- 无标题文档
查看论文信息

论文中文题名:

 园子沟煤矿采掘工程安全评价研究    

姓名:

 张泽    

学号:

 22302229117    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 125600    

学科名称:

 管理学 - 工程管理    

学生类型:

 硕士    

学位级别:

 工程管理硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 管理学院    

专业:

 工程管理    

研究方向:

 安全管理    

第一导师姓名:

 钱敏    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-16    

论文答辩日期:

 2025-05-28    

论文外文题名:

 Research on Safety Evaluation of Mining Engineering in Yuanzigou Coal Mine    

论文中文关键词:

 采掘工程 ; 安全管理 ; 安全评价 ; 模糊综合评价法    

论文外文关键词:

 Mining engineering ; Safety management ; Safety assessment ; Fuzzy comprehensive evaluation method.    

论文中文摘要:

       我国以煤炭为主的能源消费结构在短期内难以改变,煤炭企业的绿色、高效、安全生产将直接关系到我国国民经济的高速发展。随着社会发展、技术进步,煤炭从业人员的安全意识日益提升、煤矿安全生产状况不断改善,但安全事故仍时有发生。煤矿采掘工程水文地质环境复杂、不确定因素多;各类重型机械大量布置于狭小作业空间内,加之复杂的施工工艺与密集的工人数量,各种因素耦合叠加,极大地增加了安全风险管控的难度。采掘工程是煤矿安全生产的重难点。构建安全评价模型,对煤矿采掘工程进行安全评价工作,使安全管理工作实现“关口前移”,从源头上防范化解相关风险,提升本质安全水平,具有重大的现实意义。

       本文以园子沟煤矿采掘工程作为研究对象,在阐述国内外研究现状及相关理论的基础上,基于园子沟煤矿采掘工程安全现状,分析了采掘工程安全评价指标,确定了人员的因素、设备的因素、环境的因素、管理的因素4个一级、35个二级因素,在此基础上形成了园子沟煤矿采掘工程安全评价初选指标;邀请了30位专家打分评价,最终得到了确定的园子沟煤矿采掘工程安全评价指标体系,包含4个二级指标和30个三级指标;建立层次结构模型、构造模糊判断矩阵确定了评价指标权重,构建了基于AHP的模糊综合评价法的园子沟煤矿采掘工程安全评价模型;以园子沟煤矿1032101综采工作面为例,应用安全评价模型,评价其安全水平,得出园子沟煤矿1032101综采工作面安全水平处于中等水平,人员安全和管理安全属于问题较严重水平,环境安全对整体影响较小,设备安全属于中等水平;根据评价结果从井下采掘工作管理、人员安全培训、设施设备优化等方面制定了针对性管控措施,以确保园子沟煤矿采掘工程安全高效的生产。

       本文构建的园子沟煤矿采掘工程安全评价模型,定量化的给出园子沟煤矿采掘工程安全水平,为企业准确掌握自身安全生产状况提供了一个有效手段。本文的研究有利于提升园子沟煤矿采掘工程安全管理水平,也为其他煤矿企业提供有益的参考,有助于国内煤矿安全生产水平的提升。

论文外文摘要:

    China's energy consumption structure dominated by coal is unlikely to change in the short term. The green, efficient and safe production of coal enterprises will directly affect the rapid development of the country's national economy. With the development of society and technological progress, the safety awareness of coal industry workers has been continuously enhanced and the safety situation in coal mines has been constantly improving. However, safety accidents still occur from time to time. The hydrogeological environment of coal mining and excavation projects is complex and full of uncertainties. A large number of heavy machinery are placed in a narrow working space, coupled with complex construction techniques and a large number of workers, all these factors interact and superimpose, greatly increasing the difficulty of safety risk management. Coal mining and excavation projects are the key and difficult points of coal mine safety production. Constructing a safety evaluation model to conduct safety evaluation on coal mining and excavation projects can move the safety management "forward", prevent and defuse related risks from the source, and improve the intrinsic safety level, which has significant practical significance.

    This paper takes the mining and excavation engineering of Yuanzigou Coal Mine as the research object. Based on the current research status at home and abroad and related theories, and considering the safety status of the mining and excavation engineering of Yuanzigou Coal Mine, the safety evaluation indicators of the mining and excavation engineering are analyzed. Four first-level factors, namely personnel factors, equipment factors, environmental factors, and management factors, and 35 second-level factors are determined. On this basis, the initial safety evaluation indicators of the mining and excavation engineering of Yuanzigou Coal Mine are formed. 30 experts are invited to score and evaluate, and finally the safety evaluation index system of the mining and excavation engineering of Yuanzigou Coal Mine is determined, which includes 4 second-level indicators and 30 third-level indicators. A hierarchical structure model is established, a fuzzy judgment matrix is constructed, the weights of the evaluation indicators are determined, and a safety evaluation model of the mining and excavation engineering of Yuanzigou Coal Mine based on AHP and fuzzy comprehensive evaluation method is constructed. Taking the 1032101 fully mechanized mining face of Yuanzigou Coal Mine as an example, the safety evaluation model is applied to evaluate its safety level. The result shows that the safety level of the 1032101 fully mechanized mining face of Yuanzigou Coal Mine is at a medium level, the safety of personnel and management is at a relatively serious problem level, the environmental safety has a relatively small impact on the overall situation, and the equipment safety is at a medium level. According to the evaluation results, targeted control measures are formulated from aspects such as underground mining and excavation work management, personnel safety training, and facility and equipment optimization to ensure the safe and efficient production of the mining and excavation engineering of Yuanzigou Coal Mine.

    The safety evaluation model of mining and excavation engineering for Yuanzigou Coal Mine constructed in this paper quantitatively presents the safety level of mining and excavation engineering in Yuanzigou Coal Mine, providing an effective means for the enterprise to accurately grasp its own safety production situation. The research in this paper is conducive to improving the safety management level of mining and excavation engineering in Yuanzigou Coal Mine, and also provides a beneficial reference for other coal mining enterprises, which is helpful to enhance the safety production level of domestic coal mines.

参考文献:

[1] 国家统计局. 2016-2023年煤炭占能源消费总量的比重及煤炭生产量[EB/OL]. 2023.

[2] 王国法,刘合,王丹丹等. 新形势下我国能源高质量发展与能源安全[J].中国科学院院刊, 2023,38(01):23-37.

[3] 国家统计局.2012-2022年煤炭事故死亡人数[EB/OL].2021.

[4] 谭鑫.煤矿安全生产影响因素分析与措施研究[J].化工管理,2017,(20):273.

[5] 林友臣.基于层次分析法和模糊综合评价法的项目风险评价应用研究[J].工程技术研究,2023,8(19):36-38.

[6] Stankovska A,Dimittrieskas.Risk Management[J].Entrepreneurship,2017,21(1):65-78

[7] G.L.Danko et al.Dynamic Models in Atmospheric Monitoring Signal Evaluation for

Safety,Health and Cost Benefits[J].Mining,Metallurgy&Exploration,2019,36(6):1235-1252.

[8] Kulich Jakoband Bleibinhaus Florian.Fault Detection with Crosshole and Reflection

Geo-Radar for Underground Mine Safety[J].Geosciences,2020,10(11):456-456.

[9] Sathishkumar Netal.Safety Monitoring System in Coal Mine Using IoT[J].Journal of Physics:Conference Series,2021,16(1):65-78.

[10] Kim Yeanjae and Baek Jieun and Choi Yosoon.Smart Helmet-Based Personnel

Proximity Warning System for Improving Underground Mine Safety[J].Applied Sciences,2021,11(10):4342-4342.

[11] 田水承,孙雯,杨鹏飞等.煤矿班组不安全状态影响因素及评价[J].西安科技大学学报,2022,42(03):405-412.

[12] 许鹏丽,贺阿红,尹胜利.基于AHP-DEMATEL-ISM的矿工不安全行为影响因素研究[J].新型工业化,2022,12(06):64-70+122.

[13] 张婷婷,宿国瑞,侍大军.基于AHP-SPA的煤矿安全管理模型构建及应用[J].煤炭工程,2021,51(11):179-184

[14] 赵安新,张育刚,韩安.等基于层次分析法的煤矿分级分层安全状态评估方法[J].煤炭技术,2021,40(03):162-165.

[15] 张志强.基于层次分析法煤矿安全评价体系的建立及应用[J].能源与节能,2022,(01):209-210.

[16] 王维,任翔,张宁等.煤矿安全生产主要影响因素研究[J].现代矿业,2021,37(06):97-100

[17] 王文杰.影响我国煤矿安全生产的主要因素分析[J].资源信息与工程,2022,33(03):71-72.

[18] 任杰.煤矿安全生产主要影响因素及安全管理对策[J].陕西煤炭,2022,38(03):178-180.

[19] 周天.基于本质安全的煤矿管理体系及安全评价研究[D].兰州交通大学,2021.DOI:10.27205/d.cnki.gltec.2019.001076.

[20] 周天墨,陈鹏飞,陈佳林,诸云强,王晓爽,祁彦民,李威蓉,孙凯,王曙,程全英.中国煤矿安全生产水平空间差异与影响因素[J].地理研究,2022,41(04):1194-1211.

[21] 李咏梅,王海宁,袁金星,崔晓琴,张彬.基于FAHP确定影响煤矿安全生产因素的重要性[J].山西焦煤科技,2023,34(07):44-46+50.

[22] 程学建.浅谈神华集团神东公司上湾煤矿安全管理[J].中国煤炭,2023.10:110-112.

[23] 成连华,郭慧敏.基于SEM的煤矿安全生产影响因素系统研究[J].中国安全科学学

报,2022,28(01):137-142.

[24] 卢国志,李希勇,宁方淼.煤矿安全指标评价体系研究及应用[J].安全与环境学报,2021(03):29-31.

[25] 张爱霞.煤矿安全综合评价与伤亡事故预测方法研究[D].河北理工大学,2022.

[26] 张嘉勇,巩学敏,郭立稳.用层次分析法建立煤矿安全评价指标体系[J].中国矿业,2022(04):20-22

[27] 程健维,杨胜强.矿井采掘工作面通风效果的综合评价[J].中国安全科学学报,2021(05):165-169+177.

[28] 陈红,祁慧,谭慧.中国煤矿重大瓦斯爆炸事故规律分析[J].中国矿业,2022(03):66-70+74.

[29] 陈红,祁慧.煤炭企业安全行为选择的动因研究[J].中国矿业,2023,18(09):79-82.

[30] 陈红,祁慧,谭慧.基于特征源与环境特征的中国煤矿重大事故研究[J].中国安全科学学报,2023(09):33-38+115.

[31] 夏睿.基于突变评价与GA-BP的建筑施工安全评价方法研究[D].上海应用技术大学, 2021.DOlI:10.27801/d.cnki.gshyy.2021.000239.

[32] 龚雪茹,邵珊珊,康晓鹏,李涌泉,柴旺.基于组合赋权和模糊综合分析的承压设备安全状况评价方法研究[J].中国特种设备安全,2021,37(06):26-32.

[33] 彭远春,金雪梅,刘长顺,刘自江,月庆.基于组合赋权-模糊灰色聚类的钻井作业安全评

价方法研究[J].石化技术,2021,28(08):141-143.

[34] 寇一丁.矿并通风系统安全评价方法及发展趋势[J].内蒙古煤炭经济,2021(08):113-114.

[35] 乔双江.煤矿安全生产风险预警分析[J].石化技术,2020,27(07):269+271.

[36] 杨力,曹璐.煤炭掘进作业人员安全职业适应性评价方法[J].安徽理工大学学报(社会科学版),2021,23(03):21-24.

[37] 杨永纯.用JSA法分析螺杆泵检维修作业问题及对策[J].石油化工安全环保技术,2023,35(01):17-20+55+6.

[38] 李玲.浅析安全评价行业存在的问题及发展方向[J].建材与装饰,2022(30):195-196.

[39] Shin Dong-Hun etal. Application of a combined safety approach for the evaluation of safety margin during a Loss of Condenser Vacuum event[J]. Nuclear Engineering and Technology,2022,54(5):1698-1711.

[40] Amir Saman Abdollahzadeh Nasiri et al. Evaluation of Safety in Horizontal Curves of Roads Using a Multi-Body Dynamic Simulation Process[J].International Journal of Environmental Research and Public Health,2020,17(16):5975-5989.

[41] Khanzode,Muhammad Badar Hayat,Lana Alagha,Ontlametse Kenneth Molatlhegi. An evaluation of machine learning and artificial intelligence models for predicting the flotation behavior of fine high-ash coal[J]. Advanced Powder Technology: The internation Journal of the Society of Powder Technology, Japan,2022,29(12):3493-3506.

[42] Mahdevari,Debi Prasad Tripath3.Qualitative Assessment of Strata Control in an Indian Underground Coal Mine[J]. Springer India,2023,97(1):105-110.

[43] Ionica,Ranjan Kumar.Stability Assessment of Old Underground Coal Mine Openings for the Safety of Overlying Railway Tracks[J].Springer India,2022,100(2):15-19.

[44] Gul,Suprakash Gupta,Yuga Raju Gunda. Estimation of human error rate in underground coal mines through retrospective analysis of mining accident reports and some errorreduction strategies[J]. Elsevier Ltd,2020,33(2):25-28.

[45] 胡慧慧,骆大勇.改进粒子群神经网络在煤矿安全评价中的应用[J].工业安全与环

保,2021,44(11)29-31.

[46] 杨军,刘守强,纪润清等.基于遗传算法优化BP神经网络的华北型煤田矿压破坏带深

度预测[J].矿业研究与开发,2022,40(06):89-93.

[47] 韩雪.基于CMM的隐患治理能力成熟度模型研究与应用[J].微型机与应用,2021,34(02):7-10.

[48] 刘文生,王保民.基于灰色关联法的煤矿事故不安全行为风险评估[J].煤炭技术,2022,

36(09):330-333.

[49] 陈卓.基于层次分析和灰色关联分析的煤与瓦斯突出危险等级评价[J].煤炭技术,2021,26(09):1-4.

[50] 李晨,周鲁洁,李艺昕等.矿井通风系统安全性综合评价及优化实践[J].煤炭技术,2022,35(01):213-215.

[51] 马文婷,任利成,戎丹等.基于灰色-物元模型的煤矿瓦斯爆炸风险评估[J].中国安全科学学报,2021,31(02):99-105.

[52] Ozgen Karacan,Kai Cao,Li Ma, Yang Xiao,Lifeng Ren. A random forest approach for predicting coal spontaneous combustion[J]. Fuel,2023,223(Jul.1):63-73.

[53] Nilufer Kursunoglun. Development and application of reservoir models and artificial neural networks for optimizing ventilation air requirements in development mining of coal seams[J].International Journal of Coal Geology,2023,72(3):10-14.

[54] Danish Ali,Felicia A. Ruiz,Michael Cote,Sally Phipps. Coal mine methane: A reviewof capture and utilization practices with benefits to mining safety and to greenhouse gasreduction[J]. International Journal of Coal Geology,2024,86(2):32-25.

[55] Charan Kumar Ala,Mustafa Onder. Application of structural equation modeling to evaluatecoal and gas outbursts[Jj. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research,2022,88:63-72.

[56] 王跃明.模糊综合理论的镇城底矿复杂通风系统评价[J].山西煤炭,2021,39(1):87-91.

[57] 齐文宇,李纯财.国外煤矿安全管理的先进经验与启示[J].中州煤炭,2022,(5):118-119.

[58] 张爱然,张连军,彭英健等.基于多灾耦合综合评估的采煤工作面安全评价研究[J].中国煤炭,2023,44(09):97-102

[59] 任晓聪.美国煤炭安全监管对中国的启示[J].煤炭工程,2023,48(6):145-148.

[60] 马超.矿山安全生产领域规制的域外经验[J].宁夏师范学院学报,2022,41(12):60-64.

[61] 汪文广.澳大利亚的矿山安全管理[J].劳动保护,2023.3:106-108.

[62] 代海军,马超.澳大利亚矿山职业安全与健康监察体制及其启示[J].中国煤炭,2021,45(11):122-127.

[63] H.Woods,QM.Greenwod.A process mining approach to improve emergency rescue processes of fatal gas explosion accidents in Chinese coal mines[J].Safety Science.2019,111(02):154-166.

[64] Chamber, Farmer;Masto, Reginald Ebhin;George, Joshy.Tracing source, distribution and health risk of potentially harmful elements (PHEs) in street dust of Durgapur, India[J].Ecotoxicology and Environmental Safety.2021,154(03): 280-293.

[65] 杨晓东,林晓霞,徐誉尹.基于大数据技术的瓦斯预测方法研究[J].福建电脑,2023,34(11):114-115+62.

[66] 徐应珍.矿山水文地质勘查的问题及主要防治解决措施[J/OL].世界有色金属,2022(18):140+142.

中图分类号:

 F407.21    

开放日期:

 2025-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式