fe3O4 composites as superior lithium ion anodes [J]. Nanoscale, 2013, 5(3): 1168-1175.

[101] JIANG Z, LI Y, HAN C, et al. Encapsulation of N-doped carbon layer via in situ dopamine polymerization endows nanostructured NaTi2(PO4)3 with superior lithium storage performance [J]. Ceramics International, 2020, 46(4): 4402-4409.

[102] JIANG F, LIU Y, WANG Q, et al. Hierarchical Fe3O4@ NC composites: ultra-long cycle life anode materials for lithium ion batteries [J]. Journal of Materials Science, 2018, 53(3): 2127-2136.

[103] WANG S, ZHU T, CHEN F, et al. Cr2P2O7 as a novel anode material for sodium and lithium storage [J]. Materials, 2020, 13(14): 3139.

[104] CARLI R, BIANCHI C. XPS analysis of gallium oxides [J]. Applied surface science, 1994, 74(1): 99-102.

[105] YANG S, XU Z, XU J, et al. High capacity Li3VO4-Ga2O3/NC as durable anode for Li-ion batteries via robust pseudocapacitive charge storage [J]. Journal of Alloys and Compounds, 2021, 868: 159115.

[106] ZHANG G, HOU S, ZHANG H, et al. High‐performance and ultra‐stable lithium‐ion batteries based on MOF‐derived ZnO@ ZnO quantum Dots/C core–shell nanorod arrays on a carbon cloth anode [J]. Advanced Materials, 2015, 27(14): 2400-2405.

[107] YANG S, CHEN Q, NI S, et al. Enhanced lithium ion storage in dual carbon decorated β-Ga2O3 rendered by improved reaction kinetics [J]. Journal of Alloys and Compounds, 2020, 828: 154484.

[108] PATIL S B, KIM I Y, GUNJAKAR J L, et al. Phase tuning of nanostructured gallium oxide via hybridization with reduced graphene oxide for superior anode performance in Li-ion battery: an experimental and theoretical study [J]. ACS applied materials & interfaces, 2015, 7(33): 18679-18688.

[109] ZHANG C J, PARK S H, RONAN O, et al. Enabling Flexible Heterostructures for Li-Ion Battery Anodes Based on Nanotube and Liquid-Phase Exfoliated 2D Gallium Chalcogenide Nanosheet Colloidal Solutions [J]. Small, 2017, 13.34 (2017): 1701677.

[110] GUO X, DING Y, XUE L, et al. A Self-Healing Room-Temperature Liquid-Metal Anode for Alkali-Ion Batteries [J]. Advanced Functional Materials, 2018, 28(46): 1804649.

[111] 张晨琰. 过渡金属硒化物作为钠离子电池负极材料的研究 [D]; 青岛大学, 2022.

[112] GE H, CHEN L, YUAN W, et al. Unique mesoporous spinel Li4Ti5O12 nanosheets as anode materials for lithium-ion batteries [J]. Journal of Power Sources, 2015, 297: 436-441.

[113] 马新刚, 臧玉魏, 谢连科, et al. 赝电容特性的三维SnS2/碳复合材料的制备及其储锂性能 [J]. 储能科学与技术, 2020, 9(05): 1467-1471.

中图分类号:

 TB332    

开放日期:

 2023-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式