论文中文题名: | 煤自燃高温区域蔓延行为实验研究 |
姓名: | |
学号: | 19220214091 |
保密级别: | 保密(1年后开放) |
论文语种: | chi |
学科代码: | 085224 |
学科名称: | 工学 - 工程 - 安全工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 煤火灾害防控 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-20 |
论文答辩日期: | 2022-05-31 |
论文外文题名: | Experimental study on spreading behavior of coal spontaneous combustion in high temperature area |
论文中文关键词: | |
论文外文关键词: | Coal spontaneous combustion ; High temperature area ; Gas products ; Oxygen consumption rate ; Key functional groups ; Spreading behavior |
论文中文摘要: |
高温区域不断移动是造成煤自燃发展的主要原因,因此,研究高温区域的蔓延特征对揭示煤自燃形成演化机理和判定发展趋势有重要的科学意义。本文分析煤自燃过程中高温区域的温度分布和气体变化规律,研究高温区域蔓延行为,为煤自燃高温区域的反演识别提供理论依据。 首先,采用煤质分析、热重和扫描电镜实验对煤样进行了物理化学特性分析。然后,采用自主研发的煤自燃发展演化模拟实验系统对煤自燃升温-降温全过程中不同测点的温度变化进行了监测,确定了高温区域及其蔓延路径。研究表明实验过程中,上部煤样温度变化受环境蓄热和传热的影响,下部煤样温度变化受孔隙和火风压作用影响,导致煤样的高温区域移动呈非线性特征,主要沿炉体中部及东南侧方向蔓延。随深度加深,达到燃点温度时间呈线性变化,达到峰值温度时间则呈现多项式变化。 其次,研究高温区域关键点的氧气浓度、耗氧速率以及CO、C2H4等典型煤自燃气体产物的变化规律,掌握了高温区域的气体变化规律。发现升温阶段氧气浓度呈减小趋势,降温阶段氧气浓度呈增大趋势,耗氧速率与氧气浓度变化呈现负相关。升温阶段在30~300℃时CO浓度缓慢增大至30000ppm,C2H4气体浓度缓慢增加至400ppm;300~600℃时CO浓度迅速增大至60000ppm,C2H4气体浓度迅速增加至1000ppm 600~800℃时CO和C2H4浓度达到峰值。降温阶段在400℃时CO浓度降低至5000ppm,在300~200℃时出现复燃现象,使得煤发生二次氧化,导致气体浓度出现波动;C2H4气体浓度在600~300℃的过程中快速减小至150ppm,200℃之后则缓慢减少至实验结束。随着深度加深,CO气体浓度逐渐增大,C2H4气体浓度逐渐降低。 最后,采用灰色关联度分析方法,研究高温区域蔓延过程中的官能团的迁移规律以及官能团对高温区域气体释放的影响规律,揭示高温区域蔓延的内在原因。随着温度的升高,羟基含量逐渐增大,脂肪烃含量逐渐减少,芳烃C=C含量逐渐降低,烷基醚、芳香醚、多种取代烃等活性官能团含量先增大后降低。得出在燃点温度时官能团的活性和对气体释放的影响达到最大。高温区域向下蔓延过程中,各层煤样的特征温度发生滞后效应,达到特征温度的时间不同,因此,造成影响指标气体产生的活性官能团种类具有多样性。在燃点温度之前,随着深度加深,作用于CO和C2H4气体产生的官能团主要有分子内O-H、-CH3的伸缩振动、Ar-CH面外弯曲振动和酯类C=O;燃点温度之后游离-OH、-CH2的伸缩振动、芳环C=C和醚类对CO气体释放的影响作用大,-CH3的伸缩振动、芳环C=C和Ar-CO对C2H4气体释放影响作用较大。 |
论文外文摘要: |
The continuous movement of the high temperature area is the main cause of the development of coal spontaneous combustion (CSC). Therefore, the spreading characteristics of high temperature area is of scientific significance to reveal the evolution mechanism of CSC and determine the development trend. This paper analyzes the temperature distribution and gas variation law in the process of CSC. The spread behavior of high temperature area can provide theoretical basis for the inversion identification of high temperature area. First, the physicochemical characteristics of the coal samples were analyzed by coal quality analysis, thermogravimetric experiment (TG), Differential scanning calorimetry experiment (DSC) and scanning electron microscope (SEM) experiments. Then, the CSC development and evolution simulation experimental system is used to monitor the temperature change of different measurement points in the whole process of coal spontaneous combustion heating-cooling. The high temperature region and its spreading path are determined. The study shows that the temperature change of the upper coal sample is affected by environmental heat storage and heat transfer, and the lower coal sample temperature change is affected by pore and fire air pressure. As a result, the high temperature area movement of the coal sample is non-linear, mainly spreading along the middle and southeast direction of the furnace body. With the depth deepening, the time of the ignition temperature changes linearly, and the time of the peak temperature changes in a polynomial manner. Secondly, the oxygen concentration and oxygen consumption rate of the key points of the high temperature area and the change rules of the typical CSC gas products in the high temperature area are studied. Master the law of gas change in the high temperature area. It was found that the oxygen concentration decreased in the heating stage, and increased in the cooling stage, and the oxygen consumption rate was negatively correlated with the change of oxygen concentration. In the heating stage, the CO concentration of 30~300℃ slowly increased to 30,000 ppm, and the C2H4 gas concentration slowly increased to 400 ppm; The CO concentration at 300 to 600℃ was increased rapidly to 60000 ppm, and the C2H4 gas concentration was rapidly increased to 1000 ppm; The CO and C2H4 concentrations peaked at 600 ~ 800℃. During the cooling stage, the CO concentration was decreased to 5000 ppm at 400℃. At 300~200℃, the coal occurs secondary oxidation, resulting in the fluctuation of gas concentration. The C2H4 gas concentration was rapidly reduced to 150 ppm between 600 to 300℃, and slowly reduced after 200℃ until the end of the experiment. As the depth deepens, the CO gas concentration gradually increases, and the C2H4 gas concentration gradually decreases. Finally, the grey correlation degree analysis method is used to study the migration rules of functional groups during the spreading in high temperature regions and the influence rules of functional groups on the gas release in high temperature regions. Explain the internal causes of high temperature area spread. With the increase of temperature, the hydroxyl content gradually increases, the content of aliphatic hydrocarbon is gradually reduced, the content of aromatics C=C gradually decreases, and the content of active functional groups such as alkyl ether, aromatic ether, and various substituted hydrocarbons increases first and then decreases. The activity of the functional group and the influence on the gas release are maximized at the ignition temperature. In the process of downward spread of high temperature area, the characteristic temperature of each layer has lag effect, and the time to reach the characteristic temperature is different, therefore, the types of active functional groups affecting the index gas are diverse. Before the ignition point temperature, with the depth, the functional groups produced by CO and C2H4 gas mainly include the intramolecular hydrogen bond、methyl shear vibration、various substitution of aromatic hydrocarbons and acetal groups of esters. After the ignition temperature, free hydroxyl group、methylene shear vibration、aromatic ring C=C expansion vibration and ethers influence on CO gas release. Methyl expansion vibration、aromatic ring C=C expansion vibration and aromatic oxide have great effects on C2H4 gas release. |
参考文献: |
[1] 李天太. “双碳目标”下传统化石能源与新能源发展趋势浅析[J]. 陕西教育(高教), 2022, (03): 5–6. [2] 章飞. 复合采空区遗煤自燃极限参数变化及危险区域判定[J]. 矿业安全与环保, 2020, 47(04): 66–72. [5] 李皎, 陈晋, 耿宝军. 海州露天矿环境地质灾害演化趋势及对策[J]. 辽宁工程技术大学学报, 2005(04): 520–523. [11] 李林, 陈军朝, 姜德义, 等. 煤自燃全过程高温区域及指标气体时空变化实验研究[J]. 煤炭学报, 2016, 41(02): 444–450. [12] 刘竞龙, 汪云甲, 闫世勇, 等. 乌鲁木齐东侧煤火多源遥感融合探测[J]. 煤矿安全, 2019, 50(08): 158–161. [13] 朱红青, 袁杰, 赵金龙, 等. 地下煤火分布及探测技术现状研究[J]. 工业安全与环保, 2019, 45(12): 28–32. [16] 王福生, 高湛翔, 高东. 基于差减图谱分析的煤低温氧化活性基团转化规律[J]. 煤矿安全, 2022, 53(03): 43–49. [17] 唐梦迎, 丁建丽, 夏楠. 新疆老君庙煤矿火区地表温度反演及时空变化分析[J]. 中国矿业, 2018, 27(05): 164–167. [20] 赵立克, 张辛亥, 郑仲明. 新型凝胶防灭火技术在大采高综采工作面自燃防治中的应用[J]. 煤矿安全, 2020, 51(10): 131–134. [23] 邓军, 白祖锦, 肖旸, 等. 煤自燃灾害防治技术现状与挑战[J]. 煤矿安全, 2020, 51(10): 118–125. [26] 周洪文, 赵飞. 煤田火区气态污染物扩散影响区域模拟研究[J]. 煤矿安全, 2017, 48(02): 36–39. [27] 陈晓坤, 王晨熹, 翟小伟. 基于热爆炸理论的煤燃点确定及动力学分析[J]. 中国安全科学学报, 2022, 32(02): 59–65. [28] 秦波涛, 仲晓星, 王德明, 等. 煤自燃过程特性及防治技术研究进展[J]. 煤炭科学技术, 2021, 49(01): 66–99. [30] 徐精彩, 葛岭梅, 贺敦良. 煤炭低温自燃过程的研究[J]. 煤炭工程师, 1989, (05): 7–13. [31] 邓军, 徐精彩, 王洪权. 圆柱形煤自然发火实验台的数值模拟研究[J]. 辽宁工程技术大学学报(自然科学版), 2002, (02): 129–132. [35] 王怡, 谢军, 任广意. 采空区遗煤自然发火的指标气体研究[J]. 矿业研究与开发, 2020, 40(10): 118–122. [36] 陈长华, 王真. 采空区自然发火位置相似模拟模型[J]. 辽宁工程技术大学学报(自然科学版), 2009, 28(S2): 1–3. [38] 王依磊, 王坚志, 邹宗望, 等. 高地温矿井煤自燃特性及极限参数研究[J]. 煤炭技术, 2020, 39(10): 90–93. [39] 罗振敏, 郝苗, 苏彬, 等. 采空区瓦斯运移规律实验及数值模拟[J]. 西安科技大学学报, 2020, 40(01): 31–39. [41] 肖旸, 李青蔚, 鲁军辉. 空气相对湿度对煤自燃特性的影响研究[J]. 中国安全科学学报, 2015, 25(03): 34–40. [42] 岳宁芳, 金彦, 孙明福, 等. 基于多指标气体的煤自燃进程分级预警研究[J]. 安全与环境学报, 2020, 20(06): 2139–2146. [43] 邓军, 任帅京, 任立峰, 等. 川东地区煤自燃危险指标及极限参数[J]. 西安科技大学学报, 2021, 41(02): 196–202. [45] 李亚超, 赵国庆, 王聖齐, 等. 含高温热源的储煤筒仓温度场实验研究[J]. 节能, 2019, 38(08): 41–46. [46] 刘培森. 基于自由基反应的易自燃煤低温氧化过程分析[J]. 煤矿安全, 2018, 49(07): 164–166. [47] 刘振岭, 郑忠亚. 采空区煤体自燃温度场演变模拟试验研究[J]. 煤炭科学技术, 2020, 48(08): 114–120. [49] 曾强, 王德明. 基于热动力特性分析的地下煤火火源温度计算[J]. 采矿与安全工程学报, 2011, 28(04): 628–632. [50] 邓军, 徐精彩, 张辛亥. 综放面采空区温度场动态数学模化及应用[J]. 中国矿业大学学报, 1999(02): 3–5. [51] 曲国娜, 李红健, 贾廷贵, 等. 煤堆自燃特征的试验研究与数值模拟[J]. 中国安全科学学报, 2021, 31(12): 69–77. [53] 谭波, 牛会永, 和超楠, 等. 回采情况下采空区煤自燃温度场理论与数值分析[J]. 中南大学学报(自然科学版), 2013, 44(01): 381–387. [54] 崔铁军, 马云东, 王来贵. 露天矿边坡残煤自燃温度场及燃深研究[J]. 安全与环境学报, 2016, 16(06): 50–54. [55] 王建乔, 吴哲鹏, 季雄冠, 等. 大型煤堆自燃特征及其影响因素试验研究[J]. 能源工程, 2021(02): 9–13. [59] 岳小栋, 王巨丰, 袁学强, 等. 采空区自燃火区温度场演化规律分析研究[J]. 煤炭技术, 2011, 30(03): 107–109. [61] 张红芬, 曹伟, 王宝夫, 等. 松散顶煤自燃流—固—热—化耦合数值模拟[J]. 华北科技学院学报, 2020, 17(04): 1–5. [62] 卞晓锴, 包宗宏, 史美仁. 采空区温度场模拟及煤自燃状态预测[J]. 南京化工大学学报(自然科学版), 2000(02): 43–47. [66] 梁运涛. 煤炭自然发火预测预报的气体指标法[J]. 煤炭科学技术, 2008(06): 5–8. [68] 范森山. 塔山矿3-5煤自然氧化气体生成规律实验研究[J]. 煤炭与化工, 2022, 45(03): 105–107. [70] 郑凯月, 杨永良, 苗国栋, 等. 浸水过程对采空区遗煤自燃特性影响机理[J]. 燃烧科学与技术, 2021, 27(06): 665–674. [72] 赵婧昱, 张永利, 邓军, 等. 影响煤自燃气体产物释放的主要活性官能团[J]. 工程科学学报, 2020, 42(09): 1139–1148. [74] 葛岭梅, 李建伟. 神府煤低温氧化过程中官能团结构演变[J]. 西安科技学院学报, 2003(02): 187–190. [77] 孙维丽, 师吉林, 张海洋, 等. 低变质煤种煤自燃过程中生成CO的氧化中间官能团分析[J]. 煤矿安全, 2021, 52(03): 217–221. [78] 张镭, 郑万成, 赵波. 同一煤层煤和煤矸石氧化过程中自由基及CO的变化规律研究[J]. 能源与环保, 2021, 43(11): 147–152. [80] 朱红青, 屈丽娜, 沈静, 等. 不同因素对煤吸氧量、热焓影响的试验研究[J]. 中国安全科学学报, 2012, 22(10): 30–35. [81] 李晓霞, 姚有利, 张爱然. 基于煤自燃防治视角的升温速率对煤低温预氧化热流变化特性的影响研究[J]. 安全与环境工程, 2018, 25(04):112–118. [82] 刘爱华, 傅雪海, 梁文庆, 等. 不同煤阶煤孔隙分布特征及其对煤层气开发的影响[J]. 煤炭科学技术, 2013, 41(04): 104–108. [83] 郭军, 李帅, 蔡国斌, 等. 采空区隐蔽火源探测及声学法煤温感知新技术探讨[J]. 中国安全生产科学技术, 2021, 17(06): 5–11. |
中图分类号: | TD 752.2 |
开放日期: | 2023-06-21 |