- 无标题文档
查看论文信息

论文中文题名:

 耐热型3D打印光敏树脂的制备及性能研究    

姓名:

 宁蕾    

学号:

 18211203018    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085204    

学科名称:

 工学 - 工程 - 材料工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料工程    

研究方向:

 3D打印光敏材料    

第一导师姓名:

 陈进    

第一导师单位:

  西安科技大学    

论文提交日期:

 2021-06-22    

论文答辩日期:

 2021-06-02    

论文外文题名:

 Preparation and properties of heat-resistant 3D printing photosensitive resin    

论文中文关键词:

 SLA-3D打印 ; 有机硅 ; 二氧化钛 ; 纳米复合 ; 耐热性    

论文外文关键词:

 SLA-3D printing ; Organic silicon ; Titanium dioxide ; Nanocomposite ; Thermal stability    

论文中文摘要:

近年来,环氧树脂在紫外光3D打印固化耗材领域有众多应用成果,但由于自身存在交联密度高、固化后内应力大、脆性大、不耐冲击和耐热性能差等缺点,使其较难满足立体光固化成型技术(SLA)打印的应用要求。因此,对环氧树脂进行增韧补强,提高力学性能、耐热性能的改性研究具有重要意义。基于此,本论文选用常用的双酚A型环氧丙烯酸酯为基体,采用化学接枝和无机填料对树脂进行进一步改性,深入研究改性后环氧树脂的耐热性能、力学性能和微观形貌等。

首先通过研究稀释剂种类和含量、光引发剂含量、预聚物与稀释剂质量比对光敏树脂材料性能的影响,制备出了一种低黏度、低固化收缩率的SLA用3D打印光敏树脂,树脂黏度为222.2 mPa·s、固化收缩率为6.28%,符合SLA-3D打印要求。

选用异佛尔酮二异氰酸酯(IPDI)、羟基硅油和丙烯酸羟乙酯(HEA)为原料,制备了一种有机硅中间产物,采用化学接枝的方法将-Si-O-基团引入环氧树脂的侧链,实现了对环氧树脂的有机硅改性,系统研究了有机硅改性对环氧树脂力学性能、耐热性和微观形貌等方面的影响。结果表明,有机硅改性能明显降低树脂的固化收缩率,提高打印精度。另外,材料的力学性能显著提升,冲击强度和断裂伸长率分别提高了32.8%和8.65%,由脆性断裂转为韧性断裂,但材料的拉伸强度有所下降。改性后树脂的玻璃转化温度提高了8.46℃,T50%和Tmax分别提高了1.9℃和6℃,表明经有机硅改性后环氧树脂的耐热性能得到了提高。

选用硅烷偶联剂γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH-570)对纳米TiO2进行表面有机改性,并将改性后的二氧化钛对有机硅/环氧树脂进行改性,研究了不同添加量对有机硅光敏树脂材料力学性能和耐热性能的影响。结果表明,当KH-570含量20wt%时,表面改性二氧化钛分散性更好,团聚现象减少。当二氧化钛的添加量为1.5wt%时,光敏树脂的力学性能较优,拉伸强度、冲击强度和断裂伸长率较有机硅改性树脂分别提高了51.1%、43.8%和10.8%,硬度值保持在81-83 HD。T50%、Tmax和残炭率分别比有机硅改性环氧树脂的提高了1.44℃、1.34℃和23.8%,玻璃转化温度(Tg)在纳米TiO2添加量为2.5wt%时达到最大值,比纯环氧树脂和有机硅改性树脂分别提高了14.08℃和10.62℃,热稳定性能得到显著改善。

论文外文摘要:

Epoxy resin has been widely used in the field of UV 3D printing curing consumables in recent years, but it is difficult to meet the application requirements of SLA (Stereo Lithography Appearance) 3D printing due to its shortcomings, such as high cross-linking density, high internal stress after curing, brittle quality, poor impact resistance and thermal stability. Therefore, it is great significance to toughen and strengthen the epoxy resin to improve its mechanical properties and heat resistance. In this paper, the commonly used bisphenol A type epoxy acrylate as the matrix, using organic and inorganic fillers to further modify the resin, in-depth study of the modified epoxy resin thermal stability mechanical properties and microscopic morphology.

Firstly, the effects of diluent type and content, photoinitiator content and mass ratio of prepolymer to diluent on the properties of photosensitive resin materials were studied. A photosensitive resin with low viscosity and low curing shrinkage for SLA was prepared. The resin viscosity was 222.2 mPa·s and the curing shrinkage was 6.28%, which met the requirements of SLA-3D printing.

An organosilicone intermediate was prepared by using isophorone diisocyanate (IPDI), hydroxy silicone oil and hydroxyethyl acrylate (HEA) as raw materials. The silicone modification of epoxy resin was realized by introducing -Si-O- group into the side chain of epoxy resin by chemical grafting method. The effects of organosilicon modification on mechanical properties, thermal stability and microstructure of epoxy resin were systematically studied. The results showed that the curing shrinkage of epoxy resin modified by organosilicon were obviously reduced and the printing precision were improved. In addition, the mechanical properties of the material was significantly improved, the impact strength and elongation at break were increased by 32.8% and 8.65% respectively, and the brittle fracture was transformed 

into ductile fracture, but the tensile strength of the material was decreased. The glass conversion temperature of modified epoxy resin was increased by 8.46℃, T50% and Tmax were increased by 1.9℃ and 6℃, respectively, indicating that the thermal stability of modified epoxy resin can be improved by organosilicate.

A silane coupling agent γ-methylacrylloxy propyl trimethoxy silane (KH-570) was used to modify the surface of nano-sized TiO2, and the modified TiO2 was composite modified with epoxy resin modified by organosilicone. The effects of different addition amounts on the properties of organosilicone photosensitive resin materials were studied. The results showed that when the content of KH-570 reached 20%, which the dispersion of surface modified TiO2 was better, and the agglomeration phenomenon was obviously reduced. The tensile strength, impact strength and elongation at break were increased by 51.1%, 43.8% and 10.8%, respectively, compared with the silicone modified resin when the addition amount of titanium dioxide in the system was 1.5%, and the hardness value was maintained at 81-83 HD. The thermal stability was also improved, T50%, Tmax and carbon residue rate were increased by 1.44℃, 1.34℃ and 23.8%, respectively, compared with the silicone modified epoxy resin. The glass conversion temperature reached the maximum value when the addition amount was 2.5%, which was increased by 14.08℃ and 10.62℃, respectively, compared with the pure epoxy resin and the silicone modified resin.

参考文献:

[1] 张学军, 唐思熠, 肇恒跃, 等. 3D打印技术研究现状和关键技术[J]. 材料工程, 2016, 44(02): 122-128.

[2] 杜宇雷, 孙菲菲, 原光, 等. 3D打印材料的发展现状[J].徐州工程学院学报:自然科学版, 2014, 29(1): 20-24.

[3] Yue J, Zhao P, Gerasimov J Y, et al. 3D‐Printable antimicrobial composite resins[J]. Advanced functional materials, 2015, 25(43): 6756-6767.

[4] Gauvin R, Chen Y C, Lee J W, et al. Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography[J]. Biomaterials, 2012, 33(15): 3824-3834.

[5] Zhou T, Zhang L, Yao Q, et al. SLA 3D printing of high quality spine shaped β-TCP bioceramics for the hard tissue repair applications[J]. Ceramics International, 2020, 46(6): 7609-7614.

[6] Kruth J P. Material incress manufacturing by rapid prototyping techniques[J]. CIRP annals, 1991, 40(2): 603-614.

[7] 陈继民, 徐向阳, 肖荣诗. 激光现代制造技术[M]. 国防工业出版社, 2007.

[8] 杨佳文. 3D打印技术在航天领域的应用[J]. 国际太空, 2015, 9: 50-55.

[9] 朱丽莎, 陈宇明, 李鹤飞等. 3D 打印用光敏树脂材料及其在口腔医学领域的应用[J].中国组织工程研究, 2018, 22(6): 979-984.

[10] Chia H N, Wu B M. Recent advances in 3D printing of biomaterials[J]. Journal of biological engineering, 2015, 9(1): 1-14.

[11] 施健, 张慧, 范育帅.光固化3D打印技术在首饰蜡模制作中的应用[J]. 机械设计与研究, 2020, 36(01): 158-160+168.

[12] Compton B G, Lewis J A. 3D‐printing of lightweight cellular composites[J]. Advanced materials, 2014, 26(34): 5930-5935.

[13] Espalin D, Muse D W, Macdonald E, et al. 3D Printing Multi Functionality: Structures with Electronics [J]. International Journal of Advanced Manufacturing Technology, 2014, 72(5-8): 963-978.

[14] Amir A, et al. Additive Manufacturing of Biomaterials, Tissues, and Organs[J]. Annals of Biomedical Engineering, 2017, 45(1): 1-11.

[15] Murphy S V, Atala A. 3D bioprinting of tissues and organs[J]. Nature biotechnology, 2014, 32(8): 773-785.

[16] Keriquel V, Oliveira H, Rémy M, et al. In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications[J]. Scientific reports, 2017, 7(1): 1-10.

[17] Banks J. Adding value in additive manufacturing: researchers in the United Kingdom and Europe look to 3D printing for customization[J]. IEEE pulse, 2013, 4(6): 22-26.

[18] 沈卫东, 林芳. 3D打印技术在汽车研发中的应用[J]. 汽车工程师, 2016, No.227(03): 15-19.

[19] Advances in 3D printing & additive manufacturing technologies[M]. Springer Singapore, 2017.

[20] Fuller J K. Stereolithographic rocket motor manufacturing method: U.S. Patent 8,225, 507[P]. 2012-7-24.

[21] Perekatov Y A, Gladkov V I, Krylov E A, et al. Technological facilities for improving the quality of production and restructurisation of car production plants[J]. Welding international, 2003, 17(9): 750-752.

[22] 崔世强, 李兰芬, 崔波.快速成形制造技术的基本原理与方法[J],河北工业科技1999, 16(4): 56-59.

[23] Zhou M, Liu W, Wu H, et al. Preparation of a defect-free alumina cutting tool via additive manufacturing based on stereolithography–Optimization of the drying and debinding processes[J]. Ceramics international, 2016, 42(10): 11598-11602.

[24] Karalekas D E. Study of the mechanical properties of nonwoven fibre mat reinforced photopolymers used in rapid prototyping[J]. Materials & design, 2003, 24(8): 665-670.

[25] Wu Z, Liu W, Wu H, et al. Research into the mechanical properties, sintering mechanism and microstructure evolution of Al2O3-ZrO2 composites fabricated by a stereolithography-based 3D printing method[J]. Materials Chemistry and Physics, 2018, 207: 1-10.

[26] Saini J S, et al. Investigations of the mechanical properties on different print orientations in SLA 3D printed resin[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234(11): 2279-2293.

[27] 董岩. 光致抗蚀干膜的制备及性能研究[D]. 广东:华南理工大学.

[28] 蔡琳琳. 耐热3D打印树脂的制备工艺[D]. 辽宁:辽宁大学, 2018.

[29] Gurr M, Hofmann D, Ehm M, et al. Acrylic nanocomposite resins for use in stereolithography and structural light modulation based rapid prototyping and rapid manufacturing technologies[J]. Advanced Functional Materials, 2008, 18(16): 2390-2397.

[30] 赵长松. 基于光固化微压印的扩散膜制备工艺设备及成型机理研究[D]. 北京:北京化工大学, 2019.

[31] 王永祯, 王爱玲, 许并社.立体光造型过程中光敏树脂的研究[J]. 中山大学学报(自然科学版), 2007(S1): 65-66.

[32] Onuh S O, et al. Improving Stereolithography Part Accuracy for Industrial Applications [J]. International Journal of Advanced Manufacturing Technology, 2001, 17(1): 61-68.

[33] 程显为. UV固化含硅有机/无机杂化材料的制备及性能研究[D]. 杭州:杭州师范大学, 2015.

[34] Sangermano M, Messori M, Rizzoli A, et al. UV-cured epoxy coatings modified with perfluoropolyether-based materials[J]. Progress in Organic Coatings, 2010, 68(4): 323-327.

[35] Li T X, Chen F. Study of Organic Fluorine Modified Epoxy Acrylic Cathodic Electrodeposition Coatings[C]. Applied Mechanics and Materials. Trans Tech Publications Ltd, 2015, 722: 30-33.

[36] Wang Y, Li C, Tuo X, et al. Polyethylene glycol modified epoxy acrylate UV curable 3D printing materials[J]. Journal of Applied Polymer Science, 2021, 138(13): 50102.

[37] Xu Y, Luo J, Liu X, et al. Polyurethane modified epoxy acrylate resins containing ε-caprolactone unit[J]. Progress in Organic Coatings, 2020, 141: 105543.

[38] 朱岳. 3D打印用光敏树脂的研究[J]. 山西化工, 2020, 189(05):42-45.

[39] Cui M, Zhang L, Lou P, et al. Study on thermal degradation mechanism of heat-resistant epoxy resin modified with carboranes[J]. Polymer Degradation and Stability, 2020, 176: 109143.

[40] Yeasmin F, Mallik A K, Chisty A H, et al. Remarkable enhancement of thermal stability of epoxy resin through the incorporation of mesoporous silica micro-filler[J]. Heliyon, 2021, 7(1): e05959.

[41] Barkane A, Platnieks O, Jurinovs M, et al. Thermal stability of UV-cured vegetable oil epoxidized acrylate-based polymer system for 3D printing application[J]. Polymer Degradation and Stability, 2020, 181: 109347.

[42] Ke H, Zhao L, Zhang X, et al. Performance of high-temperature thermosetting polyimide composites modified with thermoplastic polyimide[J]. Polymer Testing, 2020, 90:106746.

[43] 胡芳友, 余周辉, 何西常, 等. 有机硅改性环氧树脂的光固化动力学与性能研究[J]. 装备环境工程, 2018, 015(002): 8-13.

[44] Yu Z, Cui A, Zhao P, et al. Preparation and properties studies of UV-curable silicone modified epoxy resin composite system[J]. Journal of applied biomaterials & functional materials, 2018, 16(1_suppl): 170-176.

[45] Jin F L, Ma C L, Guo B T, et al. Effect of Surface Modification on Thermal Stability, Flexural Properties, and Impact Strength of Epoxy/Graphene Nanocomposites[J]. Bulletin of the Korean Chemical Society, 2019, 40(10): 991-996.

[46] Shen Z, Xia Z, Zhang Y. Characterization and properties of epoxy resin (E-20) modified with silicone intermediate RSN-6018[J]. Progress in Organic Coatings, 2018, 114: 115-122.

[47] Mubarak S, Dhamodharan D, Kale M B, et al. A Novel Approach to Enhance Mechanical and Thermal Properties of SLA 3D Printed Structure by Incorporation of Metal–Metal Oxide Nanoparticles[J]. Nanomaterials, 2020, 10(2): 217.

[48] Al-Turaif H A. Effect of TiO2 surface treatment on the mechanical properties of cured epoxy resin[J]. Journal of coatings technology and research, 2011, 8(6): 727.

[49] Mubarak S, Dhamodharan D, Divakaran N, et al. Enhanced Mechanical and Thermal Properties of Stereolithography 3D Printed Structures by the Effects of Incorporated Controllably Annealed Anatase TiO2 Nanoparticles[J]. Nanomaterials, 2020, 10(1): 79.

[50] Sangermano M, Messori M, Rizzoli A, et al. UV-cured epoxy coatings modified with perfluoropolyether-based materials[J]. Progress in Organic Coatings, 2010, 68(4): 323-327.

[51] 陈子龙.基于SiO2填充改性的快速光固化树脂的制备工艺及其性能研究[D]. 上海:华东理工大学, 2016.

[52] Decker C, Viet T N T, Decker D, et al. UV-radiation curing of acrylate/epoxide systems[J]. Polymer, 2001, 42(13): 5531-5541.

[53] Sumiyoshi T, Schnabel W, Henne A. Photolysis of acylphosphine oxides II: The influence of methyl substitution in benzoyldiphenylphosphine oxides[J]. Journal of photochemistry, 1986, 32(1): 119-129.

[54] 邓勇宏. 有机硅改性环氧树脂及其纳米复合的研究[D]. 广东:华南理工大学, 2018.

[55] Ma S, Liu W Q, Yu D, et al. Modification of epoxy resin with polyether-grafted-polysiloxane and epoxy-miscible polysiloxane particles[J]. Macromolecular research, 2010, 18(1): 22-28.

[56] Zhang K, Shen M M, Wu K, et al. Comparative study on flame retardancy and thermal degradation of phosphorus-and silicon-containing epoxy resin composites[J]. Journal of Polymer Research, 2011, 18(6): 2061-2070.

[57] Garoushi S, Vallittu P K, Watts D C, et al. Effect of nanofiller fractions and temperature on polymerization shrinkage on glass fiber reinforced filling material[J]. Dental materials, 2008, 24(5): 606-610.

[58] Zou H, Wu S, Shen J. Polymer/silica nanocomposites: preparation, characterization, properties, and applications[J]. Chemical reviews, 2008, 108(9): 3893-3957.

[59] 何丽红,周超,李力,卢章天.硅烷偶联剂表面改性二氧化钛粒子超疏水性能[J]. 精细化工, 2014, 31(09): 1061-1064.

[60] 姚超, 高国生, 林西平, 等. 硅烷偶联剂对纳米二氧化钛表面改性的研究[J]. 无机材料学报, 2006(02): 315-321.

[61] 李小刚. 硅烷偶联剂KH-570湿法改性TiO2的结构与性能研究[J]. 2012, 33(09): 39-41.

[62] 王小腾, 齐迪, 丁云雨,邱俊峰, 林润雄. KH550改性钛白粉及其在光敏树脂中的应用 [J]. 热固性树脂, 2015, 30 (05): 54-57+66.

[63] Liu P, Gu A, Liang G, et al. Preparation and properties of novel high performance UV-curable epoxy acrylate/hyperbranched polysiloxane coatings[J]. Progress in Organic Coatings, 2012, 74(1): 142-150.

[64] Rosso P, Ye L, Friedrich K, et al. A toughened epoxy resin by silica nanoparticle reinforcement[J]. Journal of Applied Polymer Science, 2006, 100(3): 1849-1855.

中图分类号:

 TQ320.63    

开放日期:

 2021-06-22    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式