- 无标题文档
查看论文信息

论文中文题名:

 高温温差发电装置集热器结构的仿真及实验研究    

姓名:

 刘晓江    

学号:

 20205224123    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085500    

学科名称:

 工学 - 机械    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 机械工程学院    

专业:

 机械工程    

研究方向:

 温差发电及热电转换    

第一导师姓名:

 高怀斌    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-14    

论文答辩日期:

 2023-06-01    

论文外文题名:

 Simulation and Experimental Study on Heat Collector Structure of High Temperature Thermoelectric Power Generation Device    

论文中文关键词:

 温差发电 ; 集热器 ; 分流桶 ; 强化换热 ; 输出特性    

论文外文关键词:

 Thermoelectric power generation ; Heat collector ; Shunt bucket ; Enhanced heat transfer ; Output characteristics    

论文中文摘要:

余热利用是实现“碳达峰”与“碳中和”双重目标的重要举措。基于热电热效应的温差发电技术可直接将热能转化为电能,因其具有无污染、耐候性强、维护方便等优点,可对回收难度较大的高温余热进行有效利用。高温余热最突出的特点是其在流动过程中自身携带的剩余热量占比较大,因此提升此部分热量的利用率已成为该技术发展的一个重要方向。本文设计了一种针对高温烟气的圆筒式温差发电装置,并搭建了实验平台,重点分析了不同集热器类型和集热器结构参数对装置换热效果和输出特性的影响,旨在通过增强换热提升装置的热电性能,主要研究工作如下:

(1)系统阐述了热电效应的相关理论,确定了温差发电装置性能优劣的评价标准,建立了温差发电系统的传热模型,理论分析了装置热端、冷端以及热电模块之间的传热流程,依据热阻网络图及传热方式对集成后温差发电系统的热量转换进行理论计算。

(2)建立了翅片式集热器和分流桶式集热器的强化换热模型,对不同类型集热器进行仿真分析,结果表明:增加翅片导热面积对装置换热效果的提升有限,热电模块的冷热端温差沿烟气流向逐渐降低;分流桶式集热器可以增强烟气的湍流强度,改变了烟气沿流向热能耗散过程中热电模块温差逐渐降低的缺点,其结构参数变化对换热效果的提升较为灵活。

(3)数值模拟研究了分流桶式集热器结构参数对装置性能的影响,结果表明:分流桶端盖未开孔下热电模块冷热端温度、温差显著大于端盖开孔结构。分流孔直径和分流桶直径对热电模块冷热端温差和温度分布均匀性的敏感度较高,分流孔直径最小(2mm)且分流桶直径适中(130mm)条件下装置的换热性能较好。分流孔排间距和分流孔数量对排气压降的敏感度较大,排间距为10mm、每排分流孔数量为24时装置的排气压降较低。分流桶直径最大时(140mm),渐变分流孔直径下(2.9mm-2.5mm-2.2mm-2.0mm),装置的换热性能进一步提高,排气压降也相对减小。

(4)实验测试与仿真结果的对比分析验证了分流桶式集热器强化换热的有效性,实验结果表明:换热较优的分流桶结构下装置的发电性能也较强。分流桶直径为130mm,分流孔直径为2mm时热电模块的平均温差为138℃,装置的最大输出功率为85.4W,热电转换效率为2.9%;分流桶直径为140mm时,分流孔渐变直径下(2.9mm-2.5mm-2.2mm-2.0mm)热电模块的平均温差进一步升高,为151℃,最大输出功率达到89.1W,热电转换效率提升至3.2%。

论文外文摘要:

The recycling of waste heat is an important measure to achieve the dual goals of "carbon peak" and "carbon neutrality". The technology of thermoelectric power generation based on thermoelectric conversion effect which can directly convert heat energy into electric energy. Because of its advantages of no pollution, strong weather resistance, convenient maintenance and so on, the high temperature waste heat which is difficult to collect can be effectively utilized. The most prominent characteristic of high temperature waste heat is that the residual heat carried by itself in the flow process accounts for a large proportion. Therefore, improving the utilization rate of this part of heat has become an important direction for the development of this technology. In this paper, the device of a cylindrical thermoelectric power generation for high temperature flue gas is designed, and the experimental platform is built. The influence of different collector types and collector structure parameters on the effect with heat transfer and output characteristics of the device is analyzed, aiming to improve the thermoelectric performance of the device by enhancing the heat transfer. The main work of research is as follows:

(1) The theory of thermoelectric conversion effect is expounded systematically and the evaluation standard of the performance about the device of thermoelectric power generation is determined. The model of heat transfer on the thermoelectric power generation system is established, the heat transfer process between hot end, cold end and thermoelectric module of thermoelectric power generation is analyzed theoretically. According to the thermal resistance network diagram and heat transfer mode, the heat transfer of integrated thermal power generation system is calculated theoretically.

(2) The enhanced heat transfer models of finned collector and shunt bucket collector are established, and different types of collectors are simulated and analyzed. The results show that: Increasing the heat transfer area of fins has limited improvement on the heat transfer effect, and the temperature difference between hot and cold ends of the thermoelectric module decreases gradually along the flue gas flow direction. The shunt bucket collector can increase the turbulence intensity of the flue gas and change the disadvantage that the temperature difference of the flue gas decreases gradually in the heat dissipation process along the flow direction. The change of its structural parameters is more flexible to improve the heat transfer effect.

(3) The influence of structure parameters on the performance of the shunt bucket collector is studied by numerical simulation. The results show that the temperature and temperature difference of the hot and cold end of the thermoelectric modules under the end cover without holes of the shunt bucket are significantly greater than the open structure of the end cover. The diameter of the shunt hole and the diameter of the shunt bucket have high sensitivity to the temperature difference and the uniformity of temperature distribution at the hot and cold end of the thermoelectric modules, and the heat transfer performance of the device is better under the condition that the shunt hole diameter is the smallest (2mm) and the diameter of the shunt bucket is moderate (130mm). The spacing between the shunt holes and the number of shunt holes are more sensitive to pressure drop of exhaust, and the pressure drop is lower when the spacing between the rows is 10mm and the number of shunt holes per row is 24. When the diameter of the diverter bucket is the largest (140mm), under the diameter of the gradient shunt hole (2.9mm-2.5mm-2.2mm-2.0mm), the heat transfer performance of the device is further improved, and the exhaust pressure drop is also reduced.

(4) The comparison between the experimental test and the simulation results verifies the effectiveness of the shunt bucket collector in enhancing heat transfer. The experimental results show that the device with better heat transfer of shunt bucket has stronger power generation performance. When the diameter of the shunt bucket is 130mm and the diameter of the shunt hole is 2mm, the average temperature difference of the thermoelectric modules is 138℃, the maximum output power of the system is 85.4W, and the efficiency of thermoelectric conversion is 2.9%. When the diameter of the shunt bucket is 140mm, the average temperature difference of the thermoelectric modules further increases to 151℃ under the gradient diameter of the shunt hole (2.9mm-2.2mm-2.2mm-2.0mm), the maximum output power reaches 89.1W, and the efficiency of thermoelectric conversion rises to 3.2%.

参考文献:

[1] 潘茜, 梁永乐. 工业企业碳达峰碳中和路径分析[J]. 资源再生, 2022(6): 64-67.

[2] Jouhara H, Żabnieńska-Góra A, Khordehgah N, et al. Thermoelectric generator (TEG) technologies and applications[J]. International Journal of Thermofluids, 2021, 9: 10063.

[3] 戴厚良, 苏义脑, 刘吉臻, 等. 碳中和目标下我国能源发展战略思考[J]. 石油科技论坛, 2022, 41(1): 1-8.

[4] Zhao Y L, Wang S X, Ge M H, et al. Analysis of thermoelectric generation characteristics of flue gas waste heat from natural gas boiler[J]. Energy Conversion and Management, 2017, 148: 820-829.

[5] Cao Q, Luan W, Wang T. Performance enhancement of heat pipes assisted thermoelectric generator for automobile exhaust heat recovery[J]. Applied Thermal Engineering, 2018, 130: 1472-1479.

[6] Mohamed E S. Development and performance analysis of a TEG system using exhaust recovery for a light diesel vehicle with assessment of fuel economy and emissions[J]. Applied Thermal Engineering, 2019, 147: 661-674.

[7] Zhang H, Yue H, Huang J, et al. Experimental studies on a low concentrating photovoltaic/thermal (LCPV/T) collector with a thermoelectric generator (TEG) module[J]. Renewable Energy, 2021, 171: 1026-1040.

[8] Karthick K, Suresh S, Joy G C, et al. Experimental investigation of solar reversible power generation in Thermoelectric Generator (TEG) using thermal energy storage[J]. Energy for Sustainable Development, 2019, 48: 107-114.

[9] Li G N, Yi M B, Tulu M B, et al. Miniature self-powering and self-aspirating combustion-powered thermoelectric generator burning gas fuels for combined heat and power supply[J]. Journal of Power Sources, 2021, 506: 230263.

[10] 樊文渊. 基于汽车尾气热量的温差发电装置设计与研究[D]. 镇江: 江苏大学, 2018.

[11] 王慧斌, 吕延枫, 隋雨鑫, 等. 基于热管和两级温差发电的船舶余热利用[J]. 科学技术与工程, 2017, 17(28): 219-224.

[12] 姚光森. 汽车尾气温差发电系统性能研究[D]. 天津: 天津商业大学, 2021.

[13] 平会峰. 高温温差发电系统的性能分析[D]. 重庆: 重庆大学, 2015.

[14] 贾琦. 基于柴油机大温差余热回收的半导体温差发电系统研究[D]. 天津: 天津大学, 2014.

[15] Sharma G, Kumar J, Sharma S, et al. Performance of diesel engine having waste heat recovery system fixed on stainless steel made exhaust gas pipe[J]. Materials Today: Proceedings, 2022, 48: 1141-1146.

[16] Ziolkowski A. Automotive Thermoelectric generator impact on the efficiency of a drive system with a combustion engine[C]//MATEC Web of Conferences. EDP Sciences, 2017, 118: 00024.

[17] Ramírez R, Gutiérrez A S, Eras J J C, et al. Evaluation of the energy recovery potential of thermoelectric generators in diesel engines[J]. Journal of Cleaner Production, 2019, 241: 118412.

[18] Marvão A, Coelho P J, Rodrigues H C. Optimization of a thermoelectric generator for heavy-duty vehicles[J]. Energy Conversion and Management, 2019, 179: 178-191.

[19] Liu X, Deng Y D, Wang W S, et al. Experimental investigation of exhaust thermoelectric system and application for vehicle[J]. Journal of Electronic Materials, 2015, 44: 2203-2210.

[20] Liu X, Yu C G, Chen S, et al. Experiments and simulations on a heat exchanger of an automotive exhaust thermoelectric generation system under coupling conditions[J]. Journal of electronic materials, 2014, 43: 2218-2223.

[21] He W, Wang S X, Lu C, et al. Influence of different cooling methods on thermoelectric performance of an engine exhaust gas waste heat recovery system[J]. Applied energy, 2016, 162: 1251-1258.

[22] Lu X, Yu X F, Qu Z M, et al. Experimental investigation on thermoelectric generator with non-uniform hot-side heat exchanger for waste heat recovery[J]. Energy Conversion and Management, 2017, 150: 403-414.

[23] Ge M H, Li Z H, Zhao Y T, et al. Experimental study of thermoelectric generator with different numbers of modules for waste heat recovery[J]. Applied Energy, 2022, 322: 119523.

[24] Demir M E, Dincer I. Performance assessment of a thermoelectric generator applied to exhaust waste heat recovery[J]. Applied Thermal Engineering, 2017, 120: 694-707.

[25] Remeli M F, Singh B. Car exhaust waste heat recovery using hexagon shaped thermoelectric generator[J]. Journal of Applied Engineering Design & Simulation (JAEDS), 2021, 1(1): 43-51.

[26] Hazama H, Masuoka Y, Suzumura A, et al. Cylindrical thermoelectric generator with water heating system for high solar energy conversion efficiency[J]. Applied energy, 2018, 226: 381-388.

[27] Kim T Y, Kwak J, Kim B. Energy harvesting performance of hexagonal shaped thermoelectric generator for passenger vehicle applications: An experimental approach[J]. Energy Conversion and Management, 2018, 160: 14-21.

[28] Zhao Y L, Lu M J, Li Y Z, et al. Characteristics analysis of an exhaust thermoelectric generator system with heat transfer fluid circulation[J]. Applied Energy, 2021, 304: 117896.

[29] Shu G Q, Ma X N, Tian H, et al. Configuration optimization of the segmented modules in an exhaust-based thermoelectric generator for engine waste heat recovery[J]. Energy, 2018, 160: 612-624.

[30] Zhou M F, He Y L, Chen Y M. A heat transfer numerical model for thermoelectric generator with cylindrical shell and straight fins under steady-state conditions[J]. Applied thermal engineering, 2014, 68(1-2): 80-91.

[31] Wang X Z, Li B, Yan Y Y, et al. A study on heat transfer enhancement in the radial direction of gas flow for thermoelectric power generation[J]. Applied Thermal Engineering, 2016, 102: 176-183.

[32] 刘佳星. 汽车尾气废热温差发电装置数值模拟与优化研究[D]. 北京: 华北电力大学, 2020.

[33] Abu Bakar R, Singh B, Remeli M F. Experimental electrical characterisation of thermoelectric generator using forced convection water cooling[J]. Journal of Mechanical Engineering (JMechE), 2020, 17(1): 1-16.

[34] Gomaa M R, Rezk H. Passive cooling system for enhancement the energy conversion efficiency of thermo-electric generator[J]. Energy Reports, 2020, 6: 687-692.

[35] Schwurack R, Bärschneider J, Unz S, et al. Performance enhancement of a thermoelectric system with improved natural convection cooling by utilizing the chimney effect[J]. Energy Conversion and Management, 2021, 237: 114118.

[36] Mohammadnia A, Ziapour B M, Sedaghati F, et al. Fan operating condition effect on performance of self-cooling thermoelectric generator system[J]. Energy, 2021, 224: 120177.

[37] Zhang Z, Zhang Y Q, Sui X M, et al. Performance of thermoelectric power-generation system for sufficient recovery and reuse of heat accumulated at cold side of TEG with water-cooling energy exchange circuit[J]. Energies, 2020, 13(21): 5542.

[38] Lei X X, Wang Y P, Deng Y D, et al. Combined numerical and experimental investigation on the optimum coolant flow rate for automotive thermoelectric generators[J]. Journal of Electronic Materials, 2019, 48: 1981-1990.

[39] Du Q, Diao H, Niu Z Q, et al. Effect of cooling design on the characteristics and performance of thermoelectric generator used for internal combustion engine[J]. Energy Conversion and Management, 2015, 101: 9-18.

[40] Lv S, He W, Jiang Q Y, et al. Study of different heat exchange technologies influence on the performance of thermoelectric generators[J]. Energy Conversion and Management, 2018, 156: 167-177.

[41] Borcuch M, Musiał M, Gumuła S, et al. Analysis of the fins geometry of a hot-side heat exchanger on the performance parameters of a thermoelectric generation system[J]. Applied Thermal Engineering, 2017, 127: 1355-1363.

[42] Najjar Y S H, Sallam A. Optimum design, heat transfer and performance analysis for thermoelectric energy recovery from the engine exhaust system[J]. Journal of Electronic Materials, 2019, 48: 5532-5541.

[43] Su C Q, Wang W S, Liu X, et al. Simulation and experimental study on thermal optimization of the heat exchanger for automotive exhaust-based thermoelectric generators[J]. Case Studies in Thermal Engineering, 2014, 4: 85-91.

[44] Wan Q S, Liu X, Gu B, et al. Thermal and acoustic performance of an integrated automotive thermoelectric generation system[J]. Applied Thermal Engineering, 2019, 158: 113802.

[45] Li Y Z, Wang S X, Zhao Y L, et al. Experimental study on the influence of porous foam metal filled in the core flow region on the performance of thermoelectric generators[J]. Applied Energy, 2017, 207: 634-642.

[46] Lu C, Wang S X, Chen C, et al. Effects of heat enhancement for exhaust heat exchanger on the performance of thermoelectric generator[J]. Applied Thermal Engineering, 2015, 89: 270-279.

[47] Choi Y, Negash A, Kim T Y. Waste heat recovery of diesel engine using porous medium-assisted thermoelectric generator equipped with customized thermoelectric modules[J]. Energy Conversion and Management, 2019, 197: 111902.

[48] Negash A A, Choi Y, Kim T Y. Experimental investigation of optimal location of flow straightener from the aspects of power output and pressure drop characteristics of a thermoelectric generator[J]. Energy, 2021, 219: 119565.

[49] Tian H, Zhao T T, Shi L F, et al. Assessment and optimization of exhaust gas heat exchanger with porous baffles and porous fins[J]. Applied Thermal Engineering, 2020, 178: 115446.

[50] Zhao Y L, Lu M J, Li Y Z, et al. Numerical investigation of an exhaust thermoelectric generator with a perforated plate[J]. Energy, 2023, 263: 125776.

[51] 舒歌群, 刘祎, 田华, 等. 柴油机余热回收桶式温差发电器的结构优化[J]. 天津大学学报(自然科学与工程技术版), 2016, 49(11): 1181-1186.

[52] 丁奕文. 热管强化温差发电性能的实验研究[D]. 南京: 东南大学, 2018.

[53] 周华. 燃气烤炉余热温差发电系统设计及性能实验研究[D]. 广东: 广东工业大学, 2020.

[54] 刘磊. 汽车尾气温差发电装置冷热端传热性能仿真与优化[D]. 衡阳: 南华大学, 2018.

[55] 黄海华. 理论探索新型二维半导体热电材料[D]. 长春: 吉林大学, 2020.

[56] 薛源. 基于余热回收的半导体温差发电模块优化设计与性能实验研究[D]. 济南: 山东大学, 2015.

[57] 田松峰, 刘佳星, 郁建雄, 等. 导热油对温差发电装置温度场影响的数值研究[J]. 能源工程, 2020(5): 10-15.

[58] Chen W H, Wang C M, Saw L H, et al. Performance evaluation and improvement of thermoelectric generators (TEG): Fin installation and compromise optimization[J]. Energy Conversion and Management, 2021, 250: 114858.

[59] 颜雨虹. 基于纳米流体的汽车尾气温差发电系统冷端强化传热研究[D]. 武汉: 武汉理工大学, 2021.

[60] 胡伟平. 基于汽车尾气温差发电装置换热结构仿真优化与实验[D]. 上海: 上海工程技术大学, 2014.

[61] 吴晋蒙. 基于锅炉余热回收的温差发电系统设计与实现[D]. 太原: 太原理工大学, 2021.

[62] 杜卓成, 彭江英. 汽车尾气余热发电装置的圆筒式换热器仿真[J]. 测控技术, 2014, 33(5): 135-138.

[63] 杨家盛. 汽车尾气温差发电系统发电模块布置及内流场结构优化研究[D]. 镇江: 江苏大学, 2022.

[64] Gao H B, Zong S C, Zhang C W, et al. Experimental investigation of the performance of a thermoelectric generator at various operating conditions[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2021, 702(1): 012001.

[65] 王芳, 田宇, 张新宇, 等. 流速及传热温差对换热器传热系数的影响[J]. 哈尔滨理工大学学报, 2017, 22(2): 29-33.

中图分类号:

 TK11    

开放日期:

 2023-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式